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Abstract

Differential expression experiments or other analyses often end in a list of genes. Pathway 

enrichment analysis is one method to discern important biological signals and patterns from noisy 

expression data. However, pathway enrichment analysis may perform suboptimally in situations 

where there are multiple implicated pathways – such as in the case of genes that define subtypes of 

complex diseases. Our simulation study shows that in this setting, standard overrepresentation 

analysis identifies many false positive pathways along with the true positives. These false positives 

hamper investigators’ attempts to glean biological insights from enrichment analysis. We develop 

and evaluate an approach that combines community detection over functional networks with 

pathway enrichment to reduce false positives. Our simulation study demonstrates that a large 

reduction in false positives can be obtained with a small decrease in power. Though we 

hypothesized that multiple communities might underlie previously described subtypes of high-

grade serous ovarian cancer and applied this approach, our results do not support this hypothesis. 

In summary, applying community detection before enrichment analysis may ease interpretation for 

complex gene sets that represent multiple distinct pathways.
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1. Introduction

Researchers’ experiments that include high-throughput data generation often lead to a set of 

genes. These genes may be genes that are over- or under-expressed in a disease subtype, are 

upregulated in response to a drug, or contain variants associated with a disease. After 

potentially interesting genes are identified, the next challenge is to interpret the biological 

processes or pathways that underlie the set. Overrepresentation-based methods are 

commonly used to identify pathways that have more members in the identified set than 

would be expected by chance1. Typically, pathways or similar groups of genes are obtained 

from structured vocabularies outlined in curated ontologies such as KEGG, PID, GO, or 

Reactome2–5. Recently, computational researchers have sought to improve the power of such 

analyses by considering network interactions among pathway members6,7. We sought to 

evaluate overrepresentation analysis in a different setting: one where multiple pathways 

underlie a set of associated genes. In this situation, applying standard overrepresentation 

analysis to gene sets constructed by randomly selecting members of multiple pathways 

identifies many false positive pathways. We hypothesized that reducing the noise of the gene 

list input via community detection might decrease the number of false positive pathways.

Functional networks are a type of network where genes are connected if they have a high 

probability of working together in the same pathway or process8–11. To address the 

challenge posed by multi-pathway gene sets, we developed an approach that incorporates 

information from functional networks to first partition gene sets into subsets, or 

communities, which are then analyzed for overrepresented pathways. To accomplish this, 

enrichment analysis is applied to each extracted community resulting from community 

detection preprocessing12,13 of the original gene set. Community detection has been applied 

to financial data, social media, and biological data12,14. To our knowledge, this is its first 

application to disambiguate the pathways associated with complex gene sets. We evaluate 

four community detection methods in this context: Fastgreedy, Walktrap, Multilevel, and 

Infomap. These algorithms all aim to identify groups/communities within a network:

• Fastgreedy – This algorithm starts from a completely unclustered set of nodes 

and iteratively adds communities such that the modularity (score maximizing 

within edges and minimizing between edges) is maximized until no additional 

improvement can be made15.

• Walktrap – This algorithm performs random walks using a specified step size. 

Where densely connected areas occur, the random walk becomes “trapped” in 

local regions that then define communities16.

• Multilevel – This algorithm is similar to fastgreedy, but it merges communities to 

optimize modularity based upon only the neighboring communities as opposed 

to all communities17. The algorithm terminates when only a single node is left, 

or when the improvement in modularity cannot result from the simple merge of 

two neighboring communities.

• Infomap – This algorithm uses the probability flow of information in random 

walks, which occurs more readily in groups of heavily connected nodes. Thus, 
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information about network structure can be compressed in maps of modules 

(nodes where information travels quickly)18.

Outside of the multi-pathway gene set challenge, there are a number of R packages that 

implement algorithms for network interpretation of experimental results including 

WGCNA19, EnrichNet20, pathDIP21, and CePa22,23. In this work, community detection 

algorithms are used to partition multi-pathway gene sets before overrepresentation analysis. 

By detecting these gene communities, we aim to provide cleaner inputs for 

overrepresentation analyses in the case of multiple underlying pathways – thereby reducing 

the number of identified false positives. In contrast with other methods that use network 

information as priors or as post-analysis visualization aides, we group genes before 

enrichment analysis. While we use the Integrative Multi-species Prediction (IMP) networks, 

our approach can be applied to a gene set from any source11,24. For example, a user may 

wish to use tissue-specific networks from the GIANT webserver9 if tissue specificity is 

important. Finally, our approach makes no assumptions about the covariance structure of the 

networks25 and is thus potentially more useful in real world applications where certain 

assumptions may not apply.

In summary, we propose an alternative gene enrichment approach for cases when multiple 

pathways are suspected to be implicated in a gene list. In this approach, candidate genes are 

overlaid onto a functional network and separated into communities of related genes via 

community detection. Communities are then subjected to an overrepresentation analysis 

independently and multiple testing corrections are applied. We compare four community 

detection approaches in simulated experiments and then apply the approach to identifying 

enriched pathways across high grade serous ovarian cancer (HGSC) subtypes.

2. Methods

We conducted an experiment that contained a control and an experimental arm. The control 

arm was an overrepresentation analysis without community detection, and the experimental 

arm was an overrepresentation analysis with various community detection methods applied 

as a preprocessing step.

2.1. General Approach

From the KEGG ontology, m randomly chosen pathways were selected to form a list of 

candidate genes. To help evaluate the impact of incomplete pathway discovery, only p 
percent of the genes in each pathway were randomly selected for inclusion in the final gene 

list. Finally, a percent of additional random genes selected without replacement from the 

ontology were added to the gene list to create noise. As to only consider genes that influence 

pathway analysis, genes that were not in both IMP and KEGG were excluded for a resulting 

set of 5195 genes. This procedure was performed for both control and experimental arms so 

that differences in results could be attributed to community detection preprocessing.

We performed one hundred iterations for each parameter level combination of number of 

pathways (m = 2–8), percentage of genes included from each pathway (p = 30%, 47.5%, 

65%, 82.5%, and 100%), and percentage additional random genes from IMP (a = 10%, 
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32.5%, 55%, 77.5%, and 100%) for a total of 105,000 individual runs. Over the 100 

iterations of the specific parameter combination, we measured the number of seeded 

pathways correctly detected (true positives), incorrectly detected (false positives), correctly 

missed (true negatives), and incorrectly missed (false negatives). The false positive 

proportion, false negative proportion, precision, recall, and F1 score were calculated for each 

parameter combination over the 100 iterations. The F1 score is the weighted average of 

precision and recall where precision is the number of true positives divided by all positives 

and recall is the number of true positives divided by the sum of true positives and false 

negatives.

2.2. Control Arm

The control arm followed the steps outlined in General Approach.

2.2.1. Control All (CtrAll)—For this method, we determined true positives, false 

positives, true negatives, and false negatives using all significantly enriched pathways and 

complete gene lists of seeded pathways. For example, if a gene list was seeded with three 

pathways and the enrichment analysis identified ten pathways (including correctly 

identifying the original three), then all ten pathways would be counted as positives with the 

seven unseeded pathways considered false positive.

2.2.2. Control M (CtrM)—For this method, true positives, false positives, true negatives, 

and false negatives were determined using only the top m significant pathways where m is 

the number of seeded pathways. For example, if three pathways were seeded and there were 

ten significant pathways, then only the top three pathways in the significant enrichment 

results would be considered. Thus, if all three seeded pathways were in the top three 

significant results, the true positive would be three and false positive would be zero. If, 

however, only two of the three seeded pathways were in the top three significantly enriched 

pathways, then true positive would be two and false positive would be one. CtrM provides 

provides an upper bound on possible performance as it is unrealistic in practice for 

investigators to know a priori the correct number of pathways.

2.3. Experimental Arm

For the experimental arm, the subgraph associated with each gene list described in the 

General Approach was extracted from IMP and subjected to community detection to provide 

community-level gene sets before the overrepresentation analysis. Fastgreedy, Walktrap, 

Infomap, and Multilevel community detection algorithms were applied in the community 

detection step. The communities of genes detected by the algorithm were then used as 

separate candidate gene lists for overrepresentation analysis. True positive, false positive, 

true negative, and false negative were calculated for all pathways that remained statistically 

significant after Bonferroni multiple testing correction at α = .05 was applied. This 

correction was applied for each community if multiple were found.

All simulation analyses were performed using Python 2.7.6 with the iGraph package 

(version 0.71). Figures were produced using ggplot in R 3.3.1. Open source software to 

reproduce the results of this paper is provided at https://github.com/greenelab/
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GEA_Community_Detection. Figure 1 provides an overview of both the control and 

experimental arms.

HGSC Application—Based on the results of the simulation study, we applied the top 

performing community detection algorithms to lists of genes characterizing high-grade 

serous ovarian cancer (HGSC) subtypes. The gene lists were previously identified by a one 

cluster versus all differential expression analysis26 of cluster specific genes in common to 

four HGSC datasets27–30. While previous reports have described four HGSC subtypes, the 

multi-population study suggested that the number was three or fewer26. Given these 

conflicting results, we applied community detection to HGSC subtype-specific gene lists 

previously derived from results classifying 2, 3, and 4 subtypes26. Because this is an analysis 

of cancer genomics data, we used cancer pathways from the Pathway Interaction Database 

(PID)5.

3. Results and Discussion

3.1. Simulation Study

In general, community detection methods reduced the number of false positive associations 

in the multi-pathway setting. When seeding a gene list with four random pathways, all 

community detection methods had higher F1 scores than the standard enrichment analysis, 

CtrAll (Figure 2). In cases where pathways were incompletely seeded, the community 

detection methods often outperformed CtrM, which only considers the top m pathways as 

statistically significant (Figure 2). These findings are consistent when using the top 2–8 

pathways (pathway numbers 2, 3, 5, 6, 7, and 8 are Supplementary Figures S1–6). 

Performance was robust to the number of genes taken from each seeded pathway over a 

broad range of values, and the relative performance of methods was largely unaffected by 

the proportion of genes sampled from the seeded pathways (i.e, 30% or all 100%) to make 

the gene lists. Thus, our approach may be more useful than standard enrichment techniques 

in situations where one is presented with a long, heterogeneous, and incomplete gene list 

and one wishes to find a set of robust pathways for further investigation. The Walktrap and 

Multilevel methods demonstrated the most success in this context as they resulted in high F1 

scores and relatively low false negative and false positive proportions. Compared to other 

community detection methods, Fastgreedy appeared to have a broader range of performance 

values, with higher variability and increased outliers. The performance of community 

detection algorithms may be network-specific; users may wish to apply our open source 

code to perform a new simulation study if different networks are selected.

The combination of community detection and enrichment was designed to filter false 

positives in the multi-pathway setting. When we evaluated the proportion of false positives, 

we observed that the F1 score improvements were driven by successful filtration. In 

particular, all community detection methods outperformed standard enrichment analyses for 

false positive proportions (Figure 3). As expected, when the number of seeded pathways 

increased, the proportions of false positives steadily increased for control runs that included 

all statistically significant pathways. The standard enrichment analysis approach was well 
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suited to identifying a single pathway. The more pathways that were present in a single 

genelist, the worse standard enrichment-based methods performed.

All community detection methods other than CtrAll usually miss some portion of the true 

positives using 4 seeded pathways (Figure 4). In general, Walktrap, Infomap, and Multilevel 

tend to have greater variability in the number of pathways missed compared to CtrAll and 

Fastgreedy. It is not surprising that the community detection and CtrM methods have higher 

proportions of false negatives than CtrAll since they were designed to reduce false positives. 

Thus, a traditional enrichment approach may be more appropriate in sitatuions where false 

negatives are more of a concern, such as when investigating a relatively small gene list or 

conducting an exploratory analysis.

3.2. HGSC Results

To examine the biological applicability of community detection, we independently applied 

the community detection approach to previously defined, HGSC subtype-specific gene lists 

for when 2, 3, and 4 subtypes are assigned. We previously derived these gene lists from a 

differential expression analysis across HGSC subtypes that were concordant across different 

populations26. We selected only the top performing algorithms from our simulation study, 

Walktrap and Multilevel. Applying these methods to PID pathways, we found that most 

clusters mapped to either Beta1 integrin cell surface interactions or IL12-mediated signaling 

events (Table 1). Community detection methods was able to separate upregulated and 

downregulated genes coming from the same pathway into different communities (Table 1).

While many pathways were implicated in the original pathway analysis (see Supplementary 

Table S6 of Way et al. 201626), our community detection approach only implicated two 

distinct pathways consistently, for 2–4 subtypes. This did not support our hypothesis that 

HGSC subtypes are driven by differences across multiple pathways that are captured in 

differentially expressed gene lists. HGSC subtypes are known to be primarily characterized 

by a mesenchymal gene signature and immunoreactivity. Our analysis suggested that up- 

and down-regulation of beta 1 integrin signaling, and down-regulation of IL12 signaling, 

primarily define the subtype-specific signatures. However, the lack of PID pathway 

enrchiment in the presence of community structure may indicate novel biological pathways 

driving subtype separation. Beta 1 integrin signaling is a well characterized indicator of 

metastasis31 and its high expression is associated with poor survival in ovarian cancer 

patients32. IL12 is an important immune system process with many coordinated functions33. 

Importantly, administration of intraperitoneal IL12 is being explored as a therapeutic agent 

in ovarian cancer34. The community detection approach pointed to specific HGSC subtypes 

that were aligned with this characterization, but did not identify multiple pathways for any 

specific subtype. We often observed that pathways that were highly expressed for one 

subtype would be underexpressed for another, which was consistent with a model that 

HGSC subtypes exist along a continuum of underlying pathway or cell type content. These 
results are also generally consistent with those found previously27, 28,35,36.

Harrington et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Conclusion

In summary, we developed an alternative enrichment method that uses community detection 

to group genes based on network connectivity prior to enrichment analyses. This approach is 

designed for situations where a researcher hypothesizes that multiple pathways contribute to 

a gene set. It trades an increase in false negatives for a dramatic reduction in false positives. 

The standard enrichment approach may be more appropriate in exploratory stages of 

research when high power is more desired than false positive control. Applying this method 

to gene sets that characterize HGSC subtypes did not reveal multiple pathways underlying 

any of the previously described subtypes. These results are consistent with a model where 

factors other than the activity of multiple pathways are responsible for the difficult to discern 

HGSC subtypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
In standard enrichment analysis, the full gene list is subjected to enrichment analysis and all 

significantly enriched pathways are returned. In the proposed experimental community 

detection enhanced method, the full gene list is first subjected to community detection to 

parse the gene list into sub-gene lists. Enrichment analysis is then performed for each gene 

list associated with each “discovered” community. Only the most significant pathway is 

returned for each community.
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Fig. 2. 
F1 scores for the controls (using all (CtrAll), or only the top 4 (CtrM), statistically 

significant pathways) and the community detection methods: Fastgreedy, Infomap, 

Multilevel, and Walktrap for various percentages of genes in each pathway (top axis) and 

percentages of additional genes (right side axis) for simulations using 4 random pathways. 

The percentage of genes indicates the percentage of random genes selected from each 

pathway. The percentage of additional genes indicates how many unrelated genes are 

randomly added to the analysis to represent increasing amounts of noise. Each comparison 

includes 100 iterations.
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Fig. 3. 
Proportions of false positives for the controls (using all (CtrAll), or only the top 4 (CtrM), 

statistically significant pathways) and the community detection methods: Fastgreedy, 

Infomap, Walktrap, and Multilevel for various percentages of genes in each pathway (top 

axis) and percentage of additional genes (right side axis) for simulations using 4 random 

pathways.
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Fig. 4. 
Proportions of false negatives in the controls (using all (CtrAll), or only the top 4 (CtrM), 

statistically significant pathways) and the community detection methods: Fastgreedy, 

Infomap, Walktrap, and Multilevel for various percentage of genes in each pathway (top 

axis) and percentage of additional genes (right side axis) for simulations using 4 random 

pathways.
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