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Abstract

Mounting evidence over the past several decades has demonstrated inequitable distribution of 

pollutants of ambient origin between sociodemographic groups in the United States. Most 

environmental inequality studies to date are cross-sectional and used proximity-based methods 

rather than modeled air pollution concentrations, limiting the ability to examine trends over time 

or the factors that drive exposure inequalities. In this paper, we use 1 km2 modeled PM2.5 and NO2 

concentrations in Massachusetts over an 8-year period and Census demographic data to quantify 

inequality between sociodemographic groups and to develop a more nuanced understanding of the 

drivers and trends in longitudinal air pollution inequality. Annual-average population-weighted 

PM2.5 and NO2 concentrations were highest for urban non-Hispanic black populations (11.8 μg/m3 

in 2003 and 8.4 μg/m3 in 2010, vs. 11.3 μg/m3 and 8.1 μg/m3 for urban non-Hispanic whites) and 

urban Hispanic populations (15.9 ppb in 2005 and 13.0 ppb in 2010, vs. 13.0 ppb and 10.2 ppb for 

urban non-Hispanic whites), respectively. While population groups experienced similar absolute 

decreases in exposure over time, disparities in population-weighted concentrations increased over 

time when quantified by the Atkinson Index, a relative inequality measure. Exposure inequalities 

were approximately one order of magnitude greater for NO2 compared to PM2.5, were more 

pronounced in urban compared to rural geographies, and between racial/ethnic groups compared 

to income and educational attainment groups. Our results also revealed similar longitudinal PM2.5 

and NO2 inequality trends using Census 2000 and Census 2010 data, indicating that spatio-

temporal shifts in air pollution may best explain observed trends in inequality. These findings 

enhance our understanding of factors that contribute to persistent inequalities and underscore the 

importance of targeted exposure reduction strategies aimed at vulnerable populations and 

neighborhoods.
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1. Background

Ambient exposure to nitrogen dioxide (NO2) and fine particulate matter (PM2.5) have been 

associated with a range of adverse health effects including increased risk of asthma and 

respiratory infections (Brauer et al., 2002; O’Connor et al., 2008; Xing et al., 2016), adverse 

birth outcomes such as early gestational age and low birth weight (Brauer et al., 2008; Stieb 

et al., 2012; Zheng et al., 2016), increased risk of autism spectrum disorders (Raz et al., 

2015; Volk et al., 2013), and all-cause mortality (Franklin et al., 2008; Shi et al., 2016). 

Mounting evidence over the past several decades has demonstrated inequitable distribution 

of exposure to PM2.5 and NO2 in the United States among children and older adults, non-

Hispanic black and Hispanic populations, low educational attainment and low income 

populations, potentially contributing to environmental health disparities (Bell and Ebisu, 

2012; Brugge et al., 2015; Clark et al., 2014; Morello-Frosch and Lopez, 2006; Su et al., 

2009).

However, there are three key limitations in the exposure inequality literature to date. First, 

much of the environmental inequality (EI) research is cross-sectional, examining 

environmental inequalities at one point in time. This limits the ability to examine 

longitudinal trends or the causal mechanisms that drive inequality (Legot et al., 2012; Mohai 

et al., 2011; Pastor et al., 2004). In particular, there is limited insight about whether 

disparities are driven by population shifts subsequent to siting of hazardous facilities or 

roadways, disparate siting practices in poor communities and communities of color, or 

policies focused on decreasing ambient pollution that simply do not examine distributional 

consequences. Investigators in both the sociological and environmental health literature 

argue that residential segregation is a main driver of environmental health disparities (Mohai 

and Saha, 2015; Morello-Frosch and Lopez, 2006), so demographic shifts over time could 

have an influence on land use practices, declining social capital and local economies and 

ultimately, community-level environmental exposures (Mohai and Saha, 2015a; Pastor et al., 

2004, 2001). Further, demographic change over time could modify inequalities even in the 

absence of changes in air quality. Therefore, it is imperative to incorporate demographic 

time trends in air pollution exposure inequality studies.

Second, a limited number of studies have used quantitative metrics to assess EI over space 

and time. Quantifiable measures of exposure inequality allow regulators to formally assess 

patterns of EI and to maximize efficiency in exposure reduction policies that seek to reduce 

environmental exposures, while simultaneously incorporating social equity into 

distributional assumptions (Boyce et al., 2016; Harper et al., 2013; Levy et al., 2007, 2006). 

A handful of environmental studies to date have incorporated formal inequality indices to 

assess geographic and social distribution of environmental hazards (Boyce et al., 2016; 

Clark et al., 2014; Levy et al., 2007, 2006; Post et al., 2011; Su et al., 2009). These previous 
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studies have adopted welfare-based or health-based measures of inequality to assess 

sociodemographic distributions of exposure to a single hazard (Boyce et al., 2016; Clark et 

al., 2014; Fann et al., 2011; Levy et al., 2006; Post et al., 2011) or cumulative environmental 

hazards (Su et al., 2009). This paper employs the Atkinson Index (AI) (Atkinson, 1970), a 

relative measure of inequality, discussed in further detail below. Although some previous 

studies have used the AI to quantify exposure inequality (Clark et al., 2014; Levy et al., 

2009, 2006; Post et al., 2011), these studies focused to a greater extent on understanding the 

inequality implications of air pollution control strategies, and not on longitudinal patterns of 

inequality.

Most EI studies examine inequitable distributions of hazardous facilities among population 

subgroups (Mohai and Saha, 2015a, 2015b). A limited, but growing number of EI studies 

have examined inequalities with respect to both hazardous facilities and traffic-related air 

pollution using modeled or measured ambient concentrations. However, many are at coarse 

geographic resolutions, ignore chemical fate and transport and local meteorological 

conditions, and do not address longitudinal trends in EI (Clark et al., 2014; Hajat et al., 

2015; Kravitz-Wirtz et al., 2016; Mohai and Saha, 2015b; Morello-Frosch and Jesdale, 

2006; Pope et al., 2016). Pollutants such as NO2 and PM2.5 have significant public health 

burdens but are not typically dominated by local emissions from hazardous facilities, 

reinforcing the importance of an exposure-based analytical approach to identify EI occurring 

at smaller spatial scales.

In this paper, we quantify inequality in modeled ambient PM2.5 and NO2 concentrations 

between racial, ethnic, income and education groups across Massachusetts between 2003 

and 2010 using methods to address the three major limitations in this area of research. The 

work applies a formal inequality index to examine patterns of exposure among rural and 

urban populations as a means to identify populations most vulnerable to air pollution 

exposure within the state. The availability of demographic data from the decennial 2000 and 

2010 Census at the block group level and modeled ambient air pollution at a 1 km2 

resolution over an eight-year period provides us the unique opportunity to examine 

inequalities over time and develop a more nuanced understanding of whether PM2.5 and 

NO2 exposure inequalities are driven by demographic shifts or longitudinal pollution source 

distribution.

2. Methods

2.1 Data Sources

2.1.1 Ambient air pollution for Massachusetts, 2003–2010—Daily surface PM2.5 at 

a 1 km2 resolution was modeled from 2003–2010 using a 3-stage statistical modeling 

approach (Kloog et al., 2014). This modeling approach used a combination of aerosol 

optical depth (AOD) satellite data retrieved using the multi-angle implementation of 

atmospheric correction (MAIAC) algorithm, land use and meteorological predictors of 

variation in surface-PM2.5, and monitored PM2.5 concentrations (Kloog et al., 2014). This 

produced an overall “out-of-sample” R2 for daily values of 0.88, and cross validation results 

produced a slope of observed versus predicted of 0.99. Details of the PM2.5 prediction 

models can be found in in Kloog et al. (2014).
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We used daily ground NO2 concentrations that were estimated for the New England region 

from 2005–2010 at a 1 km2 resolution from a combination of ground-level NO2 data at 

monitoring sites, satellite Ozone Monitoring Instrument NO2 vertical column density data, 

and land use regression (Lee and Koutrakis, 2014). Predictors in mixed effects models 

included population density, distance to major highways, percent developed area, NO2 

source emissions, elevation, and temperature data. This model produced an R2 of 0.79 and 

cross validation results produced a slope of observed versus predicted of 0.98, demonstrating 

high predictive reliability. NO2 model details can be found in Lee and Koutrakis (2014).

2.1.2 Demographic Data—We gathered geographic distributions of race/ethnicity, 

income, and educational attainment from the US Census and American Community Survey 

(ACS) at the block group unit of analysis. Measures of educational attainment and income 

were not collected in the decennial 2010 Census. Therefore, we obtained race/ethnicity data 

from Census 2010, and measures of income and educational attainment from ACS 2006–

2010 5-year estimates. We categorized block groups as rural and urbanized centers 

according to Census classifications, which rely on population density (Ratcliffe et al., 2016). 

We utilize Census data at two distinct time periods, 2000 and 2010, rather than at 1-year 

intervals over the decade under study because the non-decennial 1-year summaries from the 

ACS are less-reliable, constitute a smaller sample size, and were only collected starting in 

2005.

We categorized population characteristics into the following groups:

• Race/ethnicity: individuals in each block group that self-identify as non-Hispanic 

white, non-Hispanic Black, non-Hispanic Asian, Hispanic or other

• Income: 1999 and 2010 inflation-adjusted median household income as <

$20,000/year, $20–35,000/year, $35–50,000/year, $50–75,000/year, and >

$75,000/year

• Educational Attainment: individuals in each block group ≥25 years of age with 

less than a high school degree, high school graduate, postsecondary degree, 

bachelors and graduate degree

We aggregated daily PM2.5 and NO2 concentrations to average annual concentrations. 

Annual PM2.5 (years 2003–2010) and NO2 (years 2005–2010) concentrations were assigned 

to each block group centroid using the closest 1 km2 grid cell centroid for each year over the 

study period. This exposure assignment method was performed separately for Census 2000 

and ACS/Census 2010 block groups using ArcGIS 10.3 (ESRI, Inc.).

2.2 Statistical Analysis

2.2.1 Summary Statistics—We calculated summary statistics for Massachusetts of the 

number and percentage of individuals and households within each racial/ethnic and 

education group and the percentage change between 2000 and 2010 stratified by urban 

(densely developed territories with 50,000 or more people (Census 2000, n=4277; Census 

and ACS 2010, n=4308)) and rural (any territory not defined as urban (Census 2000, n=654; 

Census and ACS 2010, n=596)) block groups (Table 1). Median household income in 2010 
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dollars is also presented for both time points. Due to the small number of block groups 

categorized by the Census Bureau as “urban clusters,” territories containing between 2,500 

and 50,000 residents (Census 2000, n=116; Census and ACS 2010, n=75), these block 

groups were excluded from stratified analyses.

2.2.2 Calculating Population-Weighted Concentrations across Subpopulations
—We calculate block group population-weighted PM2.5 concentrations for each year from 

2003 to 2010, and population-weighted NO2 concentrations for each year from 2005 to 

2010. As corresponding annual population data are not available, we calculate separately 

using each of Census 2000, Census 2010 and ACS 2006–2010, and we evaluate the 

influence of using alternative population data. Population-weighted concentrations were 

calculated for each population demographic group stratified by urban and rural 

classifications. Block-group PM2.5 and NO2 (PM2.5i, NO2i) were multiplied by the number 

of people in each population subgroup (pi). The subgroup block group values were summed 

for the state and divided by the total population in each subgroup:

(1)

2.2.3 Quantifying Inequality Using the AI—We formally quantify air pollution 

exposure inequality between population subgroups using the Atkinson Index (AI) (Atkinson, 

1970). The AI has been traditionally used as a welfare-based measure of income inequality 

(Kawachi and Kennedy, 1997), but has since been adopted in the environmental inequality 

literature (Clark et al., 2014; Levy et al., 2007, 2006). The AI can be decomposed into 

between-group, within-group and total inequality measures (Lasso de la Vega and Urrutia, 

2003; Levy et al., 2006). This feature allows investigators to compare distributions of 

pollutants between population subgroups, and determine whether total inequality in a 

population can be explained by disproportionate pollution burden between population 

subgroups (Harper et al., 2013).

For the purposes of the current analysis, we present only “between-group” inequality, as the 

focus of this paper is examining trends in environmental inequality between population 

subgroups given the environmental justice implications. The AI ranges from zero to one, 

zero indicating no inequality and one indicating complete inequality.

The Between-Group AI can be expressed as:

(2)

where n represents the number of individuals in the population, fj represents the fraction of 

the total population in each subgroup,  represents mean exposure of each subgroup, 

represents the mean exposure over the full population within a given geographic boundary 

(state, rural or urban) and ε represents an explicit inequality aversion parameter, explained 
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below (Atkinson, 1970). The AI is therefore a relative (as opposed to absolute) measure of 

inequality, so that proportional changes in exposure across the population would not 

influence the AI, but additive changes would have an effect. By comparing each subgroup’s 

weighted exposure to the overall population average exposure within a defined geography, 

the between-group AI represents the magnitude, in relative terms, of exposure disparities 

between population subgroups. This is an overall measure of inequality between defined 

subgroups- it does not explicitly provide information about which of those subgroups are 

most inequitably exposed.

The inequality aversion parameter is a measure of societal concern about inequality. It 

determines where relative weights should be placed across the exposure distribution. The 

parameter ranges from zero to infinity, with increasing values reflecting greater weight on 

the bottom of the distribution. Unlike income, environmental exposures are worse at higher 

levels, so we perform all AI calculations with the inverse of the pollution concentrations to 

allow for interpretable calculations (Harper et al., 2013). All calculations presented here 

apply an aversion parameter of 0.75, consistent with the literature (Clark et al., 2014; Fann et 

al., 2011; Levy et al., 2009, 2007, 2006; Post et al., 2011). As a sensitivity analysis, we 

report the AI for multiple alternative inequality aversion parameters (0.25–2) in the 

Appendix (Figure A4).

Applying the AI (ε =0.75), we quantified between-group PM2.5 and NO2 exposure 

inequality by applying average annual PM2.5 concentrations for each year between 2003 and 

2010 and average annual NO2 concentrations for each year between 2005 and 2010, keeping 

the demographic data constant.

3. Results

3.1 Population Characteristics

State-wide demographic characteristics by block group in 2000 and 2010 are presented in 

Table 1. Overall, the Massachusetts state population grew by 3.1% between 2000 and 2010. 

The state contained 81.9% Non-Hispanic white in 2000 and 76.1% in 2010. The Hispanic 

population increased by 47% from 2000 to 2010, growing from 6.7% of the population to 

9.6%. The percent of the population with less than a high school education decreased 3.9 

percentage points from 2000 to 2010. Average inflation-adjusted median household income 

among all Massachusetts block groups was essentially unchanged, although the 10th 

percentile value decreased by $3,383 (9.8%) and the 95th percentile value increased by 

$4,407 (3.4%), indicating growing income inequality.

We observe distinct population distribution changes between block groups categorized as 

rural or urban. The size of the population grew by 5.3% in urban block groups and decreased 

by 4.1% in rural block groups. Overall, a higher percentage of racial/ethnic minorities live in 

urban than in rural block groups. Urban non-Hispanic whites experienced the greatest 

change of any population group between 2000 and 2010, decreasing by 6.2%. Educational 

attainment distributions are similar between rural and urban block groups in both 2000 and 

2010, and both experienced a decrease in the population with less than a high school 
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education. In general, median household incomes were higher in rural than in urban block 

groups, and the growing income inequality was more pronounced in urban areas.

3.2 Population Weighted Concentrations

Based on modelled PM2.5 and NO2, we find that average annual PM2.5 concentrations across 

the state decreased by 35% between 2003 and 2010, and that average annual NO2 

concentrations decreased by 24% between 2005 and 2010. Concentrations were consistently 

lower in rural than urban areas, but patterns of change remained the same between the two 

strata (Figures 1a and 1b).

Tables 2 and 3 display snapshots of subgroup population-weighted PM2.5 and NO2 

concentrations, along with absolute and relative (percent) change in exposure over the study 

period for the full state and rural/urban classifications. Population-weighted concentrations 

for PM2.5 in 2003 and NO2 concentrations in 2005 were calculated using the Census 2000 

population, approximating the spatial and demographic distributions of the population in 

those years. For PM2.5 and NO2 population-weighted concentrations in 2010, the Census 

2010 and ACS 2006–2010 populations were used to characterize the population distribution 

(Tables 2 and 3). Figures 2a–f display population weighted trends in PM2.5 and NO2 

concentration for each year between 2003 and 2010 using demographic data from Census 

2010 and ACS 2006–2010, allowing us to isolate the effects of changing concentrations 

from any sociodemographic shifts. Longitudinal changes in population-weighted 

concentrations using demographic data from Census 2000 can be found in the Appendix 

(Figures A1a–A1f).

3.2.1 PM2.5—Overall, weighted PM2.5 exposures in 2003 across the state ranged from 11.1 

to 11.7 μg/m3 across racial/ethnic groups, with ranges in urban block groups from 11.3 to 

11.8 μg/m3 and in rural block groups from 10.1 to 10.8 μg/m3 (Table 2). In 2010, weighted 

PM2.5 exposures ranged across racial/ethnic groups ranged from 7.8 to 8.4 μg/m3, 8.1 to 8.5 

μg/m3 and 6.8 to 7.0 μg/m3 across the state and among urban and rural populations, 

respectively. Across the state in 2003, PM2.5 concentrations were highest for the non-

Hispanic black (11.7 μg/m3) population among racial/ethnic groups, those with less than a 

high school education (11.3 μg/m3) among education groups, and those with incomes less 

than $20,000 per year (11.4 μg/m3) among income groups. Among racial/ethnic groups in 

2003, the greatest difference in population weighted concentration was between non-

Hispanic whites (11.1 μg/m3) and non-Hispanic blacks (11.7 μg/m3), and in 2010 the 

greatest difference was between non-Hispanic whites (7.8 μg/m3) and both Hispanic and 

non-Hispanic black (8.4 μg/m3) populations. These patterns were present in urban but not 

rural block groups. The absolute decrease in PM2.5 over time was relatively homogenous 

across all population groups.

Figures 2a–c display population weighted trends in PM2.5 exposures from 2003 to 2010, 

holding Census 2010 and ACS 2006–2010 data constant. Among racial and ethnic groups, 

non-Hispanic Asian populations experienced the largest decrease in PM2.5 exposures 

between 2003 and 2010 in both urban (28.8%) and rural (33.6%) locations, whereas the 

urban Hispanic population experienced the lowest percentage decrease (27.3%). Among 
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rural income groups, the greatest decrease in PM2.5 was observed for median incomes above 

$75,000 per year (33.5%), a pattern that differed from urban income groups. In general, the 

population groups with the highest exposures in 2003 experienced lower relative decreases 

in exposures over time, consistent with similar absolute reductions across populations. 

Holding the Census 2000 population constant over annual PM2.5 concentrations reveals 

similar results (Figures A1a–A1c).

3.2.2 NO2—Table 3 displays population weighted NO2 concentrations, absolute and 

percent decrease in exposure for the full state, and patterns of exposure stratified by 

sociodemographic characteristics and rural/urban status. Across the state in both 2005 and 

2010, NO2 concentrations were highest for Hispanic populations (15.8 ppb in 2005 and 12.8 

ppb in 2010), those with less than a high school education (14.5 ppb in 2005 and 11.9 ppb in 

2010) and households in the lowest income bracket (14.4 ppb in 2005 and 11.7 ppb in 2010). 

Patterns were identical in urban block groups. However, in rural block groups, the non-

Hispanic Asian population experienced the highest exposure in 2005 (11.6 ppb), while non-

Hispanic whites (7.9 ppb) had the highest NO2 burden in 2010. Those in the highest income 

bracket in rural block groups also experienced the highest NO2 concentrations in both 2005 

and 2010.

Figures 2d–f display trends in population-weighted NO2 concentrations from 2005 to 2010 

using demographic data from Census 2010 and ACS 2006–2010. In general, the rate of NO2 

concentration decrease was greater in rural than urban block groups. Similar to PM2.5, 

population-weighted NO2 exposure inequality existed for urban, but not rural, 

sociodemographic groups. Trends in population-weighted NO2 exposure make clear that 

patterns of inequalities persisted from 2005 to 2010, and that urban racial/ethnic minorities, 

low income and education groups remained the highest exposure groups. Results are similar 

when applied to the Census 2000 population (Figures A1d–A1f).

3.3 Atkinson Index

3.3.1 PM2.5—We estimate the AI for each year, separately using Census 2000 and Census 

2010/ACS 2006–2010, to determine how exposure inequality has evolved over time and 

whether this is related to concentration patterns or changing demographics. Overall, AI 

trends and values are relatively insensitive to the choice of population data (Figure 3). The 

principal difference between the two demographic years is demonstrated in modestly higher 

rural exposure inequality trends among racial/ethnic and income groups for the Census 2000 

compared to the Census 2010 population. These results indicate that both population 

mobility and shifting PM2.5 distributions contribute to rural exposure inequality trends. 

Exposure inequality trends among all subgroups living in urban block groups are nearly 

identical between 2000 and 2010, indicating that shifting PM2.5 distributions (and not 

population mobility) are likely driving observed exposure inequality trends in urban areas.

Between-sociodemographic group PM2.5 inequality using the AI reveals peaks of increased 

and decreased inequality over time as a result of PM2.5 concentration distributions in urban 

block groups, and a slight decreasing trend among rural block groups (Figure 3a). We 

additionally find that inequality is generally greater in magnitude, especially after 2005, in 
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urban block groups. Although the AI values are generally low, they are consistently higher 

for racial/ethnic groups compared to inequality among income and education groups. The AI 

results seen here are explained by non-Hispanic black and Hispanic populations, low-

income, and low educational attainment populations consistently experiencing a greater 

PM2.5 burden than the other racial/ethnic, income and education groups (Table 2). As all 

sociodemographic groups experience a similar absolute decrease in exposure, the lowest 

exposed groups, such as non-Hispanic whites, undergo greater relative rates of exposure 

decline over time.

3.3.2 NO2—We observe distinctly different patterns in quantified NO2 inequality as 

compared to PM2.5 inequality (Figure 3). AI values are generally low but approximately one 

order of magnitude greater for NO2 compared to PM2.5. Between 2005 and 2010 there is a 

slight increase in NO2 inequality among all population strata located in urban block groups. 

Inequality was greatest for racial/ethnic subpopulations in urban block groups, which also 

experienced the greatest rate of increase in AI over time. AI results were similar between 

when using Census 2000 and Census 2010/ACS 2006–2010 population data.

4. Discussion

Our study builds on previous environmental inequality analyses that use measures of 

proximity or coarsely-resolved measures of air pollution exposure and investigate inequality 

at one point in time by incorporating longitudinal Census data and pollution concentrations. 

This work additionally builds on the current literature by employing a novel application of 

the AI to formally quantify inequality between population groups over time.

Although modeled and monitored air pollution data have demonstrated longitudinal 

reductions in concentrations, our highly-resolved and stratified analyses provided some 

novel insights with respect to exposure inequalities. For example, we found distinct 

differences in population-weighted concentration patterns and trends over time between 

PM2.5 and NO2 and between urban and rural geographic areas. Urban areas contain greater 

densities of low-income, non-white and low-educational attainment populations and PM2.5 

and NO2 pollution sources, contributing to some exposure heterogeneity and potential 

inequalities. Greater concentration of urban air pollution sources is reflected in our findings 

of non-Hispanic blacks, individuals with lower educational attainment, and households with 

an annual income of <$20K as the most burdened population groups for both NO2 and 

PM2.5 concentrations throughout the state.

That said, PM2.5 concentrations are more regional than local in nature because they are 

derived from a wide variety of sources, with a strong contribution from secondary pollutant 

formation and long-range transport (Zheng et al., 2002). NO2 is strongly linked to 

automobiles and other mobile sources and tends to exhibit high intra-urban variability. As 

such, it has greater potential for exposure inequalities in urban settings. PM2.5 is a 

regionally-based pollutant, exhibiting less spatial variability in urban areas, leading to 

smaller exposure disparities compared to NO2 (Clougherty et al., 2008). These pollutant-

specific characteristics are reflected in our finding of NO2 inequality that is greater in 

magnitude than PM2.5 inequality. Higher NO2 inequality growth rates within urban areas, 
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especially between racial/ethnic groups, may further be explained by increased local source 

emissions, such as higher traffic counts over time or increased transportation infrastructure 

in Boston neighborhoods containing high proportions of non-Hispanic black and Hispanic 

populations (Brugge et al., 2015; Levy et al., 2001).

In rural settings, NO2 exposures were disproportionately higher for Hispanic populations, 

individuals with lower educational attainment, and households with lower income in urban 

block groups, but higher for non-Hispanic Asians and the wealthiest population groups in 

rural block groups. This could reflect the fact that roadway proximity tends to decrease 

property value in urban areas, but may potentially increase them in rural areas (Bateman et 

al., 2001; Lake et al., 1998). Analyses that did not stratify by urban/rural status would not 

appropriately characterize exposure inequality or capture key between-group differences.

We additionally found fluctuations in PM2.5 inequality and increasing trends in between-

group NO2 inequality, despite similar absolute rates of PM2.5 and NO2 decline across 

population groups. Uniform absolute reductions are beneficial to all but do not decrease 

exposure inequalities, and in fact, tend to increase them for metrics such as the AI given 

growing relative differences. Similar AI trends using Census 2000 and Census 2010 

populations indicates that sociodemographic mobility is not the main driver of urban PM2.5 

and statewide NO2 inequality trends, although it could remain a contributing factor. It would 

be informative for future studies to examine inequality trends using annual demographic 

data where available, holding ambient concentrations constant.

Because most environmental inequality studies rely on cross-sectional data, they do not 

inform our understanding of the components that contribute to changing inequality over time 

(Bell and Ebisu, 2012; Lopez, 2002; Miranda et al., 2011; Pastor et al., 2004; Rosofsky et 

al., 2014). Our application of the AI to characterize exposure inequality addresses this 

literature gap by separately examining population and air pollution patterns, to determine 

which best explains changing inequality. To our knowledge, only one study to date has 

applied the AI to describe spatial patterns of pollution across sociodemographic 

characteristics and between rural and urban areas (Clark et al., 2014). Clark et al. (2014) 

findings of population-weighted racial/ethnic and income disparity for NO2 exposure 

nationwide were similar to our results: nonwhite and low-income populations experienced 

the greatest burden of NO2 exposure, and these disparities were more pronounced in large 

urban areas than rural areas.

A handful of studies within the environmental inequality literature have also moved to 

address this gap (Kravitz-Wirtz et al., 2016; Mohai and Saha, 2015b; Pastor et al., 2001). 

One recent study by Kravitz-Wirtz et al. (2016) examined trends in racial and ethnic 

disparities in exposure to neighborhood air pollution across the U.S., while controlling for 

individual and neighborhood-level changes over time. The authors found that black and 

Hispanic participants were disproportionately exposed to higher concentrations of NO2, 

PM2.5 and PM10 compared to white participants, and that concentrations decreased for all 

racial and ethnic groups over time. In contrast to our findings, rate of decline in PM2.5 and 

NO2 exposure among black and Hispanic participants were more pronounced than for white 

participants. The authors hypothesized that these findings are explained by more rapid 
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decreases in pollution in urban areas, where black and Hispanic participants of the study 

reside. However, our study found the opposite effect, with concentrations of PM2.5 and NO2 

falling more rapidly in rural areas, and for the non-Hispanic white population.

In general, our AI values are quite small, and we observed small absolute differences in 

PM2.5 and NO2 concentrations between population groups. However, AI values cannot be 

reasonably compared across contexts (i.e., income spans many orders of magnitude, whereas 

ambient air pollution has a narrower range within a state), and are most meaningful for 

comparisons over time or between pollutants analyzed similarly. In addition, the exposure 

differences may be large enough to contribute to health disparities (Atkinson et al., 2014; 

Brauer et al., 2008; Clark et al., 2014; Shi et al., 2016). For instance, in a recent study by Shi 

et al. (2016), all-cause mortality increased by 0.9% per μg/m3 increase in long-term PM2.5 

concentrations even when restricted to ambient concentrations below 10 μg/m3. The 0.6 

μg/m3 difference in exposure in urban areas in 2010 for non-Hispanic whites versus 

Hispanics would therefore translate into a 0.5% increase in mortality rates, all else being 

equal. Further, the population subgroups found to have the highest population-weighted 

PM2.5 and NO2 concentrations also tend to have higher baseline rates of asthma and 

cardiovascular disease, leaving them more vulnerable to persistent, longitudinal air pollution 

exposure (Crain et al., 1994; Jones et al., 2009; O’Neill et al., 2003).

Our findings demonstrating inequitable pollution exposure by SES and race/ethnicity are 

supported by evidence of environmental inequality that is firmly established in the academic 

literature (Lopez, 2002; Mohai and Bryant, 1992; Mohai and Saha, 2015a; Morello-Frosch 

and Lopez, 2006). Further, a growing number of studies have demonstrated environmental 

inequality specific to PM2.5 and NO2 in Massachusetts and nationwide using Census data 

(Clark et al., 2014; Miranda et al., 2011; Yanosky et al., 2008). For instance, Miranda et al. 

(2011) used an air quality ranking approach to assess environmental justice dimensions of 

air pollution exposure, finding that the proportion of non-Hispanic black residents in the 

20% of counties in the United States with the poorest air quality was twice that in those 

counties with the most favorable air quality. Yanosky et al. (2008) evaluated whether 

predicted NO2 concentrations are associated with socioeconomic position, after controlling 

for spatial autocorrelation in Worcester, Massachusetts. They found that block group NO2 

concentrations exhibit a significant negative association with median household income, and 

that rates of poverty and low educational attainment populations rose by 3.1% and 3.4%, 

respectively, with every one standard deviation increase in block group mean NO2.

Despite employing novel inequality-based methods using data of high temporal and 

geographic resolution, there are some limitations that merit discussion. The use of Census 

data restricts our ability to examine disparities at the individual/household level. Using 

personal monitors is not feasible at this scale, so we assigned modeled PM2.5 and NO2 

concentrations to each block group to approximate individual exposure, thereby limiting 

potential variability in exposure across the population. Our results consequently do not 

incorporate individual mobility or characteristics that may provide a more comprehensive 

understanding of the drivers of inequality. However, the inputs used to assign block-group 

level exposures are advantageous over proximity-based and aggregation methods that ignore 

chemical fate and transport and local meteorological conditions (Chakraborty et al., 2011; 
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Lucier et al., 2011; Mohai et al., 2011; Pastor et al., 2001). These predictions are also an 

improvement over EI studies that use predicted concentrations over coarse geographic and 

temporal resolutions (Hajat et al., 2015; Kravitz-Wirtz et al., 2016; Mohai and Saha, 2015b; 

Morello-Frosch and Jesdale, 2006; Pope et al., 2016). A 1 km2 resolution is adequate for 

regionally-based pollutants, such as PM2.5, but may ignore local hotspots for locally-based 

pollutants such as NO2. Conversely, smaller geographic resolutions may introduce bias 

related to individual mobility (Setton et al., 2011)

We acknowledge that the temporal misalignment of PM2.5 (years 2003–2010) and NO2 

(years 2005–2010) with Census data for the year 2000 or 2010 prevents a precise 

characterization of exposure patterns over time. However, as discussed above, the relative 

stability of our inequality measures across different population data indicates that this is a 

minor source of error.

As a final overall limitation, we only studied inequalities in outdoor ambient air pollution 

exposures; low socioeconomic status groups may be disproportionately exposed to indoor-

generated exposures or from indoor exposure to outdoor pollutants due to older, leakier 

housing stock (Adamkiewicz et al., 2011). Taking into account the full exposure profile of 

both indoor and outdoor-generated air pollutants may reveal a more striking characterization 

of exposure inequality between population groups.

5. Conclusion

Despite overall reductions in ambient air pollution concentrations and decreased 

industrialization, we found that air pollution inequalities have slightly increased over time 

when measured on a relative scale, and that group-specific concentrations are most disparate 

between racial/ethnic groups. Greater inequalities in urban areas, where there is often 

substantial segregation, reinforces the importance of targeted exposure reduction strategies 

within vulnerable populations and neighborhoods. Ultimately, there is a complex dynamic 

wherein changing sociodemographics over time may impact land use decisions, enforcement 

policy measures, and other factors influencing emissions. To complement these findings, 

more studies that utilize longitudinal, individual-level data are needed to understand 

population mobility and individual factors that affect exposure disparities.
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Highlights

• We characterized longitudinal PM2.5 and NO2 inequality trends across 

Massachusetts

• Exposure inequality increased in urban, but not rural areas

• NO2 exposure inequality was greater in magnitude than PM2.5 inequality

• Observed inequality trends likely driven by spatiotemporal pollution shifts
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Figure 1. 
a. Annual Average PM2.5 Concentrations in Massachusetts, 2003–2010. b. Annual Average 

NO2 Concentrations in Massachusetts, 2005–2010

Rosofsky et al. Page 17

Environ Res. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
a–f. Population-Weighted Annual Average PM2.5 (a–c) and NO2 (d–f) concentrations by 

Census 2010 and ACS 2006–2010 Demographic and Geographic Subpopulations
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Figure 3. 
Between-Group Inequality in Population-Weighted Annual Average PM2.5 and NO2 

Concentrations. a displays results for PM2.5 and NO2 inequality for the Census 2000 

Demographic and Geographic Subpopulations. b displays results for PM2.5 and NO2 

inequality for the Census 2010 and ACS 2006–2010 Demographic and Geographic 

Subpopulations.
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