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Abstract

The influenza M2 protein forms an acid-activated proton channel that is essential for virus 

replication. The transmembrane H37 selects for protons under low external pH (pHout) while W41 

ensures proton conduction only from the N-terminus to the C-terminus and prevents reverse 

current under low internal pH (pHin). Here we address the molecular basis for this asymmetric 

conduction by investigating the structure and dynamics of a mutant channel, W41F, which permits 

reverse current under low pHin. Solid-state NMR experiments show that W41F M2 retains the pH-

dependent α-helical conformations and tetrameric structure of the wild-type channel, but has 

significantly altered protonation and tautomeric equilibria at H37. At high pH, the H37 structure is 

shifted towards the π tautomer and less cationic tetrads, consistent with faster forward 

deprotonation to the C-terminus. At low pH, the mutant channel contains more cationic tetrads 

than the wild-type channel, consistent with faster reverse protonation from the C-terminus. 15N 

NMR spectra allow the extraction of four H37 pKa’s and show that the pKa’s are more clustered in 

the mutant channel compared to wild-type M2. Moreover, binding of the antiviral drug, 

amantadine, at the N-terminal pore at low pH did not convert all histidines to the neutral state, as 

seen in wild-type M2, but left half of all histidines cationic, unambiguously demonstrating C-

terminal protonation of H37 in the mutant. These results indicate that asymmetric conduction in 

wild-type M2 is due to W41 inhibition of C-terminal acid activation by H37. When Trp is replaced 

by Phe, protons can be transferred to H37 bidirectionally with distinct rate constants.
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Introduction

Membrane-bound ion channels require specific residues and structural features to achieve 

ion selectivity and to control channel opening and closing. Channels can be gated, i.e. 

opened and closed, by membrane potential, pH, ligand, mechanical activity, and temperature 
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[1]. The influenza A virus M2 protein (AM2) forms a proton-selective, acid-activated, and 

asymmetrically conducting channel in the virus envelope that is essential for the virus 

lifecycle [2–4]. The acid activation is achieved by a single histidine, H37, in the 

transmembrane (TM) domain [5, 6] while the preferential conduction of protons from the N-

terminus (outside) to the C-terminus (inside) is accomplished by a single tryptophan, W41 

[7, 8]. This HxxxW motif is conserved among all influenza A and B viruses’ M2 sequences 

[2]. Asymmetric ion conduction is also known for some voltage-gated potassium channels, 

which use cytoplasmic factors such as polyamines to achieve inward rectification [9–11], 

and in voltage-gated proton channels of the Hv1 family, which use a conserved RxWRxxR 

motif to achieve inward rectification [12]. While pH-gated channels are often also voltage-

gated in vivo [13], and whole-cell electrophysiological measurements of M2 proton 

conductance are carried out under both voltage and pH control, M2 is specifically activated 

by low pH of the external solution [14, 15].

Because M2 is an excellent model for larger ion channels and because it is also the target of 

the amantadine (Amt) family of antiviral drugs [16, 17], a large number of biochemical, 

biophysical and spectroscopic studies have been carried out to elucidate the structural 

mechanisms of proton conduction of AM2 [4]. These studies showed that the conduction-

relevant structure of M2 depends markedly on the membrane environment [18], but the 

conduction properties are insensitive to the construct length beyond the TM domain if the 

same membrane environment is used [19]. Several M2 constructs have been used in 

biophysical studies because of the modular sequence and multifunctional nature of this 

protein: a highly conserved and disordered N-terminal ectodomain [20] mediates protein 

incorporation into the virion [21] and is the target of universal influenza vaccines [22]. The 

TM domain (residues 22-46) is necessary and sufficient to exhibit proton conductance that is 

similar to full-length M2 [19]. An amphipathic helix C-terminal to the TM helix mediates 

ESCRT-independent membrane scission during virus budding [23–25]. Finally a disordered 

cytoplasmic tail [26] is involved in M1 recognition and virus assembly [27]. The proton 

channel function is fully encapsulated in the TM domain based on proton-current 

measurements in vivo and in vitro. In oocytes, an epitope-tagged TM construct exhibits 

drug-sensitive single-channel activity that is indistinguishable from that of full-length (FL) 

M2 due to the low expression level of TM channels in the oocyte, and in lipid vesicles, the 

TM and FL protein exhibit the same drug-sensitive and pH-dependent proton conductance 

[19]. Molecular dynamics simulations [28] showed the same rate constants of proton 

conduction and gating between M2-TM and another commonly studied construct, M2-CD 

[29], which includes both the TM helix and the amphipathic helix and which exhibits similar 

chemical shifts as M2-FL [30]. Thus, the TM domain is sufficient and necessary for 

studying the mechanism of pH-dependent asymmetric conduction in M2.

While the conduction-relevant structure and dynamics of M2 is insensitive to the construct 

length, they depend markedly on the lipid composition of the membrane [18]. Higher 

membrane fluidity and negatively charged lipids favor H37 protonation [31–33]. Cholesterol 

promotes the α-helical conformation [34], immobilizes tetramer rotational diffusion [35], 

and stabilizes tetramer assembly [36, 37]. Membrane thickness affects the tilt angle of the 

TM helix [33, 38–40], and negative-curvature lipids can alter the tetrameric assembly of the 
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protein [41]. Therefore, any structure-function studies of M2 by comparing wild-type and 

mutant sequences must be conducted in the same phospholipid membranes.

Solid-state NMR spectroscopy of AM2 bound to phospholipid bilayers has provided 

significant information about the proton conduction mechanism. It is now known that the 

H37 sidechain shuttles protons into the virion [42] by repeated protonation and 

deprotonation, as manifested by imidazole 15N chemical shift averaging at physiologically 

relevant acidic pH [43]. This proton shuttling is accompanied by microsecond-timescale 

imidazole ring reorientations, as seen by motionally averaged dipolar couplings [44], and by 

water-imidazole hydrogen bonding, as shown by 1H-15N correlation spectra [45, 46]. The 

protonation equilibria of the H37 tetrad have been measured in different membranes in the 

absence and presence of the cytoplasmic domain [31, 43, 47, 48]. While the exact proton-

dissociation equilibrium constants depend on the membrane composition, all data indicate 

that the third protonation event, which gives rise to the +3 charged tetrad, correlates with 

channel activation. Amantadine binding to the channel lumen near Ser31 [17, 49, 50] 

prevents H37 protonation [44] and shifts the TM structural equilibrium towards the state that 

is populated at high pH [51, 52]. Further, W41 shows pH-dependent motion and proximity 

to H37: the indole ring acquires larger-amplitude motion at low pH and approaches the H37 

imidazolium rings more closely [53]. The resulting cation-π interaction was proposed to 

explain why proton flux into the virion is much smaller than the His-water proton exchange 

rate [29]. Similar aromatic interactions have been proposed for the Hv1 channel between 

W207 and R211 [12], where W207 controls the gating kinetics, conduction activation 

energy, and the pH dependence of gating.

Although these studies have given rich insight into the acid activation and proton transfer 

mechanisms of AM2, the structural basis for asymmetric conduction, i.e. why outward 

proton conduction is prohibited even under the condition of low inside pH (pHin), is not yet 

well understood. Mutagenesis data suggested that this asymmetric conduction may be 

caused by pore-obstructing sidechain conformation of W41 [6, 7], which is stabilized by 

D44 [8]. Recent multiscale molecular dynamics (MD) simulations suggest that under low 

pHin and high pHout, reverse proton current is blocked by steric hindrance and desolvation 

penalty at W41 [28]. However, high-resolution crystal structures and SSNMR data show a 

t90 sidechain conformation of W41 [53, 54], which does not completely occlude the pore, 

and water cross peaks with C-terminal residues have been observed [55], indicating that the 

C-terminal region of the channel is hydrated. These results raise the question as to whether 

protons from the C-terminus may in fact protonate H37 at the atomic level in the presence of 

W41, but this protonation may have escaped detection. Due to the symmetric pH of 

phospholipid membranes employed in structural studies, it is so far not possible to uniquely 

attribute H37 protonation to the N-terminus when both sides of the membrane are acidic. 

This symmetric pH also makes it difficult to determine whether the TM conformation of 

AM2 differs between opposite proton concentration gradients as used in electrophysiological 

measurements, i.e. between low pHout/high pHin on the one hand and high pHout/low pHin 

on the other.

To better understand the structural basis for asymmetric conduction in this canonical proton 

channel, we have now investigated the conformation and proton-transfer dynamics of a 
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W41F mutant of AM2 using solid-state NMR (Fig. 1a, b). Mutagenesis data show that 

substitution of the indole by the phenylene ring at residue 41 does not affect the tetrameric 

nature of the channel but changes proton conductance: the forward conductance increases by 

~60% compared to the wild-type channel and reverse proton conductance becomes 

detectable. Under low pHin the reverse current is 25% of the forward current found under 

low pHout [6, 7]. The replacement of Trp by Phe is appealing for structural studies because 

by uncoupling the H37 tetrad from the W41 tetrad, we can separately probe the atomic 

processes of acid activation and asymmetric conduction.

We use the TM peptide of AM2 in this study to compare the W41F mutant structure with the 

large body of structural information available on the wild-type (WT) TM peptide. The TM 

peptide reproduces key channel properties of full-length M2 and at the same time is 

sufficiently small to allow the incorporation of site-specifically labeled residues using 

synthetic chemistry. We reconstitute the W41F mutant in a cholesterol-containing virus-

mimetic membrane, which is the same membrane used in many previous studies of the 

proton conduction mechanism of WT M2-TM. This allows us to directly compare spectral 

differences between the two constructs. Using solid-state NMR, we show that the W41F 

mutant retains the α-helical conformation and tetrameric assembly of the channel, but has 

significantly different H37 protonation and tautomeric equilibria. Moreover, by binding Amt 

to the N-terminal pore at low pH, we have engineered a novel reverse proton concentration 

gradient, with low pHin and high pHout. In this drug-bound W41F channel, we found both 

cationic and neutral histidines, in contrast to the WT peptide, which exhibits only neutral 

histidines upon drug binding. These results show that asymmetric conduction is due to W41 

inhibition of protonation of H37 from the C-terminus. Without the indole at residue 41, H37 

can be protonated from both directions with distinct rate constants.

Results

The W41F mutant preserves the conformational distribution and tetrameric structure of the 
wild-type TM domain

We first investigated the effects of W41F mutation on the global conformation of the TM 

domain by measuring chemical shifts. Fig. 1c shows 1D 13C MAS spectra of W41F-AM2 

bound to a virus-mimetic membrane, VM+ [32], at high and low pH. Chemical shift 

assignment of the six 13C, 15N-labeled residues is obtained from 2D 13C-13C and 15N-13C 

correlation spectra (Fig. 2). At high pH, a single set of narrow peaks is observed for V27, 

A30, and D44, while H37 exhibits two sets of peaks, which can be assigned to τ and π 
tautomers based on the aromatic chemical shifts (vide infra). 15N-13C correlation spectra 

indicate the coexistence of a major and a minor conformer for S31 and G34 (Fig. 2a), with 

similar chemical shifts as in WT AM2 [33]. These two sets of chemical shifts can be 

assigned to a kinked Cclosed conformation for the major species and a straight Copen 

conformation for the minor species based on chemical shift comparisons with the WT 

peptide and the high-resolution crystal and SSNMR structures of AM2-TM solved under 

varying pH and membrane-mimetic environments [49, 54, 56]. The high-pH Cclosed 

conformation contains a helical kink at G34, causing the C-terminal half of the TM helices 

to be tightly packed [51], while the low-pH Copen conformation has relatively straight 
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helices, facilitating proton release to the C-terminus [33, 57, 58]. Decreasing the pH to 5.5 

broadened the resonances, indicating a larger conformational distribution (Fig. 2b). Two A30 

Cα-Cβ cross peaks can be resolved at low pH, and the relative populations of the two S31 

and G34 states have changed, with the Copen intensities dominating the Cclosed signals. The 

low-pH induced change of the backbone conformational equilibrium of W41F M2 is similar 

to the behavior of the WT peptide, indicating that the mutant retains the pH-dependent 

conformational distributions of the WT peptide, with acidic pH favoring the Copen 

conformation and high pH favoring the Cclosed state. This also indicates that Trp at residue 

41 is not required for the peptide to adopt the Cclosed state, and that the W41F mutation does 

not cause a constitutively Copen conformation.

To determine whether the W41F mutation perturbs the tetrameric assembly of the channel, 

we carried out 19F CODEX experiments using 4-19F-Phe41-labeled W41F. Mono-

substitution of a C-H bond by a C-F bond on the aromatic ring has little steric effect on 

proteins [59], but the electron-withdrawing fluorine makes the electrostatic potential of the 

phenylene π-face less negative. This has been calculated to reduce the cation-π binding 

energy by ~20% compared to the unsubstituted phenylene ring [60]. However, since the 

W41F mutation abolishes the asymmetric conductance of the channel, even unsubstituted 

Phe41 is not expected to have cation-π interactions with His37. Thus the para-fluorine 

substitution should have minimal perturbation on the mutant structure compared to 

unsubstituted Phe41-M2. This is also consistent with the large body of literature showing 

minimal effects of mono-fluorinated aromatic rings to protein structure [61].

The 19F CODEX experiment measures the oligomerization state and intermolecular 

distances by detecting the equilibrium intensity of a stimulated echo [62, 63]. For an 

oligomeric membrane protein with n subunits, the equilibrium echo intensity, measured as 

the intensity ratio between an exchange experiment (S) and a T1-controlled experiment (S0), 

is 1/n. The mixing-time dependence of the intensity decay to equilibrium gives information 

on the inter-subunit distances [64, 65]. To obtain high sensitivity and resolution, we carried 

out these 19F CODEX experiments under 10 kHz magic-angle-spinning (MAS), which is 

faster than used in previous experiments. At this MAS frequency, the overlap integral, which 

is necessary for extracting distances from the spin diffusion data and which is MAS-

frequency dependent, was found from model compound experiments (Fig. S1) to be 41 μs, 

similar to the previously measured value of 37μs [65].

Fig. 3 shows representative 19F control and exchange spectra of membrane-bound 4-19F-

Phe41 labeled W41F M2 and the resulting CODEX decay curves for samples at pH 7.5 and 

pH 4.5. The exchange intensity equilibrates to ~0.25 for both samples, indicating that the 

W41F mutant retains the tetrameric structure. The best single-distance fit for the decay 

curves gives a nearest-neighbor distance of 8.6 Å at pH 7.5 and 9.0 Å at pH 4.5, assuming a 

symmetric tetramer. However, single-distance fits do not fully reproduce the more rapid 

initial decay compared to the long-time behavior. Thus, we used a Gaussian distribution 

model to fit the data. With this model, the high pH sample shows a distance distribution of 

σ=1.0 Å centered at 8.6 Å while the pH 4.5 sample shows a distance distribution of σ=1.5 Å 

centered at 9.0 Å. Therefore, the low-pH mutant is moderately expanded at the C-terminus 

compared to the high-pH mutant channel and also has a larger distribution of the interhelical 
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packing. These results are in good agreement with the inter-helical distances measured for 

5-19F-Trp41 in wild-type M2TM, which found nearest-neighbor distances of 11.4 Å at high 

pH and 12.4 Å at low pH [53]. These intermolecular 19F-19F distances depend on both the 

backbone helix orientation and the sidechain rotameric conformation; the latter depends 

upon the χ1 angle for 4-19F-Phe41 and (χ1, χ2) angles for 5-19F-Trp. For wild-type M2 

harboring Trp41, helix orientation measurements by NMR [38, 57] and crystal structures 

[54, 66] have independently given high-resolution structures of the helix backbone at high 

and low pH, thus the 5-19F Trp41 inter-helical distances allowed the Trp41 rotamer to be 

determined, and the (χ1, χ2) angles were found to be modestly different (by ~20°) between 

high and low pH [53, 67]. For the W41F mutant, the backbone helix orientation is not 

known independently, but it is reasonable to assume that the 19F distance difference between 

high and low pH reflects a similar increase in the helix tilt angle to produce a more 

expanded channel [28, 68] at low pH.

The W41F mutation inverts the H37 tautomer equilibrium at high pH and increases the 
populations of highly cationic tetramers at low pH

Imidazole 13C and 15N chemical shifts provide detailed information about the histidine 

sidechain structure, and allow us to probe the effects of the W41F mutation on the 

protonation and tautomeric equilibria of H37. In WT AM2, 13C and 15N chemical shifts 

indicate the presence of both neutral tautomers at high pH, with the Nε2-protonated τ 
tautomer dominating over the Nδ1-protonated π tautomer by a 3 : 1 ratio [43, 44] (Fig. 4a). 

Interestingly, the W41F mutant shifted the tautomeric equilibrium towards the π form (Fig. 

4b, c). Two Cα-Cβ peaks are resolved; the upfield and downfield Cβ peaks correlate with 

aromatic 13C chemical shifts that are indicative of the π and τ tautomers, respectively (Table 

S1). 15N-13C correlation spectra confirm the assignments by correlating the 

unprotonated 15N peak at 252 ppm with either Cδ2 of the π tautomer or Cγ of the τ 
tautomer. Overall, the mutant displays the same ensemble of chemical shifts as in WT AM2, 

but the π tautomer is the major species, with a τ : π population ratio of 2 : 3 based on the 

average intensities of Cα-Cβ, Nε2-Cδ2, and Nδ1-Cγ cross peaks.

Decreasing the pH to 5.9 caused a mixture of neutral and cationic His peaks in W41F (Fig. 

4b, c), with the π tautomer remaining as the dominant neutral species. Decreasing the pH 

further to 5.5 converted most H37 to the cationic state. Specifically, the Cα and Cβ chemical 

shifts match the previously assigned values for the +3 and +4 charge states of WT AM2, but 

the WT peptide exhibits these chemical shifts at a much lower bulk pH of 4.5. In other 

words, at low pH, the W41F mutant shifts the protonation equilibrium towards more cationic 

tetrads compared to the WT channel. Previous studies of AM2-TM indicated a stabilizing 

cation-π interaction between H37 and W41 [53], thus the W41F mutation might have been 

expected to destabilize cationic H37 at low pH. The fact that the opposite is observed, with 

higher populations of +3 and +4 states in the mutant than in WT M2, thus means that the 

cation-π interaction is less important than C-terminal water accessibility in controlling the 

protonation equilibria of H37. The increased cationicity of the H37 in the mutant is in 

excellent agreement with electrophysiology data, which show that the W41F mutant has 

larger proton conductance than the WT channel between pH 5 and 6 [6, 7] despite the loss of 

the cation-π interaction.
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The W41F mutation clusters the proton-dissociation constants of H37

The 13C and 15N chemical shifts indicate altered H37 protonation equilibria in the W41F 

mutant compared to the WT channel. To quantify this equilibrium change, we measured 15N 

spectra of the H37 imidazole ring as a function of pH. The experiments were conducted at 

243 K to suppress proton transfer dynamics, so that the 15N peak intensities reflect the 

relative populations of neutral and cationic histidines (Fig. S2). Although histidine and 

buffer ions have temperature dependent pKa’s, these W41F samples were measured under 

the same membrane composition, pH, and buffer conditions as wild-type AM2-TM and 

BM2-TM, thus the correction factors for the temperature dependence should be similar (see 

Materials and Methods), allowing us to compare the protonation equilibria of the different 

samples consistently.

The H37 tetrad has a maximum of four distinct pKa’s, corresponding to sequential 

transitions from the +0 to +4 charge states. Fig. 5a shows that, with decreasing pH, the 252-

ppm unprotonated 15N peak intensity decreases while the 160–190 ppm protonated 15N 

peaks increase in intensity, as expected as the H37 tetrad becomes progressively protonated. 

The ratio of the protonated to unprotonated 15N intensity bands depends on the relative 

populations of neutral and cationic histidines. This ratio has a steeper rise at low pH for the 

W41F mutant than for WT AM2 and BM2 (Fig. 5b) [43, 69], indicating that the mutant has 

higher concentrations of cationic histidines at acidic pH. This increased charge state at low 

pH parallels the pH-dependent proton conductance of W41F measured in 

electrophysiological experiments [6, 7]. Using these 15N peak intensities, we calculated the 

concentration ratio of neutral to cationic histidine (Fig. 5c, Table S2), from which the pKa’s 

were extracted and found to be 6.7±0.1, 6.3±0.2, 5.8±0.2, and 5.1±0.3, where the standard 

deviations are obtained from a reduced χ2 analysis (Fig. S3 and Materials and Methods). 

Two adjacent pKa’s in this series have moderately negative correlations, with Pearson 

product-moment correlation coefficients of −0.36 to −0.41 (Table S3). In comparison, wild-

type AM2-TM has little correlation among the three highest pKa’s and only negative 

correlation between the two lowest pKa’s.

Interestingly, this H37 pKa range of the W41F mutant is narrower than that of the WT 

channel, whose pKa’s span the range of 7.6 to 4.2 [43] (Table 1). In other words, the W41F 

channels are less cationic than the WT channels at high pH but more cationic at low pH, 

consistent with the 2D correlation spectra. Since the pKa is the pH value at which two 

adjacent charge states have equal populations, the elevation of the lowest pKa for the W41F 

mutant means that the +3 and +4 channels are equally populated at pH 5.1, while WT AM2-

TM requires a lower pH of 4.2 to reach equimolar concentrations of the +3 and +4 charge 

states.

From the pKa values, we calculated the charge state distributions of W41F channels as a 

function of pH (Fig. 5d). It can be seen that the +3 state dominates in the physiologically 

relevant acidic pH range of 5–6, while the +2 state, which has a high population in all other 

M2 peptides studied so far [31, 43, 47, 48, 69] (Fig. 6), is significantly suppressed. This is a 

manifestation of the clustering of the second and third protonation events, with pKa’s of 6.3 

and 5.8. Since the +2 channel is known to be insufficient for channel activation [43, 47], the 

reduction of the +2 tetrad population and the increase of the +3 tetrad population in W41F 
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explain the higher proton conductance of the mutant compared to the WT channel. The 

population distributions quantified from the pKa measurement at 243 K are in good 

qualitative agreement with the H37 chemical shifts seen in 2D correlation spectra measured 

at 273 K, indicating that the H37 protonation equilibria are similar in this experimental 

range.

The charge-state distribution further allows us to estimate the relative conductance of the 

differently charged channels by fitting the pH-dependent proton conductance of W41F [7]. 

We found that the +0, +1, +2, +3 and +4 charge states of the W41F tetramers have relative 

unitary conductance of 0.1 : 0.4 : 0.6 : 0.9 : 1.0. The similar conductance of the +3 and +4 

channels is qualitatively different from the trend of WT AM2-TM channels, whose +3 state 

has 3- and 10-fold larger conductance than the +2 and +4 states, respectively [43].

Drug-bound W41F channel retains cationic histidines

WT AM2 is inhibited by the antiviral drug Amt, which binds to the N-terminal pore [32, 49, 

50, 66, 70] to dehydrate the channel and prevent H37 protonation from the N-terminus. If 

the W41F mutant allows C-terminal proton transfer, then H37 would be expected to be 

accessible to protons even when the drug is bound at the N-terminal pore. To test this 

hypothesis, we measured 13C and 15N chemical shifts at low pH in the presence of drug. 

Four-fold excess drug was added to the membrane-bound peptides to saturate the channels. 

1D and 2D spectra (Fig. 1c, 2c) show that Amt caused significant line narrowing and 

chemical shift perturbations. The peaks corresponding to Cclosed and Copen conformations, 

seen respectively at high and low pH in the apo samples, now appear with similar intensities 

in the drug bound sample. This is especially prominent for S31 and G34, which show two 

equal-intensity peaks in the 15N-13C correlation spectra, indicating a more bimodal 

distribution of the TM helix conformation (Fig. 2c). Three V27 N-Cα cross peaks can be 

resolved, with intensity ratios of 1 : 1 : 2. Close inspection of the drug-bound spectra reveals 

that the chemical shifts are similar but not identical to those of the apo spectra [49, 50, 71, 

72]. For example, the two A30 Cβ chemical shifts are perturbed from the chemical shifts of 

the high and low pH apo samples (Fig. S4), and the two S31 N-Cα cross peaks have slightly 

different 15N chemical shifts from the apo values at high and low pH. These observations 

confirm that both the Cclosed and Copen conformations contain bound drugs.

Interestingly, drug binding to W41F at pH 5.5 created equal populations of the neutral τ 
tautomer and cationic histidines (Fig. 4b, c), as seen by the cross peak intensities in the 

2D 13C-13C and 15N-13C correlation spectra. This differs from the apo W41F channel at the 

same pH, which is dominated (> 90%) by cationic histidine, and with drug-bound WT 

channel at low pH, which is dominated (> 90%) by neutral histidine. The fact that the drug-

bound W41F channel retains some cationic H37 is unique to the mutant, since low-pH drug 

binding to the WT channel largely converts H37 to the neutral state. The latter can be 

understood because protons can neither access H37 from the N-terminus (due to drug 

blockage) nor the C-terminus (due to W41 blockage) in the drug-bound WT channel. Thus, 

the retention of cationic His in the drug-bound mutant channel definitively demonstrates the 

presence of C-terminal protonation of H37, as enabled by F41. Amt binding to both the 
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mutant and WT channels at low pH is also consistent with electrophysiological data [17] and 

with the fact that the virus is inhibited by the drug at low pH.

Water accessibility and H37-water proton exchange of the W41F mutant channel

While H37 shuttles protons in M2 channels, water relays protons to His at the N-terminus 

and receives protons from His at the C-terminus. Thus, water-His proton exchange is integral 

to the proton conduction mechanism. To investigate channel hydration in W41F AM2-TM, 

we measured 2D water-peptide 1H-13C 2D correlation spectra at two mixing times, 4 ms and 

100 ms (Fig. S5). The ratio of the two spectra (S/S0) gives information about the water 

accessibility of the various residues. Fig. 7 compares the S/S0 values of Cα and Cβ atoms of 

residues in W41F and WT AM2-TM to show the relative hydration of the two channels. 

Both peptides show larger S/S0 values at low pH than at high pH, indicating more hydrated 

channels at low pH. This is consistent with the increased diameter of the low-pH channel 

measured by the 19F CODEX experiment (Fig. 3). The S/S0 values also show residue-

specific differences: pore-facing residues exhibit higher water-transferred intensities than 

lipid-facing residues [55]. Interestingly, the W41F mutant shows lower S/S0 values than the 

WT peptide at high pH and approximately the same S/S0 values at low pH, indicating lower 

average hydration at high pH for the mutant while similar hydration as the WT at low pH. 

More importantly, the mutant channel at low pH show similar water accessibilities for the C-

terminal residues as the N-terminal residues, while the WT channel has decreasing water 

accessibilities from the N-terminus to the C-terminus. Thus, the W41F mutation 

preferentially increases C-terminal hydration at low pH. These results are consistent with the 

2D correlation spectra (Fig. 4) that cationic H37 is favored in the W41F mutant than the 

wild-type peptide. The fact that the mutant channel is less hydrated at high pH compared to 

the WT is also consistent with the observation that at high pH, the H37 equilibrium is shifted 

towards the neutral form. We note that the lower average hydration of the mutant is not 

necessarily in conflict with the increased proton transfer kinetics (vide infra) from C-

terminal water to H37, since water may be more dynamic in the mutant channel to facilitate 

H37-water proton transfer [56].

Water–H37 proton exchange in WT AM2-TM has been observed in 2D 1H-15N correlation 

spectra [45, 46]. To characterize this exchange process in the mutant and compare it with the 

WT channel, we measured 2D 1H-15N correlation spectra of W41F AM2-TM at 263 K (Fig. 

8). All three samples show water 1H cross peaks at ~5 ppm with imidazole nitrogens, 

indicating His-water proton exchange, but the exchange rates differ. At high pH, the water 

cross peaks coexist with one-bond aromatic cross peaks, including Hε2-Nε2 of the τ 
tautomer, Hδ1-Nδ1 of the π tautomer, and a three-bond Hδ1-Nε2 cross peak of the π 
tautomer (Fig. 8a, S6). This coexistence indicates that His-water proton exchange at 263 K 

is significantly slower than the 1H chemical shift difference of ~4000 s−1 at the 1H Larmor 

frequency of 800 MHz used for these experiments. In addition, a (16 ppm, 175 ppm) cross 

peak is observed and can be assigned to a hydrogen-bonded Hδ1 correlated with the Nδ1 of 

the π tautomer. The lack of a second 15N cross peak at the same 1H chemical shift rules out 

another imidazole nitrogen as the hydrogen-bonding partner, but instead attributes the 

partner to water.
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Decreasing the pH to 5.5 suppressed the imidazolium N-H cross peaks in the spectrum while 

retaining the water-imidazolium cross peaks (Fig. 8b), indicating that the His-water 

exchange rate is much faster than 4000 s−1 at this pH, leading to a population-averaged 1H 

chemical shift of water. Interestingly, upon drug binding, the neutral histidines that exist 

under this condition still lack the one-bond N-H cross peaks (Fig. 8c), indicating that water-

His proton exchange is fast for both neutral and cationic histidines even in the presence of 

drug. Since all channels are saturated by drug under the condition of our experiment, the 

presence of water-His cross peaks in this drug-bound sample provides further evidence for 

C-terminal protonation of H37, consistent with the increased C-terminal hydration of the 

channel at low pH.

Discussion

These data on the W41F mutant provide insights into the mechanism of asymmetric proton 

conductance of M2 as well as the dependence of drug binding on pH and helix 

conformation. Our study employs the TM peptide reconstituted into the same eukaryotic 

lipid mixture that has been used for studying WT AM2 and BM2 [32, 35], which enables us 

to compare the structure and dynamics of the mutant with the wild-type rigorously for this 

conformationally plastic protein and in addition allows us to translate the structural findings 

to full-length M2 for which the TM peptide is a fully functional analog.

Kinetic interpretation of the proton conduction equilibria of the W41F mutant and its 
implication on the asymmetric conductance of wild-type Trp41-M2

The observed pH-dependent H37 structural equilibria in W41F M2 can be understood by 

considering the proton-dissociation equilibrium constants in terms of rate constants of 

deprotonation and protonation. The channel can in principle conduct protons in the forward 

(N to C terminus) and reverse (C to N terminus) directions, with two rate constants in each 

direction. We define the protonation and deprotonation rate constants for the forward 

conduction as kon and koff and for the reverse conduction as k′on and k′off. Using the neutral 

to +1 charge state transition as an example, we can write the equilibrium reaction as

(1)

Assuming that protein conformational changes are not rate limiting, which is a reasonable 

assumption based on MD simulations [68], and the system is at equilibrium, then 

d[HisH+]/dt = 0, which leads to

(2)

Rearranging the above equation, we obtain
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(3)

For structural studies, the proton concentrations are identical on the two sides of the 

membrane, . Thus, equation (3) simplifies to:

(4)

For the WT channel at high pH, forward protonation of H37 with a rate constant kon and 

reverse deprotonation with a rate constant  are the two main pathways (Fig. 9a), since the 

forward protonation and reverse deprotonation free energy barriers in the N-terminal half of 

the TM helix are much lower than the forward deprotonation and reverse protonation 

barriers [28]. Thus the equilibrium constant simplifies to

(5)

Structurally, it is known that the neutral imidazole at high pH is oriented with Nδ1 pointing 

towards the N-terminus and Nε2 towards the C-terminus [44, 54, 56], and ring reorientation 

is absent [44]. Therefore, the N-terminus-facing Nδ1 is the site of both protonation and 

deprotonation in the WT channel at high pH. Forward protonation of Nδ1 gives rise to 

cationic His while reverse deprotonation gives rise to the τ tautomer. As a result, the small 

percentage of π tautomer in the high-pH WT channel indicates that the number of forward 

deprotonation events is low. This is consistent with functional data, which shows more rapid 

protonation rates from the viral exterior relative to the proton transmission rates to the viral 

interior [6], as well as with the high barrier of forward deprotonation from H37 [28].

The W41F mutation causes the high-pH channel to exhibit increased π tautomer population, 

which is consistent with increased forward deprotonation rate constant koff, suggesting that 

the mutant channel has increased solvent accessibility at the C-terminus. The equilibrium 

constant increases to

(6)

stabilizing neutral histidines (Fig. 9b, Table S4). The higher proton conductance towards the 

C-terminus at high pH is in excellent agreement with electrophysiology data, which show 

that the W41F mutant has five-fold higher normalized proton conductance than the WT 

channel between pH 8 and 6 [6, 7].
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As the pH decreases, the WT channel can dissociate protons in both the forward and reverse 

directions, with the resulting equilibrium constant . In 

comparison, the W41F mutant can additionally allow reverse protonation due to increased 

solvent accessibility at the C-terminus, thus adding a term in the denominator,

(7)

The mutant equilibrium constant is thus lower than the WT channel at low pH, favoring 

more cationic tetrads. The forward deprotonation rate constant koff for the WT channel at 

low pH is likely different from the forward deprotonation rate constant of the mutant, 

, due to potential differences in free energy barriers [28, 73], but the direction of 

change between the two channels should be dominated by the larger total proton association 

rate constant of the mutant. Evidence for kon’ being of similar magnitude to kon at low pH in 

the W41F mutant is seen in the similar water-H37 exchange rates in the drug-bound and apo 

samples at pH 5.5.

The retention of cationic His in the drug-bound mutant channel definitively demonstrates the 

presence of C-terminal protonation of H37 that is enabled by F41 (Fig. 9b). The equilibrium 

constant of drug-bound channels can be expressed as  for the WT 

channel, where ε is a small number indicating the residual forward protonation rate constant 

in the presence of drug. For the mutant,  decreases to  because 

of the reverse protonation pathway. Since kon’ is much larger than ε, the drug-bound 

equilibrium constant is smaller than that of the WT, shifting H37 to the cationic state in the 

mutant. In principle, amantadine can bind to each protonation state of the channel with 

different affinities and can perturb each of the four pKa’s differently. Here we do not attempt 

to extricate the complex interplay between the drug binding equilibria and the H37 

protonation equilibria. Under the four-fold excess drug used in this study, the drug-binding 

equilibrium is shifted predominantly to the bound state for both the Copen and Cclosed 

conformations (Fig. 2c, Fig. S4), thus we can consider the direction of change in the H37 

protonation equilibria. Together, the above analysis shows that this kinetic framework can 

account for all observed H37 pKa changes and tautomer equilibrium changes between the 

mutant and WT channels under both apo and drug-bound conditions.

While proton accessibility and proton transfer kinetics explain the H37 structural equilibria 

in the mutant, the Copen and Cclosed conformational distribution of the TM helix, as reported 

by the chemical shifts of key residues such as G34, S31 and H37, appear to be partly 

independent features. The mutant exhibits a similar Copen/Cclosed distribution as WT M2 

(Fig. 2), even though the protonation equilibria differ. In the drug-bound W41F channel, 

both the neutral H37 peaks associated with the Cclosed conformation and the cationic H37 

signal associated with the Copen conformation exhibit only cross peaks with water and no 

other cross peaks (Fig. 8c), indicating that the Copen and Cclosed conformations both undergo 
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fast proton exchange with water from the C-terminus. Thus, the Copen conformation is not 

necessary for proton exchange.

The absence of strong imidazole-imidazolium hydrogen bonds in M2

Cross and co-workers proposed the existence of a pair of strong imidazole-imidazolium 

hydrogen bonds in the histidine tetrad at acidic pH to explain the conduction mechanism. 

The model was initially proposed based on TM peptide 15N spectra [47] to account for a +2 

charged H37 tetrad at neutral pH, which was concluded from the measured pKa’s for the 

first two protonation events (both at 8.2). It was proposed that the strong imidazole-

imidazolium hydrogen bonds stabilize the +2 charge in the middle of the membrane. 

Recently the model was extended to full-length M2 after the observation of a large 1H 

chemical shift of ~19 ppm correlated with an imidazole 15N peak [46]. However, the original 

pKa’s were extracted from partially overlapping 15N signals in a narrow range of 20 ppm, 

under conditions where the TM peptide has residual motion at the experimental temperature 

of 4°C in the DMPC/DMPG membrane used for reconstitution [47]. Thus, significant 

uncertainties exist in the pKa values. Indeed, subsequent measurements of 15N spectra of the 

TM peptide bound to a cholesterol-containing membrane at the low temperature of 243 K 

and analysis of the intensities of well-resolved unprotonated and protonated 15N peaks 

avoided these problems and showed that the two highest pKa’s are lower (7.6 and 6.8) and 

are resolved in the more biologically relevant membrane. Thus the average charge state of 

the tetrad at neutral pH is lower than originally thought [43]. Second, high-resolution crystal 

structures of the TM peptide showed a cluster of water molecules on both sides of the 

histidine tetrad, which delocalize the charge [54]. Thus, there is no energetic rationale for a 

strong imidazole-imidazolium hydrogen bond.

Moreover, all NMR data show that H37 in any construct of M2 is hydrogen-bonded to water 

and not to another histidine. 1) In the TM peptide the largest imidazole 15N and 1H chemical 

shifts observed for histidine at acidic pH are 178 ppm and 15 ppm [45], which are not 

sufficiently large to represent a strong hydrogen bond. Moreover, at high temperature under 

dynamic averaging, the 1H chemical shift changes to 5 ppm, definitively proving that the 

hydrogen-bonding partner of histidine is water rather than another histidine. 2) A strong N-

H…N hydrogen bond should exhibit either a single 15N peak at the averaged chemical shift 

between N and NH (for equal-well potentials) or two 15N peaks centered around the 

averaged frequency (for unequal-well potentials) [74]. However, the His37 15N spectra of all 

M2 constructs only show a single peak that is away from the averaged chemical shift, thus 

ruling out an N-H…N hydrogen bond of any strength. 3) The 2D 1H-15N correlation spectra 

of His37 in DOPC/DOPE bound full-length M2 at pH 6.2 showed a 1H chemical shift of 19 

ppm correlated with an imidazole 15N chemical shift of 190 ppm [46]. This cross peak, 

which represents less than 5% of the total spectral intensity, was interpreted as due to a 

strong imidazole-imidazolium hydrogen bond that is unique to full-length M2. However, the 

correlated 13C chemical shifts at 137 ppm indicate that these signals belong to neutral 

histidine rather than cationic histidine. In a strong N-H…N hydrogen bond, the neutral 

histidine must contribute the unprotonated nitrogen while the cationic histidine contributes 

the protonated nitrogen. The unprotonated nitrogen of a neutral histidine should have a 15N 

chemical shift larger than ~210 ppm, the average between the unprotonated and protonated 
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chemical shifts. Therefore, the observed 1H-15N cross peak cannot be assigned to an N-H…

N hydrogen bond. In addition, the 19-ppm 1H chemical shift lacks a second 15N cross peak, 

indicating that this proton is not shared by two similar-pKa nitrogens. 4) Finally, both high-

resolution crystal structures [54] and directly measured His37 (χ1, χ2) angles in membrane-

bound TM peptides [44] show that the H37 sidechain (χ1, χ2) angles are near 180°, which 

cannot direct the imidazole N-H groups in a geometry to form inter-histidine N-H…N 

hydrogen bonds. The current W41F mutant 2D 1H-15N correlation spectra (Fig. 8) are in 

excellent agreement with these WT observations. The largest 1H chemical shift in the W41F 

mutant is 16 ppm and occurs at pH 7.5. This 1H chemical shift is correlated with a single
15N chemical shift at 175 ppm, which can be assigned to Nδ1-Hδ1 of the π tautomer. The 

downfield 1H chemical shift indicates a relatively strong hydrogen bond to water, not to 

another histidine.

Conclusion

The W41F mutant data shown here provide molecular-level structural and dynamical 

signatures of the asymmetric conduction of influenza M2 channels. Replacing Trp by Phe at 

residue 41 caused pronounced changes in the structural equilibria of the proton-selective 

histidine. At high pH, the H37 structure is shifted towards the π tautomer and less cationic 

tetrads, indicating increased forward deprotonation compared to the WT channel. At low 

pH, highly charged tetrads are stabilized compared to the WT channel, indicating increased 

reverse protonation. The latter is consistent with the preferential hydration of the C-terminus 

of the mutant channel at low pH. The counter-directional changes of H37 chemical 

equilibria at high and low pH are quantitatively confirmed by the measured H37 pKa’s, 

which cluster to a narrower pH range than the WT AM2-TM channel. This pKa clustering 

reduces the population of the +2 charged channels in favor of the more cationic +3 and +4 

channels, explaining the increased proton conductance of the mutant. The mutation does not 

weaken the tetrameric integrity of the channel, implying that the H37-W41 interaction is not 

necessary for tetramer assembly even though it is essential for asymmetric proton 

conduction. Chemical shift data indicate that the mutant TM helix has the same 

conformational dualism as the WT channel, and the relative populations of the Cclosed and 

Copen conformations at high and low pH are regulated by the H37 protonation state, 

regardless of whether protonation occurs from the N-terminus or the C-terminus. The fact 

that H37 can be protonated from the C-terminus is most conclusively manifested by the 

drug-bound W41F spectra, which show that half of the histidines remain cationic in the 

drug-bound state, in contrast to the WT channel, which contains only neutral histidines upon 

drug binding. Therefore, when the N-terminal pore is blocked by drug while pHin is low, 

H37 remains significantly protonatable in the mutant channel, indicating unambiguously that 

protons from the C-terminus can access H37.

These results imply that, in the WT channel, while the four W41 indoles do not fully 

obstruct the pore, the sidechain conformation is sufficient to prevent proton access to H37 

from the C-terminus at low pHin. Therefore, even though the membranes used in structural 

studies have symmetric pH on the two sides, acid activation of H37 in wild-type M2 occurs 

only from the N-terminus. In conclusion, asymmetric conduction in influenza M2 channels 

is due to W41 inhibition of C-terminal acid activation of H37, and is associated with the 
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Cclosed conformation of the TM helix. These results may have implications to the 

mechanism of pH-induced asymmetric conduction in other channels such as voltage-gated 

proton channels.

Materials and Methods

Synthesis of isotopically labeled M2(22-46)

A peptide corresponding to the W41F M2(22-46) of the influenza A/Udorn/72 strain of M2 

(SSDPLVVAASIIGILHLILFILDRL) was synthesized using Fmoc solid-phase peptide 

synthesis chemistry. Uniformly 13C, 15N-labeled V27, A30, S31, G34, H37, D44 and 4-19F-

labeled F41 were introduced into the sequence (VASGHD). Rink Amide H-Rink amide 

ChemMatrix resin (Sigma) was swelled for 1 hour in 2 mL of N,N-dimethylformamide 

(DMF). Double coupling was carried out using 4 equivalents of amino acid, 4 equivalents of 

1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU), and 8 equivalents of N,N-diisopropylethylamine (DIPEA). 

The reaction was carried out in 2 ml of DMF for 0.5 – 1 hour per coupling. Fmoc 

deprotection was carried out in 2 ml DMF containing 20% piperidine for 5 and 15 minutes. 

Cleavage of the peptide from the resin and sidechain deprotection were carried out in 88% 

trifluoroacetic acid (TFA), 5% water, 2% triisopropylsilane and 5% phenol for 3 hours at 

room temperature. The peptide was triturated three times with cold diethyl ether. The crude 

peptide was dissolved in a 50% acentonitrile solution containing 0.1% TFA and purified by 

preparative reversed-phase HPLC on a Varian ProStar 210 System using a Vydac C18 

column (10 μm particle size, 2.2 × 25 cm2) with a linear gradient of 80–99% acetonitrile 

over 80 minutes at a flow rate of 10 mL/min. The mass (2737.26 Da) and purity (>95%) of 

the peptide was confirmed using MALDI-TOF mass spectrometry. A second peptide was 

synthesized and validated following the same procedure, but with uniformly 13C, 15N-

labeled V28, A29, G34, L38, and I39 introduced into the sequence. Data collected using this 

second peptide is exclusively included in Figure 8.

Membrane protein sample preparation

Purified W41F AM2-TM peptide was reconstituted into a virus-mimetic (VM+) lipid 

membrane, which contains 1-palmitoyl-2-oleoyl-sn-glycero-3-phophocholine (POPC), 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), sphingomyelin (SM) and 

cholesterol (Chol) at molar ratios of 25.6% : 25.6% : 25.6% : 23.2%. POPC, POPE and 

cholesterol were dissolved in chloroform, while SM was dissolved in a chloroform/methanol 

mixture. The peptide was dissolved in 300 μL of 2,2,2-trifluoroethanol (TFE), then mixed 

with the lipids at a peptide : lipid molar ratio of 1 : 12. The organic solvents were removed 

under a stream of nitrogen gas. The dried film was resuspended in appropriate buffer, 

vortexed and sonicated 3–4 times at 2 minutes each until a homogenous suspension was 

obtained. The mixture was centrifuged at 35,000 rpm at 4°C for 8 h to obtain a 

homogeneous membrane pellet. The pellet was equilibrated to a final hydration level of 

~40% by mass, then transferred to a 3.2 mm or 4 mm MAS rotor for solid-state NMR 

experiments.
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Five W41F AM2-TM membrane samples were prepared using the VASGHD labeled 

peptide, at pH 7.5 (20 mM Bis-Tris, 1 mM EDTA, 0.1 mM NaN3), pH 6.2 (20 mM Bis-Tris, 

1mM EDTA, 0.1 mM NaN3), pH 5.9 (20 mM Bis-Tris, 1mM EDTA, 0.1 mM NaN3), pH 5.5 

(20 mM citric acid/citrate, 1 mM EDTA, 0.1 mM NaN3), and pH 4.5 (20 mM citric acid/

citrate, 1 mM EDTA, 0.1 mM NaN3). The pH was measured at three stages: 1) for the buffer 

before mixing with the peptide-lipid film, 2) for the uniform proteoliposome solution, and 3) 

for the supernatant after ultracentrifugation. Deuterated amantadine (d15-Amt) was titrated 

to a pH 5.5 sample at an drug : tetramer ratio of 8 : 1. Three of the above conditions were 

also used to make membrane samples of the VAGLI labeled peptide: pH 7.5, pH 5.5, and pH 

5.5 with 8 : 1 d15-Amt.

Solid-state NMR experiments

Most solid-state NMR spectra were measured on Bruker 800 MHz (18.8 Tesla) and 900 

MHz (21.1 Tesla) NMR spectrometers to obtain high resolution, except for low-temperature 

1D 15N spectra for the pKa determination and 19F CODEX spectra, which were measured at 

400 MHz. 3.2 mm or 4 mm MAS probes were used and MAS frequencies ranged from 7 

kHz to 16 kHz. 13C chemical shifts were referenced externally to the adamantane CH2 

chemical shift at 38.48 ppm on the tetramethylsilane (TMS) scale, while 15N chemical shifts 

were referenced to the 15N peak of N-acetylvaline at 122.0 ppm on the liquid ammonia 

scale. Sample temperatures are thermocouple-reported values.

1D 13C and 15N cross-polarization (CP) spectra were measured from 243 K to 298 K. 

2D 13C-13C DARR and 15N -13C heteronuclear correlation (HETCOR) spectra were 

measured at 800 or 900 MHz using a DARR mixing time of 150 ms and a REDOR mixing 

time of 0.95 ms, respectively.

2D 1H-15N HETCOR spectra were measured at 800 MHz. A 1H-15N Lee-Goldburg (LG) CP 

period of 2.5 ms was applied to detect short-distance 1H-15N spin pairs, without 1H spin 

diffusion. 1H frequency-switched LG (FSLG) decoupling was applied during the 1H t1 

evolution period to remove 1H-1H homonuclear coupling. The FSLG transverse field 

strength was 80 kHz, which corresponds to an effective field of 98 kHz tilted at the magic 

angle. The effective t1 dwell time was 23.58 μs, and 100 hypercomplex t1 slices were 

measured, giving a maximum evolution time of 1.12 ms.

2D 1H-13C HETCOR experiments with 1H spin diffusion were used to measure the 

hydration of W41F AM2-TM at 293 K on the 800 MHz spectrometer under 12 kHz MAS. 

A 1H T2 filter of 3–4 ms was used to suppress peptide magnetization before spin diffusion. 

Two 1H spin diffusion mixing times of 4 ms (S) and 100 ms (S0) were used. The intensity 

ratios (S/S0) of the resolved signals were analyzed from the water cross-section of each 2D 

spectrum to deduce the hydration levels of the different residues.

19F CODEX spectra were measured at 231 K on the 400 MHz spectrometer under 10 kHz 

MAS. Control (S0) and dephased (S) experiments were conducted within 1 hour of each 

other, and the intensity ratios (S/S0) were used to obtain distances. Mixing times of 10, 50, 

100, 300, 500, 1000 and 2000 ms were used. Typical radiofrequency field strengths were 60 

kHz for 19F and 80 kHz for 1H.
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Extraction of H37 pKa’s and statistical analysis of the pKa uncertainties

H37 proton dissociation constants were extracted using a previously published procedure 

[43, 47]. Briefly, the protonated and unprotonated 15N regions at 160–190 ppm and 250 ppm 

were integrated and their intensity ratios, INH/IN, were read off and then converted to the 

concentration ratios [His]/[HisH+] between neutral and cationic histidines. This procedure 

does not require complete resolution of the different protonated nitrogen species between 

160 and 190 ppm. The histidine concentration ratios were then fit to the following equation 

to obtain the four pKa’s:

(8)

In this equation, Ka4 describes the equilibrium constant of the first protonation event at the 

highest pH while Ka1 is the equilibrium constant of the last protonation event at the lowest 

pH. In the fit we assume that the proton affinity of the H37 tetrad is either the same or higher 

upon successive protonation events, i.e., pKa4 ≥ pKa3 ≥ pKa2 ≥ pKa1 from high to low pH. 

To obtain the best-fit pKa’s, we considered all combinations of pKa’s in the range between 9 

and 2, sampled in 0.1 increments. For each combination of pKa’s, we calculated the reduced 

chi-square ( ) of the fit according to:

(9)

where yexp and ycalc are the experimental and calculated [His]/[HisH+] ratios, σexp is the 

experimental uncertainty in the [His]/[HisH+] ratio (Table S2), and v is the degree of 

freedom, which is the difference between the number of data points and the number of 

unknowns in the fit. Since five different pH samples were used for extracting four pKa’s, v = 

1. The lowest  values for the W41F mutant, WT AM2 and BM2 are 2.20, 0.82 and 0.28, 

respectively. We retained all fits with χv
2 ≤ 3.84 (p < 0.05 for 1 degree of freedom) for the 

WT AM2 and BM2 datasets but a more conservative cutoff of χv
2 ≤ 5.99 (p < 0.05 for 2 

degrees of freedom) for the W41F sample because of its higher  values. Using all fits 

within the  cutoff, we computed the mean and standard deviation of the pKa’s.

To quantify the correlation among the four pKa’s, we computed the pairwise Pearson 

product-moment correlation coefficients rxy according to

(10)
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where xi and yi are the i-th values of the two pKa’s, and x̄ and ȳ are the means of each pKa 

set. The distribution of the four pKa’s for the three constructs are shown in Fig. S3, while the 

correlation coefficient matrices are given in Table S4.

Temperature effects on the extracted pKa’s

Since pKa’s of histidine and buffer ions are generally temperature dependent, the pKa’s 

derived from low-temperature 15N NMR data will have a systematic difference from the 

physiological-temperature pKa’s. For example, a recent comparison of the BM2 His19 

spectra at 263 K and the cryogenic temperature of 117 K [69] found that the low-

temperature spectra showed a higher population of cationic histidine than the high-

temperature spectra. This can be attributed to the fact that imidazole has a more negative 

temperature coefficient of pKa than the citrate buffer used to prepare the sample, which 

preferentially increased the histidine pKa’s relative to the citrate pKa at low temperature. 

Since the 15N spectra of the W41F mutant in the present study are measured under the same 

temperature, membrane and buffer conditions as wild-type AM2-TM and BM2-TM, the 

systematic correction factors for the temperature-dependent pKa’s should be similar, thus we 

can compare the protonation equilibria among these samples consistently. The W41F M2TM 

samples used here were prepared using Bis-Tris and citrate buffers. Based on their 

temperature coefficients relative to the temperature coefficient of the histidine pKa, the 

physiological temperature H37 tetrads are expected to be more cationic at high pH and more 

neutral at low pH compared to the 243 K situation, thus the pKa’s at high temperature may 

be more separated than at low temperature. However, this systematic difference should be 

relatively small due to the limited temperature range of 243 K and 310 K.

The pKa values allow the calculation of the charge state populations, Ni, according to 

previously described analytical equations [43]. The charge state populations were then fit to 

pH-dependent proton conductance g reported by Tang et al. (9) according to 

 to determine the relative time-averaged unitary conductance, , of the five 

charge states.

Simulation of 19F CODEX exchange curves

The 19F CODEX exchange data were fit using a Python program that employs the exchange-

matrix formalism to treat spin diffusion within a four-spin system. The 4 x 4 exchange 

matrix contains terms that are proportional to an overlap integral and the square of the 

pairwise 19F dipolar couplings. The overlap integral is calibrated to be 41 μs under 10 kHz 

MAS, based on experimental data of the model compound, 5-19F-Trp (Fig. S1). The Trp 

decay was fit using the same exchange-matrix formalism but for a two-spin system, using 

the known nearest-neighbor distance of 4.62 Å from the crystal structure. Best-fit distances 

were obtained by minimizing the uncertainty-weighted least squares RMSD between the 

calculated and experimental CODEX intensities. The Gaussian distributions were digitized 

into 0.2 Å bins between 5 and 13 Å, and the center of each bin was calculated to give the 

CODEX exchange curve.
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Figure 1. 
(a) Wild-type AM2-TM peptide structure (PDB: 3LBW) showing the locations of key 

residues examined in this study. One of the four chains is omitted for clarity. (b) Schematic 

of the channel topology, showing four possible rate constants for H37-mediated proton 

conduction: forward protonation (kon), forward deprotonation (koff), reverse protonation 

( ), and reverse deprotonation ( ). Mutation of W41 changes the magnitude of these 

rate constants. (c) 13C MAS spectra of W41F AM2-TM bound to the VM+ membrane at pH 

7.5, pH 5.5, and pH 5.5 with bound amantadine (Amt). The spectra were measured at 273 K.
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Figure 2. 
Aliphatic regions of 2D 13C-13C (top) and 15N-13C (bottom) correlation spectra of W41F 

AM2-TM at (a) pH 7.5, (b) pH 5.5, and (c) pH 5.5 with bound Amt. Assignments for H37 

cross peaks are shown in red, blue and green for the τ tautomer, π tautomer, and cationic 

states, respectively.
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Figure 3. 
19F CODEX data of 4-19F-Phe41 in W41F AM2-TM at pH 7.5 and pH 4.5. (a) 

Representative 19F CODEX S0 and S spectra at a mixing time of 100 ms for the pH 7.5 

sample. CODEX intensities as a function of mixing time are shown for the pH 7.5 sample 

(b) and for the pH 4.5 sample (c). Best fits used a Gaussian distribution of distances (inset). 

The mean and standard deviation of the distributions are 8.6 Å and 1.0 Å for (b) and 9.0 Å 

and 1.5 Å for (c).
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Figure 4. 
H37 chemical shifts in WT (a) and W41F (b, c) AM2-TM from 2D 13C-13C (a, b) 

and 15N-13C (c) correlation spectra as a function of pH. (a) H37 Cα-Cβ regions of the 

2D 13C-13C spectra of the WT peptide. (b) H37 Cα-Cβ and aliphatic-aromatic regions of the 

2D 13C-13C spectra of the W41F mutant. (c) Aromatic region of the 2D 15N-13C correlation 

spectra of the W41F mutant. The pH and drug binding state of the samples are indicated. 

The mutant channel shows higher π tautomer intensities at high pH and more cationic 

histidine peaks at low pH compared to the WT channel.
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Figure 5. 
Quantification of H37 pKa’s in membrane-bound W41F AM2-TM by 15N NMR. (a) pH-

dependent 15N spectra of H37 sidechains measured at 243–248 K. Assignment of protonated 

and unprotonated 15N peaks is based on 2D correlation spectra. (b) Integrated intensity 

ratios of protonated and unprotonated imidazole nitrogens as a function of pH. W41F AM2-

TM (black) shows higher protonated nitrogen intensities at low pH compared to previously 

measured WT AM2-TM (red) [43] and BM2-TM results (blue) [69]. (c) Neutral-to-cationic 

histidine concentration ratios as a function of pH. Best fit of the data yield four pKa’s for 

W41F AM2-TM, which are indicated by dashed vertical lines. (d) Population distributions 

of charged tetrads of W41F AM2-TM. The +2 charged channel has the lowest population 

among the five charge states. Normalized proton conductance of W41F M2 from the 

literature [7] (open circles) is fit using the charge-state distribution to estimate the relative 

conductance of the different charge states.
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Figure 6. 
Comparison of pH-dependent populations of the five charge states of various M2 samples 

studied so far. (a) W41F AM2(22-46) in the VM+ membrane from this study. (b) WT 

AM2(22-46) in the VM membrane [43]. (c) BM2(1-33) in the VM+ membrane [69]. (d) 

AM2(21-97) in the VM+ membrane [31]. (e) AM2(22-46) in the DMPC/DMPG membrane 

[47]. (f) AM2(18-60) in the DPhPC membrane [48]. Dashed vertical lines indicate the 

intersection of two adjacent population curves, which correspond to the pKa’s.
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Figure 7. 
Hydration of the W41F AM2-TM channel probed by 2D 1H-13C correlation spectra. (a) Cα 
S/S0 values of W41F M2. (b) Cα S/S0 values of WT M2. (c) Cβ S/S0 values of W41F M2. 

(d) Cβ S/S0 values of WT M2. Green squares, red diamonds, and black circles represent low 

pH, drug-bound low pH, and high pH data, respectively. Open symbols indicate values with 

greater uncertainty. Dashed green and black lines indicate the mean S/S0 value for low and 

high pH, respectively. The W41F mutant has lower average hydration than the WT channel 

at high pH and similar average hydration as the WT at low pH. However, the C-terminus of 

the WT peptide is less hydrated than the N-terminus at low pH, while the W41F mutant 

shows similar hydration of the two termini at low pH.
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Figure 8. 
2D 1H-15N correlation spectra of H37 in W41F AM2-TM at (a) pH 7.5, (b) pH 5.5, and (c) 

pH 5.5 with bound Amt. Water 1H cross peaks at 5.0 ppm with H37 imidazole nitrogens are 

detected in all three samples. A 16-ppm 1H chemical shift in the pH 7.5 sample can be 

assigned to the π tautomer with a strong hydrogen bond to water. The absence of HN cross 

peaks at pH 5.5 indicates rapid exchange of H37 with water at 263 K. Drug binding retains 

only water-H37 cross peaks, indicating fast exchange with C-terminal protons even when the 

N-terminus is blocked by drug.
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Figure 9. 
Schematic models of H37 protonation and deprotonation rate constants in WT (a) and W41F 

(b) M2 channels. Left: high pH; Middle: low pH; Right: low-pH with bound drug. For each 

scenario, the protonation equilibrium of the W41F mutant channel has an additional rate 

constant (orange) at the C-terminus compared to the WT channel. This suppresses the high 

pKa’s and increases the low pKa’s in the mutant compared to the WT channel, causing more 

clustered protonation events in the mutant.

Mandala et al. Page 31

J Mol Biol. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mandala et al. Page 32

Table 1

Comparison of H37 pKa’s in influenza A and B M2 proteins bound to various lipid membranes.

M2 Lipid membranes pKa’s Average pKa

W41F AM2(22-46) POPC, POPE, SM, cholesterol 6.7, 6.3, 5.8, 5.1 6.0

AM2(22-46) DPPC, DPPE, SM, cholesterol 7.6, 6.8, 4.9, 4.2 5.9

AM2(22-46) DMPC, DMPG 8.2, 8.2, 6.3, < 5.0 < 6.9

AM2(21-97) POPC, POPE, SM, cholesterol 7.1, 5.4 6.3

AM2(18-60) DPhPC 7.6, 4.5 6.1

BM2(1-33) POPC, POPE, SM, cholesterol 6.1, 5.7, 4.5, 4.2 5.1
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