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Abstract

Diet plays an important role in the development of colorectal cancer. Emerging data have 

implicated the gut microbiota in colorectal cancer. Diet is a major determinant for the gut 

microbial structure and function. Therefore, it has been hypothesized that alterations in gut 

microbes and their metabolites may contribute to the influence of diet on the development of 

colorectal cancer. We review several major dietary factors that have been linked to gut microbiota 

and colorectal cancer, including major dietary patterns, fiber, red meat and sulfur, and obesity. 

Most of the epidemiologic evidence derives from cross-sectional or short-term, highly controlled 

feeding studies that are limited in size. Therefore, high-quality large-scale prospective studies with 

dietary data collected over the life course and comprehensive gut microbial composition and 

function assessed well prior to neoplastic occurrence are critically needed to identify microbiome-

based interventions that may complement or optimize current diet-based strategies for colorectal 

cancer prevention and management.
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Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth 

leading cause of cancer death in the world.1 Over the past few decades, numerous 

epidemiologic studies have identified a range of dietary factors that may potentially promote 

or prevent CRC.2 Likewise, increasing evidence has implicated the gut microbiota in CRC 

development (Table 1).3–14 Biological plausibility for this mechanism is supported by 

habitation of numerous gut microbes in the large intestine and the functional importance of 

the gut microbiota in maintenance of the gut barrier integrity and immune homeostasis, the 

disruptions of which are among the most important mechanisms in colorectal 

carcinogenesis.15 Given the critical role of diet in the configurations of gut microbial 

communities and production of bacterial metabolites, it has been proposed that diet may 

influence CRC risk through modulation of the gut microbial composition and metabolism 

that in turn shape the immune response during tumor development.

Overall, the gut microbiome exhibits substantial inter-individual variation but high overall 

temporal stability within individuals.16–21 Although gut bacterial abundance may respond 

rapidly to extreme changes in diet,22 predominant microbial community membership is 

primarily determined by long-term diet, and substantial inter-individual variation persists 

despite short-term dietary change.17, 23–26 Recent data suggest that such high inter-

individual variability may to a large extent determine the differences in the metabolic 

response to dietary intervention,27 highlighting the importance for microbiome-based 

personalized nutrition in disease prevention and treatment.28

Herein, we review several major dietary factors that have been linked to gut microbiota and 

CRC, summarizing the most recent epidemiologic and experimental evidence, with a focus 

on potential immune mechanisms. Overall, most of the epidemiologic evidence derives from 

cross-sectional or short-term, highly controlled feeding studies that are limited in size. Thus, 

this review focuses on the dietary factors that have strong mechanistic support, including 

dietary pattern, fiber, red meat and sulfur, and omega-3 fatty acid. Given the close link 

between diet and obesity and the predominant role of obesity in CRC as well as the 

substantial data linking the gut microbiome to obesity, we also include obesity at the end of 

the review.

Dietary patterns

Convincing data indicate that a “Western dietary pattern”, characterized by high intake of 

red or processed meat, sweets and refined grains, is associated with higher risk of colorectal 

neoplasia; in contrast, diets that are rich in fruits, vegetables and whole grains (“prudent 

pattern diet”) are associated with lower risk of CRC.29, 30 Western diets are associated with 

gut dysbiosis (microbial imbalance or maladaption),31, 32 loss of gut barrier integrity,31, 32 

increased levels of inflammatory proteins,33–37 and dysregulated immune signatures.38–40 A 

potential role of the gut microbiota in mediating the dietary associations with CRC risk is 

suggested by the dramatic difference of the gut microbial structures between populations 

consuming different diets. Rural Africans, whose diet is high in fiber and low in fat, have a 

strikingly different gut microbial composition than urban Europeans or African Americans 
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consuming a Western diet, which parallels the lower CRC rates in Africa than Western 

countries.26, 41, 42 For example, the African gut microbiota is characterized by a 

predominance of Prevotella genus that are involved in starch, hemicellulose, and xylan 

degradation, whereas the American microbiota is predominated by Bacteroides genus with a 

higher abundance of potentially pathogenic proteobacteria, such as Escherichia and 

Acinetobacter.42 Fecal short-chain fatty acids (SCFAs) are higher in native Africans, 

whereas secondary bile acids are higher in African Americans. Notably, SCFAs (described 

in details below) and secondary bile acids have been suggested to mediate the anti- and pro-

cancer effect of fiber and fat on CRC, respectively. Moreover, a crossover study indicates 

that switching African Americans to a high-fiber, low-fat diet for 2 weeks increases 

production of SCFAs, suppresses secondary bile acid synthesis, and reduces colonic mucosal 

inflammation and proliferation biomarkers of cancer risk.26

Recently, we have shown that “prudent dietary pattern” was more strongly associated with 

lower risk of CRC subgroups enriched with tissue Fusobacterium nucleatum (F. 
nucleatum),43 suggesting a potential role for intestinal microbiota in mediating the diet-CRC 

relationship. F.nucleatum is a core member of the human oral microbiome and localizes to 

CRC tissue through binding to a protein overexpressed in CRC.44 Numerous studies have 

shown an enrichment of F.nucleatum in CRC tissue relative to normal adjacent colonic tissue 

and in stools from individuals with CRC compared to those without cancer.6, 45–52 High 

abundance of F.nucleatum in tumor tissue has also been associated with poor survival of 

CRC patients.53 Experimental evidence supports that F.nucleatum may promote CRC 

development and worsen cancer survival by activating β-catenin pathway and potentiating 

tumoral immune evasion through recruitment of tumor-infiltrating myeloid cells and 

inhibition of natural killer (NK) cell function.54–56 In support of the hypothesis that diet may 

influence CRC risk by modulating F.nucleatum abundance, a dietary intervention study 

noted a marked increase in stool F.nucleatum levels after individuals were switched to a low-

fiber, high-fat diet.26 Further studies are needed to identify the major dietary factors that 

influence F.nucleatum localization in the gut and elucidate the underlying mechanisms.

Fiber

Numerous prospective studies have linked higher fiber intake to lower risk of CRC.2 The 

most recent expert report from the World Cancer Research Fund and American Institute for 

Cancer Research in 2011 concludes that evidence that consumption of foods containing 

dietary fiber protects against CRC is convincing.57 Besides systemic benefits for insulin 

sensitivity and metabolic regulation,58 which have been implicated in colorectal 

carcinogenesis,59–61 fiber possesses gut-specific activities, such as diluting fecal content, 

decreasing transit time, and increasing stool weight, thereby minimizing exposure to 

intestinal carcinogens.62

Moreover, soluble fiber can be fermented by bacteria in the lumen of the colon into SCFAs, 

including butyrate, acetate, and propionate. Higher fiber intake has been shown to enrich 

butyrate-producing bacteria in the gut, such as Clostridium, Anaerostipes, Eubacterium, and 

Roseburia species, and increase production of SCFAs.26, 63 SCFAs have been suggested as 

the key metabolites linking the gut microbes to various health conditions, especially CRC. 
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Butyrate is a major energy source for colonocytes and plays an important role in energy 

homeostasis in the colon tissue.64 In cancer cells, however, butyrate is metabolized to a 

lesser extent due to the Warburg effect (the enhanced conversion of glucose to lactate by 

tumor cells even in the presence of normal levels of oxygen) and accumulates in the nucleus 

of cancerous colonocytes, whereby it functions as an inhibitor of histone deacetylase to 

epigenetically downregulate expression of numerous genes responsible for tumor growth 

(e.g., MYC, BAX, NRAS), angiogenesis (vascular endothelial growth factor family), 

migration (matrix metalloproteinase family, plasminogen-plasmin system), and 

chemoresistance (P-glycoprotein).65 Studies using gnotobiotic (germ-free) mouse models 

have provided compelling data that dietary fiber protects against colorectal tumorigenesis in 

a microbiota- and butyrate-dependent manner via histone deacetylase inhibition.66

In addition to suppression of histone deacetylase, butyrate can also function at the colonic 

epithelial cell surface as an agonist for certain G protein-coupled receptors (GPRs), such as 

GPR4367 and GPR109a,68, 69 thereby inhibiting intestinal inflammation and possibly 

carcinogenesis. Recently, several studies have demonstrated the crucial role of SCFAs in 

intestinal immune homeostasis through modulation of regulatory T cells. As a T-cell subset 

with immunosuppressive functions, regulatory T cells plays a central role in the suppression 

of inflammatory and allergic responses by limiting proliferation of effector CD4+ T cells. 

Butyrate and propionate have been shown to induce extrathymic generation and functional 

differentiation of regulatory T cells and protect against colitis.68, 70–72 Possible mechanisms 

include histone deacetylase inhibition, enhancement of anti-inflammatory phenotype in 

colonic macrophages and dendritic cells via activation of GPR109a, and a T-cell intrinsic 

epigenetic upregulation of the Foxp3 gene, a prerequisite transcription factor for regulatory 

T cells. Moreover, butyrate may modulate the function of intestinal macrophages by histone 

deacetylase inhibition and downregulate lipopolysaccharide-induced proinflammatory 

mediators, thereby facilitating host tolerance to intestinal microbiota.73

In agreement with these mechanistic data, resistant starch (a starch that resists digestion in 

the small intestine and undergoes bacterial fermentation in the large intestine to produce 

SCFAs) has been shown to have chemopreventive effects against colitis-associated CRC.74 

Moreover, preclinical studies have indicated the potential of butyrate and its analogs as 

chemotherapeutic agents in several tumor models,75, 76 including CRC.77 Based on these 

reports, further translational studies are expected to provide more data about the clinical 

effectiveness of fiber or butyrate in CRC prevention and treatment.

Interestingly, the beneficial effect of butyrate may depend on the host genetic background. A 

recent study reported that butyrate fuels hyperproliferation of colon epithelial cells and 

induces CRC in APCMin/+MSH2−/− mice,78 a model system of defective DNA mismatch 

repair which underlies the aggressive and rapid development of adenoma and CRC with 

microsatellite instability in hereditary nonpolyposis CRC (Lynch syndrome).79 Future 

studies are needed to investigate whether these findings can be generalizable to human by 

assessing the fiber-CRC association according to microsatellite instability status.
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Red meat and sulfur

There is convincing evidence that red and processed meats are associated with increased risk 

of CRC.80 Recently, the International Agency for Research on Cancer has classified 

processed meat as a carcinogen to humans. Mechanisms underlying the pro-cancer effects of 

red or processed meats include heme iron, N-nitroso compounds, or heterocyclic 

amines,81, 82 and hydrogen sulfide production.83 Hydrogen sulfide has been implicated in 

inflammatory disorders associated with risk of CRC, such as ulcerative colitis,84–86 and 

directly with CRC.87–93 In the colon, excess chronic hydrogen sulfide exposure is associated 

with key drivers of carcinogenesis, including impaired colonocyte nutrition, DNA damage, 

epithelial hyperproliferation, inflammation, and alterations in immune cell populations and 

function.89, 94–97 Hydrogen sulfide is also emerging as a modulator of T cell survival and 

proliferation; cysteine intake and hydrogen sulfide production influence gut T cell 

responses.98 Hydrogen sulfide-high environments may favor regulatory T cells that in turn 

suppress the activation and proliferation of effector T cells, leading to impaired anti-tumor 

immunity.

Gut luminal hydrogen sulfide production appears to be fundamentally dependent on the 

action of sulfur-reducing bacteria, which metabolize dietary sulfur.83 Dietary sulfur in turn 

modifies the abundance of sulfur-reducing bacteria in the colon.89, 90 Meat is a rich source 

of sulfur-containing amino acids such as cysteine and methionine, and processed meat 

typically contains inorganic sulfur (sulfate and sulfite) routinely used as a preservative.83 

Thus, the consistent association between meat, particularly processed meat, and CRC may at 

least in part be due to the influence of meat on the abundance of sulfur-reducing bacteria. 

The sulfur content of foods alone is likely not the only determinant of the abundance of 

sulfur-reducing bacteria or hydrogen sulfide production. Macronutrients such as specific fats 

consumed with sulfur-containing amino acids might modulate this association.99 

Furthermore, meat-based sources of sulfur are distinct from vegetable-based sulfur, 

particularly glucosinolates abundant in cruciferous vegetables. A core of gut microbes 

distinct from sulfur-reducing bacteria appears to hydrolyze the sulfur-containing 

glucosinolates into isothiocyanates, which, in contrast with hydrogen sulfide, are associated 

with cancer preventative properties.2, 100

As a member of sulfur-reducing bacteria, F.nucleatum has been implicated in CRC 

development (see section for Dietary Patterns). Besides its immunomodulatory effects, 

F.nucleatum may also promote genotoxicity by its ability to convert cysteine to hydrogen 

sulfide.101 Limited data have also shown an association between other sulfur-reducing 

bacteria and CRC. In two case-control studies, the stool or luminal microbiota in colon 

cancer patients was enriched with bacteria producing hydrogen sulfide, such as 

Porphyromonas, or bacteria from the Prevotellaceae family.6, 48 However, the retrospective 

design makes these studies unable to dissect whether sulfur-reducing bacteria is a cause or 

effect of colorectal carcinogenesis. Further prospective studies are needed to examine sulfur-

reducing bacteria in relation to CRC risk and better understand how diet may influence CRC 

by altering the abundance and function of sulfur-reducing bacteria.
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Omega-3 Fatty acid

Marine omega-3 polyunsaturated fatty acid, including eicosapentaenoic acid, 

docosahexaenoic acid and docosapentaenoic acid, possess potent anti-inflammatory activity 

and may protect against CRC.102–105 Fish oil, a rich source of omega-3 fatty acid, is the 

most popular natural product used by U.S. adults.106 Substantial data support the beneficial 

effect of omega-3 fatty acid on CRC prevention and treatment.103 In randomized controlled 

trials, omega-3 fatty acid supplement reduces the number and size of polyps in patients with 

familial adenomatous polyposis and improves survival of CRC patients with liver 

metastasis.105, 107 The anticancer effect of omega-3 fatty acid may be related to its 

multifaceted anti-inflammatory activity mediated by alterations in lipid raft structure and 

changes in fatty acid composition of cell membranes. These changes modify downstream 

metabolite production, including a decrease in inflammatory eicosanoids (e.g., prostaglandin 

E2), and an increase in pro-resolving lipid mediators (e.g., resolvin and lipoxin).108–113 Our 

recent study showed that omega-3 fatty acid was primarily associated with lower risk of 

CRC subsets infiltrated with high density of FOXP3+ T cells, and might protect against CRC 

by downregulation of the immunosuppressive activity of regulatory T cells.114 These 

findings suggest a potential interaction of omega-3 fatty acid with tumor immunity in 

prevention of CRC.

Dietary fat composition is a major driver of the gut microbial community structure.115–120 

Compared to other types of fat, omega-3 fatty acid have been associated with higher 

intestinal microbiota diversity and omega-3 fatty acid-rich diet ameliorates the gut dysbiosis 

induced by omega-6 polyunsaturated fatty acid or antibiotics.117, 118, 121, 122 Animal studies 

indicate that omega-3 fatty acid supplements increase the abundance of anti-inflammatory 

bacteria, such as lactic acid-producing bacteria (mainly Lactobacillus and Bifidobacteria), 

and decrease the abundance of immunosuppressive and pro-inflammatory bacteria, such as 

F. nucleatum, lipopolysaccharide-producing bacteria (e.g., Escherichia coli) and 

Akkermansia.115–120, 122

Some species from Lactobacillus and Bifidobacteria genera support the host 

immunoprotective system,123, 124 promote antitumor immunity, and facilitate cancer 

immunotherapy.125–127 Anaerobic gut bacteria, including some species of Lactobacillus, 

have been implicated in the saturation of polyunsaturated fatty acid, a detoxifying 

mechanism that transforms bacterial growth-inhibiting polyunsaturated fatty acid into less 

toxic fatty acid, such as hydroxyl fatty acid.128–134 These microbial metabolites may help 

preserve intestinal barrier integrity, reduce oxidative stress, and lower inflammation.135, 136 

Given that Lactobacillus is selectively enriched by omega-3 fatty acid, there may exist a 

reciprocal mechanism by which gut microbes adapt to host dietary change with functional 

consequences for host health. Moreover, a cross-feeding effect has been noted between 

human Bifidobacterium, which produces lactate and acetate, and the butyrate-producing 

species, such as Eubacterium rectale, which convert lactate to butyrate.137–139 Butyrate, a 

short-chain fatty acid, has potent anti-inflammatory140 and potential anti-CRC 

properties.66, 141 (see section for Fiber) On the other hand, higher serum levels of 

lipopolysaccharide antibodies have been associated with increased CRC risk in men,142 and 

higher abundance of F. nucleatum has been linked to higher CRC risk and shorter 
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survival.6, 45, 46, 49, 51, 53 Taken together, these findings support the hypothesis that omega-3 

fatty acid may preserve colonic immune homeostasis and suppress CRC through modulation 

of the gut microbiota.

Several potential pathways may contribute to the microbe-modifying effect of omega-3 fatty 

acid. A recent study showed that high omega-3 fatty acid might alter the production of 

microbiota regulators in colonic tissue.143 Omega-3 fatty acid metabolite resolvin stimulates 

host epithelial expression of a transmissible factor, intestinal alkaline phosphatase,144 whose 

lipopolysaccharide-detoxifying activity leads to decreased abundance of lipopolysaccharide-

producing and/or pro-inflammatory bacterial groups and increased abundance of 

lipopolysaccharide-suppressing and/or anti-inflammatory bacteria.143 Moreover, luminal 

unabsorbed omega-3 fatty acid may alter the gut environmental conditions and changes in 

immune response due to omega-3 fatty acid may in turn confer selective pressure on the gut 

microbial community.145–147 Given the sparse data, further investigations are needed to 

better understand the interaction network between omega-3 fatty acid, gut microbiota, and 

the immune system. This may lead to novel prevention strategies based upon dietary 

modification, manipulation of microbial ecology, or development of microbiome and 

immune profiling as a biomarker of chemopreventive efficacy.

Obesity

Since the 1970–1980s, the prevalence of obesity has markedly increased worldwide.148 The 

obesity epidemic is believed to be largely driven by global westernization characterized by 

overconsumption of easily accessible and energy-dense food, and a sedentary 

lifestyle.149, 150 Obesity is an established risk factor for CRC and several other cancers.151 

Possible mechanisms include increased insulin levels and bioavailability of insulin-like 

growth factor 1, altered secretion of adipokines and inflammatory cytokines, and changes in 

sex hormone levels.152, 153

Emerging evidence suggests a bidirectional relationship between obesity and the gut 

microbiota. On the one hand, obese individuals are more likely to demonstrate dysbiosis 

than lean individuals. Specifically, a decrease in the phylum Bacteroidetes and an increase in 

Firmicutes associated with obesity was observed in some154–156 but not all157 studies. 

Moreover, the relative abundance of Bacteroidetes increases as obese individuals lose weight 

on either a fat- or a carbohydrate-restricted low-calorie diet and the increase in Bacteroidetes 
is significantly correlated to weight loss.154 On the other hand, these microbial changes are 

likely not a mere consequence of obesity, because the obese phenotype can be transmitted by 

transplantation of the obesity-associated gut microbiota in mice. When colonized with a 

conventional mouse microbiota, gnotobiotic (germ -free) mice that are normally lean and 

resistant to diet-induced obesity accumulate more adipose tissue mass and develop insulin 

resistance despite an associated decrease in food consumption.158, 159 Similarly, the gut 

microbiota transplanted from mice with diet-induced obesity to germ-free recipients 

promotes greater fat deposition than transplants from lean donors.160 It has been 

hypothesized that antibiotic use in early life, a critical window for metabolic development, 

increases risk of childhood obesity by disrupting the composition and metabolic activity of 

the gut microbiota that can exert long-lasting effects on body weight in adulthood.161, 162 
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Interestingly, antibiotic use, especially during early life, has been linked to increased risk of 

CRC and colorectal adenoma in a few studies.163–166 While this association needs to be 

confirmed by further studies, it remains unclear whether increased adiposity plays any 

mediating role in this association.

Mechanistic data suggest that the gut microbiota may influence energy homeostasis and 

obesity pathogenesis through several pathways, including peripheral control of energy 

harvest, central regulation of food intake via the gut-brain neural communication, and 

inflammation and impaired gut barrier through activation of pattern-recognition 

receptors.167–169 Taken together, these data support that while the gut microbial profile may 

change due to changes in body weight accompanied by systemic metabolic alterations, the 

composition of the gut microbiota can also predispose to the development of obesity. 

However, because most evidence is from animal or small human studies with short-term 

intervention, it remains to be characterized how the community structure and function of the 

gut microbiota varies with host adiposity over a long-term period, which is more relevant to 

cancer development.170

Given the link between obesity and gut microbiota and the role of the gut microbiota in 

cancer development, it has been proposed that changes in the gut microbiota may contribute 

to obesity-associated carcinogenesis. Indeed, studies in liver cancer have suggested that 

increased enterohepatic circulation of the obesity-induced gram-positive gut microbial 

metabolite deoxycholic acid facilitates hepatocellular carcinoma development by inducing 

cellular senescence and the senescence-associated secretory phenotype in the tumor 

microenvironment.171, 172 Besides deoxycholic acid, another gut microbial component, 

lipoteichoic acid, may also contribute to obesity-induced liver cancer by enhancing 

senescence-associated secretory phenotype and upregulating the expression of 

prostaglandin-endoperoxide synthase 2.173 As a critical enzyme in inflammation, 

prostaglandin-endoperoxide synthase 2 mediates production of prostaglandin E2, which 

governs tumor-mediated immune dysfunction and contributes to a shift in the tumor 

microenvironment from anti-tumor responses to immunosuppressive responses.174 Given the 

potential role of prostaglandin E2
175 and secondary bile acid176 in promoting CRC, further 

studies are needed to investigate whether microbial imbalance-induced metabolic change 

also mediates obesity-related tumor promotion in the colon.

Conclusion

CRC is one of the cancers that are most closely associated with diet. Human intestinal tract 

is colonized by ~100 trillion microbes, the vast majority of which resides in the large 

intestine and is integral to host genomic stability, immune homeostasis, and metabolism. A 

growing body of evidence indicates a complex interrelation between diet, gut microbiota and 

CRC. However, most of the evidence derives from cross-sectional or short-term, highly 

controlled feeding studies that are limited in size. Given the multistage process and long 

latency of colorectal carcinogenesis, high-quality prospective studies with dietary data 

collected over the life course and gut microbial composition and function assessed well prior 

to neoplastic occurrence are critically needed. To make these studies possible, further 

investments are needed for stool collection in the existing, preferably younger epidemiologic 
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cohort, standardization of the microbiome study pipeline, and development of novel user-

friendly statistical tools to link the high-dimensional omics data to longitudinal 

epidemiologic data (including diet). These investigations will provide essential data to 

identify microbiome-based interventions that may complement or optimize the current diet-

based strategies for CRC prevention.
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Table 1

Summary of epidemiologic studies examining the association of the fecal microbiome with colorectal cancer

Author, Year Country Study
Design

Sample Size Main Findings Comparing Cases
to Controls

Scanlan, 20083 Belgium Case-control 20 cancers / 20 
polyps / 20 controls

↑ diversity of the Clostridium leptum and C. 
coccoides subgroups

Sobhani, 20114 France Case-control 60 cancers / 119 
controls

↑ Bacteroides/Prevotella

Wang, 20125 China Case-control 46 cancers / 56 
controls

↑ Bacteroides fragilis and opportunistic 
pathogens; ↓ butyrate-producing bacteria

Ahn, 20136 USA Case-control 47 cancers / 94 
controls

↓ diversity; ↓ Clostridia; ↑ Fusobacterium, 
Porphyromonas;

Zackular, 20147 USA Case-control 30 cancers / 30 
adenomas / 30 controls

↑ Bacteroides fragilis, Fusobacterium, 
Porphyromonas; ↓ butyrate-producing 
bacteria

Zeller, 20148 France Case-control 91 cancers / 42 
adenomas / 358 
controls

↑ Bacteroidetes, Fusobacteria and 
Proteobacteria; ↓ Actinobacteria and 
Firmicutes

Feng, 20159 Austria Case-control 41 cancers / 42 
adenomas / 55 controls

↑ B. dorei, B. vulgatus, E. coli, 
Fusobacterium; ↓ Lactobacillus and 
Bifidobacterium

Vogtmann, 201610 USA, France Case-control 52 cancers / 52 
controls

↑ Fusobacterium, Porphyromonas, Clostridia

Yu, 201711 Denmark, France, Austria Case-control 74 cancers / 54 
controls

↑ Peptostreptococcus stomatis, F. nucleatum, 
Parvimonas micra, Solobacterium moorei

Shah, 201712 Multiple countries Pooled analysis 
of case-control 
studies

195 cancers / 79 
adenomas / 235 
controls

↑ Parvimonas micra ATCC 
33270,Streptococcus anginosus, yet-to-
becultured members of Proteobacteria

Liang, 201713 China Case-control 203 cancers / 236 
controls

↑ F. nucleatum, Clostridium hathewayi; ↓ B. 
clarus

Flemer, 201714 Ireland Case-control 43 cancers / 37 
controls

↓ Lachnospiraceae incertae sedis and 
Coprococcus
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