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Abstract

Recent epidemiological studies have identified an association between male infertility and 

increased cancer risk, however the underlying etiology for the shared risk has not been 

investigated. It is likely that much of the association between the two disease states can be 

attributed to underlying genetic lesions. In this article we review the reported associations between 

cancer and spermatogenic defects, and through database searches we identify candidate genes and 

gene classes that could explain some of the observed shared genetic risk. We discuss the 

importance of fully characterizing the genetic basis for the relationship between cancer and male 

infertility and propose future studies to that end.
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Introduction

Male infertility is a common disease affecting up to 6% of men in North America and at 

least 30 million men worldwide (1). In addition to the increasing fraction of men with poor 

sperm quality, the lower end of the fertility spectrum is affected with a significantly reduced 

overall health condition (2–4). The majority of pre-existing co-morbidities, such as obesity, 

chronic diseases, cardiovascular disease and metabolic syndrome, likely have a direct impact 

on reproductive outcomes and even life expectancy (2, 4–9). These comorbid conditions not 

only impact the well-being of affected men but the health risks may also transmit to their 

progeny (10, 11).

In some cases, the manifestation of infertility may portend a future health concern. For 

example, testicular cancer risk increases up to 20-fold among men with abnormal semen 

parameters, and the risk is 52% higher among their first-degree relatives as well (12–16). It 

has been proposed that various cancer phenotypes may co-occur in men with reproductive 
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disorders due to shared pathophysiology rather than as a result of a direct metabolic 

intervention (17). Addressing the cancer incidence among men with poor semen parameters 

and/or infertility may prove challenging, as linking reproductive disorders with late onset 

malignancies is largely dependent on the availability and access to long-term cancer and 

mortality registries. A few large observational cohort studies have reached the goal, 

predominantly reporting the risk of prostate cancer in infertile men with mixed results (18). 

Most strikingly, Eisenberg et al. mined claims data for 76,083 infertile men based in the U.S. 

and found a 49% increased risk across a broad range of cancers (n = 18) compared to a 

control cohort (19). Furthermore, elevated risk of all cancers (SIR 2.9, 95% CI 1.4–5.4) was 

highlighted in cases of azoospermia, the most severe manifestation of male infertility (20). A 

recent evaluation of 10,511 men with a semen analysis as well as 63,891 siblings revealed a 

two-fold risk of any-site cancer and three-fold risk of acute lymphoblastic leukemia in 

siblings of oligozoospermic men compared with siblings of fertile controls (21). The 

reported findings may indicate the existence of shared pathophysiological pathways not only 

between male infertility and testicular cancer, as the most studied example, but potentially 

also a wide spectrum of other malignancies. However, the full range of co-morbid cancers 

and the underlying genetic mechanisms remain to be elucidated.

Genetics and genomics of male infertility

In spite of clear evidence for genetic causes of male infertility, the genetic architecture of 

this condition has largely remained elusive, and few variants have been confirmed as 

causative in male reproductive disorders, including Yq microdeletions that contribute to as 

much as 18% of severe oligozoospermia and non-obstructive azoospermia (NOA) cases 

(22), Klinefelter’s syndrome present in nearly 15% of men with severe spermatogenic 

defects (23) and mutations in the CFTR gene responsible for 78% of cases with congenital 

bilateral absence of the vas deferens. Genome-wide association studies (GWAS) have shed 

some additional light on the common genetic factors identifying a few susceptibility loci 

((24–26); reviewed in (27)). However, GWAS studies are notoriously known to be limited to 

variants of low effect size (odds ratio <1.5) at intermediate frequency, and, historically, have 

only explained a small fraction of heritability of complex traits (28). Similar to research in 

other complex diseases, primary attention in male infertility has now shifted towards the 

low-frequency variants (minor allele frequency, MAF<5%) of large effect. Rare CNV 

studies have shown that men with spermatogenic failure feature a burden of rare CNVs that 

involves the autosomes and both sex chromosomes, and recurrent CNVs affecting specific 

genes can be reproducibly associated in well-powered studies (29)((30). In the case of NOA, 

a single exome-wide association study targeting rare variants in 962 cases and 1348 healthy 

controls in the discovery stage reported a variant in a DNA mismatch repair gene MSH5 that 

increased the risk of the disease (31). Candidate-gene based studies targeting pathways 

known to be essential for reproductive success have significantly expanded the list of 

potentially important infertility genes (reviewed in (32)), however more loci are expected to 

be found among the 50% of male infertility cases designated as idiopathic. For example, 

based on human transcriptome analysis in the Human Protein Atlas (www.proteinatlas.org), 

testis is the site of elevated expression for 2200 genes across all human tissues rendering 

them potentially sensitive to genetic disruptions. Additional insight into the identity and 
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functional effect of genes essential for reproductive success can be drawn from research on 

mouse models and suggests the potential pool size of the disease genes yet to be discovered 

in the human. According to the Mouse Genome Informatics database (MGI; http://

www.informatics.jax.org/) which integrates genomic and biologic data acquired from mouse 

model experiments, altogether 666 genes are known to lead to male infertility when 

disrupted in mice. For 531 of these genes, an orthologous locus in the human is known.

Genetics of cancer

Cancer is the predominant health burden affecting approximately 39.6% of men and women 

at some stage in their life (National Cancer Institute, NCI; https://www.cancer.gov/about-

nci/budget) and has gained proportionally large scientific attention and funding. The budget 

of NCI alone is $5.4 billion in fiscal year 2017 which is boosting cancer research and 

rewarding the scientific and patient community with an extensive data on cancer-driving 

variants. Depending on the type of the malignancy, a multitude of variants can be detected 

per tumor with melanoma, colorectal and lung cancer positioned at the top of the list (over 

100 non-synonymous mutations per tumor) (33). The somatic cancer variants tend to be 

recurring within the same genes and 95% of the mutations observed in common solid tumors 

are single-base substitution.

An expert-curated database of somatic mutations, Catalogue of Somatic Mutations in Cancer 

(COSMIC v82; https://cancer.sanger.ac.uk/cosmic) includes a continuously updated list of 

manually reviewed and well-studied genes repeatedly reported and confirmed to be altered 

in cancer. Although the number of genes relevant in cancer biology is certainly higher, the 

curated list is an accurate collection of 202 annotated cancer genes currently confirmed to be 

associated with cancer (August 2017). Based on the classification developed by Vogelstein 

et al., 116 out of the 202 (57%) curated genes are designated as cancer ‘driver genes’ 

promoting the malignant progression as an oncogene (n = 52) or as a tumor suppressor (n = 

64) (COSMIC database; (33)). These cancer drivers can further be classified based on the 

core molecular pathway disrupted in the disease; 48% of the genes act in cell survival 

system, 44% in cell fate and 7% have an impact on genome maintenance. These same 

processes are known to be essential for the normal progression of spermatogenesis. 

Balanced fate decision of spermatogonial stem cells determines the maintenance of a 

sufficient pool of self-renewing and differentiating stem cells necessary for continuous 

spermatogenesis (34). Through multiple stages of mitosis during germ cell development, 

DNA integrity is protected by the mechanisms of DNA repair (35), and regulated apoptotic 

processes of differentiating germ cells ensure that the most vital cells reach the final mature 

phase of spermatozoa (36). Disruption in any of these pathways would be expected to lead to 

excessive loss or damage of germ cells and the associated expression of male infertility.

Shared genetic etiology in male infertility and cancer

Although several epidemiologic studies have arisen in recent years indicating an increased 

susceptibility of infertile men to comorbid cancer, to our knowledge, no genetic screens have 

been performed to investigate a shared genetic cause. Recent studies integrating the omics 

and literature predicted a significant genetic overlap not only for male infertility but also 
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female reproductive disorders and particular types of cancer (37, 38). However, the extent of 

this overlap and which genes to study further is currently unknown.

Mouse model data, as an extensive experimental resource, could be applied to infer disease 

relationships and estimate whether, and what type of genes would be expected to have a 

pleiotropic effect. Searching the MGI database for human disease-related loci reveals 1194 

genes that have been linked to various types of cancer and 666 genes to male infertility in a 

mouse model. Intersection of these two lists highlights 64 shared loci, which corresponds to 

10% of all male infertility genes and may underlie susceptibility to both phenotypes in mice. 

For a similar estimate in humans, intersection was taken of 531 loci causing male infertility 

in mice (MGI database) and having a known ortholog in humans; and the 202 manually 

curated human cancer genes from the COSMIC database (COSMIC “classic” genes). This 

intersection identifies twenty five genes that may confer risk of experiencing male infertility 

and cancer in humans (Figure 1; Table 1). This overlap is highly non-random: there is a five-

fold enrichment of COSMIC cancer genes in the MGI male infertility list compared to genes 

that are not on the MGI list (4.7% versus 0.95%, OR=5.12, p< 5 × 10−10 by Fisher Exact 

Test).

All of the 25 ‘male infertility-cancer genes’ have been established as known factors in 

cancer progression and nineteen have been designated as cancer drivers (44% tumor 

suppressors; 32% oncogenes) according to the Vogelstein et al. classification (33) (Figure 1). 

Out of the three main systems affected in cancer as well as spermatogenic failure, cell 

survival is disrupted most frequently, followed by cell fate and genome maintenance similar 

to the pattern observed among all curated COSMIC cancer genes. Based on the disease 

annotation in Online Mendelian Inheritance in Man database (OMIM; https://

www.omim.org/), these ‘male infertility-cancer genes’ can give rise to a wide range of 38 

different types of malignancies with breast and pancreatic cancers being the most common 

(Figure 1). Four of the genes are associated with the development of male reproductive 

cancers, including testicular germ cell tumor (KIT, FGFR3, STK11) and Sertoli-Leydig cell 

tumors in the presence of goiter (DICER1).

Importantly, nine out of 25 of the intersected cancer genes have previously been linked to 

impaired reproductive success in humans (Table 1). For example, polymorphisms in 

androgen receptor (AR) are a well-known cause of not only prostate cancer but also 

heritable androgen insensitivity syndrome, in which male differentiation and 

spermatogenesis are impaired (39). Similarly, Wilms Tumor 1 (WT1) is a critical factor in 

male sex determination, and mutations in WT1 may cause germ cell loss in addition to a 

spectrum of tumors and other syndromic features (40, 41). Mutations in VHL gene may lead 

to male infertility related to von Hippel-Lindau disease (VHL) in humans, which is 

confirmed in the mouse model of the VHL disease characterized by multiple tumors and 

small testis with reduced sperm counts (42).

Although no genomic alterations have been linked to infertility in men for other genes in the 

list, there is ample evidence for a critical role of several additional genes arising from mouse 

models in germline biology. For example, the role of DICER1, a regulator of small non-

coding RNAs, in successful differentiation of male germline, has been well documented by 
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several groups, showing germ cell loss and male infertility upon testis-specific DICER1 
knock-out in mice (43, 44). An interesting candidate gene pair of H3F3A and H3F3B, both 

of which code for the histone variant H3.3, has been implicated in male and female 

infertility in mice due to impaired regulation of chromatin dynamics (45, 46). Both RB1 and 

RET proteins are required for the maintenance of undifferentiated spermatogonial stem cell 

pool (47, 48), and CTNNB1 and SMAD4 for the regulation of Sertoli and Leydig cell 

signaling in testis (49–51). Lastly, knockdown of STK11 (also known as LKB1) and 

particularly its major splice variant LKB1(S) in mice leads to defects in spermiogenesis and 

spermiation (52, 53).

Heritable susceptibility to cancer and male infertility

The genetic etiology of cancer is unique in the context of the observed mutational spectrum 

largely comprised of somatic variants. However, approximately 5–10% of cancers are 

caused by hereditary lesions that have heightened attention for germline testing for cancer 

susceptibility. A multitude of hereditary cancer predisposition syndromes are currently 

known, and a wide range of malignancies develop as a result of germline mutations in 

singleton genes, largely in an autosomal dominant manner (reviewed in (54)). Inherited risk 

of ovarian and breast cancer determined by variants in BRCA1 and BRCA2 is a well-known 

example (55). It is feasible that a single deleterious germline mutation in a gene essential for 

cell survival or genome maintenance could confer heritable risk to both male infertility and 

cancer. Among the 25 male infertility and cancer intersection genes, alterations in 13 loci are 

known to underlie a specific hereditary cancer predisposition syndrome (Table 1).

The most common etiology of hereditary cancers is defects in DNA repair genes, which are 

essential for accurate DNA mismatch repair, base excision repair, double-strand break repair 

and nucleotide excision repair (56). DNA repair genes are also fundamental for maintaining 

the genomic integrity and stability in the environment of frequent DNA damage in the early 

stages of the male germline (35). Continuous mitotic cell divisions of developing germ cells 

lead to DNA replication stress, and mitochondrial activity and various environmental 

toxicants (e.g. cigarette smoking and exposure to radiation) induce DNA breakage and base 

modifications via excessive levels of reactive oxygen species. Oxidative stress-related DNA 

fragmentation is significantly more frequent in subfertile men and leads to decreased sperm 

motility and fertilizing potential (57). Insufficiencies in DNA repair pathways due to genetic 

alterations may thus confer heritable predisposition to increased risk of impaired 

reproductive success and cancer. Numerous mutation analyses have been conducted showing 

the increased risk of reproductive and cancer disorders independently associated with defects 

in DNA repair pathways (Table 2). The link between genetic susceptibility to cancer and 

infertility has been noted previously for some of the genes, including MLH1 and ERCC1 
(17). DNA variants in MLH1, which is involved in mismatch repair systems, are known to 

cause the hereditary cancer disorder ‘Lynch syndrome’ and also confer susceptibility to 

azoospermia and oligozoospermia (58, 59). Interestingly, an identical mutation C8092A 

(rs3212986) in the DNA base excision repair gene ERCC1 has independently been linked to 

both idiopathic azoospermia (60) and various types of cancer, including breast carcinoma, 

head and neck carcinoma and adult glioma (61–63). No studies have performed a mutational 

screening of these genes in male infertility cases with cancer as a comorbid state. Of note, 
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there is relatively low overlap between the genes in Table 2 and Table 1 (only MSH1 and 

ATM). This likely reflects the fact that cancer gene list used to construct Table 1 (the 

COSMIC “classic” genes) have been identified through the observation of recurrent driver 

mutations in large numbers of tumors (>300); genes in Table 2 have been identified as 

having germline cancer risk mutations. These DNA repair genes with germline risk 

mutations may be less likely to be observed as having somatic mutations in cancer. 

Nonetheless, the distinction underscores the fact that both germline and somatic mutations 

confer risk for cancer, and could, in principle, confer risk for infertility as well.

Conclusions

A growing body of data derived from epidemiological studies indicates an increased risk of 

cancer in men with spermatogenic defects. As highlighted here, a number of shared 

biological processes could account for a shared etiology of male infertility and cancer, 

including cell survival, cell fate, and genome maintenance. While the examples cited above 

represent only a small fraction of genes likely to be involved in both tumorigenesis and 

failed spermatogenesis, they are intended to illustrate the basic cellular processes whose 

disruption could explain the relationship between the two conditions.

A more complete understanding of the unifying mechanisms for male infertility and cancer 

will require large scale, whole genome studies in both fields. As genomic data continue to 

accumulate for both disease classes, increased understanding of the underlying mechanisms, 

shared genetic etiologies and potential risk to offspring will pave the way for germline 

screening for cancer and infertility susceptibility loci toward improved patient care.
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Capsule

Multiple epidemiological studies have identified an association between male infertility 

and increased cancer risk. This article reviews the current literature and discusses 

potential shared genetic links between the two conditions.
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Figure 1. Identification of candidate genes associated with susceptibility to male infertility and 
cancer
Human homologs to mouse male infertility genes were intersected with a curated list of 

known cancer genes (the COSMIC “classic” list). The observed overlap of 25 genes is 

highly non-random: there is a five-fold enrichment of COSMIC cancer genes in the MGI 

male infertility list compared to genes that are not on the MGI list (4.7% versus 0.95%, 

OR=5.12, p< 5 × 10−10 by Fisher Exact Test). We further characterized these 25 candidates 

by their putative role in cancer. Vogelstein classification of cancer driver genes from (33).
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