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Abstract

Numerical computation of the expected information content of a prospective experimental design 

is computationally expensive, requiring calculating the Kullback-Leibler divergence of the 

posterior distribution from the prior for simulated data from a large sample of points from the prior 

distribution. In this work, we investigate whether the Unscented Transform (UT) of the prior 

distribution can provide an adequate estimate of the expected information content in the context of 

experiment design for a previously validated HIV-1 2-LTR model. Three different schedules with 

evenly distributed time points have been used to generate the experimental data along with the 

incorporation of qPCR noise for the study. The UT shows promise in estimating information 

content by preserving the optimal ordering of 2-LTR sample collection schedules, when compared 

to completely stochastic sampling from the underlying multivariate distributions.

I. INTRODUCTION

In modeling the dynamics of HIV-1, the formation of 2-LTR circles has been of interest to 

many researchers [2]-[5], [7], [10]-[12], [14], [16], [18]-[27]. 2-LTR circles are formed 

when viral DNA fails to integrate into its target host cell. Thus both random failed 

integration and the use of integrase inhibitor drugs, such as raltegravir, can result in a 2-LTR 

formation. A previous study [16] formulated a novel model for the formation of 2-LTR 

circles with and without the presence of raltegravir, based on patient data from the recent 

INTEGRAL study [5].

The problem of designing an HIV-1 2-LTR study with a sampling schedule that optimizes 

the amount of information gained from the system is our over-arching goal [6]. This requires 

developing an accurate estimate of the expected Kullback-Leibler divergence from the prior 

distribution of the parameters of interest to the posterior distribution of the same. The 

posterior distribution can be computed easily from any given candidate parameter set drawn 
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from the prior, but numerically approximating the expected value directly from the prior 

involves taking a large random sample from the prior and averaging the results, which can be 

very computationally costly. The goal of this study is to see if the Unscented Transform 

(UT) [15] can be used as an accurate approximation of the multivariate prior distributions for 

this 2-LTR model. We compare the average information gained as calculated from the UT of 

the prior versus stochastic Monte Carlo sampling of the prior (see Figure 1). The Monte 

Carlo simulations are carried through with parameters sampled from prior distributions of 

our 2-LTR system parameters [16]. The Unscented Transform is also applied to these prior 

distributions to give us 5 sigma points that are representative of the distributions. Both 

methods produce a set of 2-LTR system parameters that are used to produce experimental 

simulations with measurement noise. Markov Chain Monte Carlo (MCMC) [1], [8], [13] 

methods are used to calculate the posterior distribution associated with each simulated 

experiment. After the posterior distributions are calculated, they are compared to the prior 

distributions by computing the Kullback-Leibler divergence between the two. This 

computation allows us to compare the amount of information gained by running each set of 

system parameters, and will give insight onto how good the UT method is in estimating the 

information content of the multivariate distributions. We test the UT method on 3 different 

sample time schedules to see if the UT preserves optimal schedule ordering, when compared 

to purely stochastic Monte Carlo simulations.

The paper proceeds as follows: section II will present the 2-LTR model investigated, outline 

the process of choosing sigma points, discuss models for experimental uncertainty and 

Monte Carlo simulation, and discuss how information content will be computed. Section III 

will present results demonstrating preservation of optimal sampling schedules. Section IV 

will discuss future work and criticisms of our methodology in this study.

II. THEORY AND SIMULATION DESIGN

A. HIV-1 2-LTR Model

This study uses a previously published [16] 2-LTR replication model, described by 

parameters listed in Table 1. The system characterizes the dynamics of 2-LTR concentration 

in the blood, and actively infected cell concentration at the site of 2-LTR formation, and can 

be expressed as:

(2.1)

(2.2)

It can be shown that the closed-form solution to (2.1)-(2.2) is:

(2.3)
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where

(2.4)

and

(2.5)

B. Constrained Parameters and Choosing Sigma Points

A parameter transformation is carried out to reduce covariance by defining a new random 

variable, A = kyeR/δ, and the parameter a is considered fixed based on extensive prior data 

establishing its value. Thus, we are left with a system characterized by the 5 random 

variables: A, R, ηII, ϕ, and δ. For the purposes of this study, we will reduce the system to 

study A and R, while keeping ηII, ϕ, and δ constant throughout all trials. The Maximum 

Likelihood values for the parameters ϕ, δ, and η from the previous study are used for all 

trials, where ϕ = 0.0018 and δ = 0.46 day−1. η varied considerably between patients, but we 

use the average of the patient-specific maximum-likelihood estimates, ηII = 0.3.

This reduced 2-dimensional system (A and R) will be investigated throughout the rest of the 

study. It is worth noting that the process and results from this study could be replicated for 

any combination of 2 of our 5 random variables above, but for aforementioned reasons, A 

and R were the variables chosen here specifically. From the previous study’s data, our 

variables assume the following prior distributions:

(2.6)

(2.7)

Sigma points generated with the above probability distributions poses some practical 

problems. Figure 2 shows the A-R plane segmented into different zones; the red zone is the 

useless portion of our plane (noiseless simulations produce all points below the limit of 

detection), the yellow zone is moderately helpful (simulations produce 1-3 points above the 

limit of detection), and the blue zone is our target zone (4 or more points are above the limit 

of detection). Experiments from simulated patients with parameters in this region are non-

informative, but numerical issues can result in incorrectly high estimates of the Kullback-

Leibler divergence for patients in this region. For the purpose of this study we therefore 

limited the prior distribution of R to be a beta distribution with the following parameters 

(20,5) which gave us values mostly around 0.96 - 0.99 indicating viral replication in the 

patient, and a high probability of an informative experiment.
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(2.8)

We wish to compare the average amount of information gain predicted from running 

simulations from points randomly sampled from the A-R plane (Monte Carlo simulation), to 

the amount of information gain predicted from running simulations on the 5 sigma points 

generated by the 2-dimensional Unscented Transform (UT). The UT equations below, for an 

N-dimensional set of random variables, produce 2N+1 points that have the same mean and 

covariance as the original random variables [15]:

(2.9)

where μ is the mean of the original set of random variables, Σ is the covariance matrix of the 

original set of random variables, and  is the ith column of the matrix square root of 

2Σ. Since R is a probability variable, none of our sigma points can have an R value greater 

than 1, in our model. However, if we applied the UT to the bivariate A-R distribution as is, 

we would get R values greater than 1. To fix this, an inverse Normal CDF was applied to the 

R distribution, and the UT was then applied to this inverse Normal CDF data crossed with 

the A data. The final sigma points were converted back to R values using the Normal CDF.

C. Modeling Experimental Uncertainty

Once the Sigma points are generated, their A and R values are plugged into equations (2.3)-

(2.5), which gives us an ideal, noiseless model for 2-LTR formation for a virtual patient. 

However, the process of measuring 2-LTR circles produces some experimental noise. As in 

the previous study [16], noise resulting from the Polymerase Chain Reaction (PCR) process 

was applied to the concentration data, c, generated by our sigma points. The noise is 

lognormal with a standard deviation given by [17]:

(2.10)

The Poissonian lower sensor limit of 3 copies (as opposed to 50, in the previous study) is 

0.072 2-LTR circles/106 PBMC (peripheral blood mononuclear cell). Given 2-LTR 

measurements, m, and 2-LTR model c, the likelihood that the model fits given our data is 

given by:

(2.11)
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where fLN is the lognormal probability density function and FLN is the lognormal cumulative 

density function.

D. Monte Carlo Simulation

Figure 3 shows the random 1000 points sampled from the A-R plane chosen for our 

completely stochastic Monte Carlo simulation. This study aims to compare the average 

amount of information gained from these randomly chosen A-R points (chosen from the 

underlying prior distributions given by (2.6) and (2.7) to the average amount of information 

gained by the sigma points.

E. Information Gain and Kullback-Leibler Divergence Computation

Once the MCMC is run on simulated experimental data, there will be a calculated posterior 

distribution of A and R values. Use of the Hastings algorithm in our MCMC will ensure 

noise in A and R choices, producing a distribution of A and R values as opposed to a single 

values. The posterior distribution of A and the inverse-CDF transformed version of R were 

approximately normally distributed. Since there were hundreds of thousands of points in our 

posterior distributions, calculating the Kullback-Leibler divergence by direct computation 

would be computationally infeasible. However, it can be shown [9] that, for 2 n-dimensional 

normal distributions with covariance matrices Σ1 and Σ2, and mean vectors of μ1 and μ2, the 

Kullback-Leibler divergence is given by:

(2.12)

Applying an inverse normal cdf to both the prior and posterior R distributions will allow 

them to be fit with a normal distribution, so the bivariate A-R prior and posterior 

distributions can both be fit with a multivariate normal distribution, and the Kullback-Leibler 

divergence can be calculated with the computationally efficient equation 2.12.

F. Optimal Sampling Schedule Preservation

In reality, medical studies are limited in the amount of data that can be collected from each 

patient. Given this 2-LTR model, the question of which schedule maximizes our information 

gain becomes increasingly important in designing optimal experiments. A main purpose of 

this study is to validate the UT method as a good approximation of multivariate 

distributions. Therefore, the UT method will be tested using experimental sampling from 3 

different schedules: schedule 1 will be 10 points evenly spaced from 0 to 335 (in days), 

schedule 2 will be 10 points evenly spaced from 0 to 165, and schedule 3 will be 10 points 

evenly spaced from 165 to 335. Figure 4 shows an example experimental simulation with 

qPCR noise using schedule 1. From previous analysis of the model, peaks tend to happen 

within the first 2 weeks, as seen in this figure. Intuitively, the expected result of studying 

information from these schedules is that schedule 2 will give us the most information, 

followed by schedule 1, then schedule 3.
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III. RESULTS

For all 3 schedules, MCMC simulations of our stochastic sampling of the 1000 A-R points 

(displayed in Figure 3) and all 5 sigma points (listed in Table 2) were carried through. The 

MCMC generates output as posterior distributions for all input simulated data. Posterior 

distributions from simulations using schedule 3, in general, tended to be more widespread 

and less informative than distributions using schedule 1 or 2. Stochastic simulations were 

run with 1000 points due to time limitations. According to Figure 3, this sampling of 1000 

points appears to capture the behavior of the multivariate distribution well, although more 

samples would give us the most accurate results (see the Discussion section for more on 

this). After the posterior distributions were formed, the process described in section E was 

used to compute the Kullback-Leibler divergence for each point.

In comparing the Kullback-Leibler divergence values for both methods, it is necessary to 

note that the stochastic sampling tends to produce, mostly, only the A-R points that are most 

likely to occur according to the multivariate probability distribution. Our sigma points, 

however, are chosen from all parts of the plane (including the bottom point, which is not 

likely to occur). Therefore, when computing the average Kullback-Leibler divergence for the 

5 sigma points, we weighted each value according to its relative probability of occurring, in 

order to make our UT results comparable to our Monte Carlo simulation results.

Figure 5,6 displays the average Kullback-Leibler computations for each schedule and 

method. The intuitive schedule ordering predicted in section II (2,1,3) was preserved in both 

the UT and the Monte Carlo simulations. The UT methods were simulated 200 times to 

generate the 95% confidence intervals in order to check the schedule ordering which might 

vary due to inherent stochastisticity. The results indicate that the schedule ordering did not 

change as the 95% confidence intervals suggest that the average information content in each 

schedule for the UT did not overlap. On the other hand obtaining 95% confidence intervals 

for the Monte Carlo Methods will be very time consuming and hence the simulations were 

run for a few number of times in order to check the ordering.

IV. DISCUSSION

While there are potential pitfalls in using the UT to model multivariate distributions, this 

method of sampling shows promise in preserving the optimal ordering of HIV sample 

schedules.

A problem with using the UT to estimate distributions is that our sigma points do not give us 

information about our censored measurement region. The method of rotating the sigma 

points to optimally preserve covariance can still produce the same set of sigma points for 

cases where the censoring region is quite different (i.e. if there was a censored region in the 

center of our A-R distributions, where no sigma points were produced, the UT method 

would fail to take this censoring into account). Thus, in testing this method for other 

applications in HIV modeling, it is important to note that the UT method does not retain 

information about censoring regions.
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The ultimate goal for this project is to extend the UT method to a 5-dimensional distribution 

(of all the parameters in our 2-LTR model). Another factor this study did not consider was 

the actual Monte Carlo sampling itself. Using 1000 points was an arbitrary decision based 

on time constraints, because, in reality, more samples would give us the most accurate 

results. For a future study, Monte Carlo sampling could occur for as many points as needed 

to make the covariance matrix of the sampled points have a normed difference with the 

original covariance matrix (of the multivariate distribution) within a certain small limit. This 

would produce a number of samples needed in Monte Carlo simulation to obtain data within 

a desired error limit.

In order to confirm that the UT method preserves the order of expected information content, 

the UT method should be tested on many more schedules for optimal schedule order 

preservation. The performance on the three schedules with 10 time points each used in this 

study is promising, but cannot truly be generalized to arbitrary sampling schedules. Further 

study is needed to verify UT preservation of a larger number of schedules (specifically, 

similar schedules which produce similar results).
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Fig. 1. 
Diagram summarizing simulation procedures of this project.
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Fig. 2. 
A-R plane filtered into zones where red points produced all measurements below the sensor 

limit, yellow produce most points below the sensor limit, and blue produce most points 

above the sensor limit.
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Fig. 3. 
These are the thousand points sampled randomly from the A-R plane for the Monte Carlo 

simulation, according to distributions 2.6-2.8

Abraham et al. Page 12

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
This is an experimental simulation of data from our first sigma point with noise, 

demonstrating the general behavior of our 2-LTR system
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Fig. 5. 
This bar graph displays our final average K-L Divergence values for different schedules 

using UT method, showing that schedules 2,1,3 as the optimal ordering.
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Fig. 6. 
This bar graph displays our final average K-L Divergence values for different schedules 

using Monte Carlo method, showing that schedules 2,1,3 as the optimal ordering.
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TABLE I

2-LTR Model Parameters

y concentration of infected cells cells/106 PBMC

c concentration of 2-LTR circles in blood cells/106 PBMC

R probability infected cell infects target cell in a single generation unitless

a death rate of actively infected cells day−1

ye rate of production of actively infected cells by processes other than infection cells/106 PBMC

ηII ratio-reduction in R following raltegravir intensification (i.e. raltegravir drug efficacy) unitless

uII 1 when raltegravir applied, 0 otherwise unitless

ϕ ratio of probability of 2-LTR formation during infection when raltegravir not present to probability 
raltegravir interrupts infection

unitless

kII probability of 2-LTR formation when raltegravir interrupts infection 2-LTR circles per infected cell

δ decay rate of 2-LTR circles day−1
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TABLE II

List of final rotated sigma points given by the UT

log A R

-1.8450 0.9583

-1.6821 0.1204

-2.0079 0.9721

0.1805 0.9578

-3.8704 0.9588
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TABLE III

Final Kullback-Leibler Divergence Results

Schedule UT K-L Div MC K-L Div Percent difference

1 2.175 3.125 44

2 2.216 3.177 43

3 2.018 2.38 18
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