
GPU-based Branchless Distance-Driven Projection and
Backprojection

Rui Liu [Student Member, IEEE],
Wake Forest University Health Sciences, Winston-Salem, NC 27103 USA

Lin Fu,
General Electric Global Research, 1 Research Cycle, Niskayuna, NY 12309 USA

Bruno De Man, and
General Electric Global Research, 1 Research Cycle, Niskayuna, NY 12309 USA

Hengyong Yu [Senior Member, IEEE]
Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell,
MA 01854 USA

Abstract

Projection and backprojection operations are essential in a variety of image reconstruction and

physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are

widely used for their highly sequential memory access pattern and low arithmetic cost. However, a

typical DD implementation has an inner loop that adjusts the calculation depending on the relative

position between voxel and detector cell boundaries. The irregularity of the branch behavior makes

it inefficient to be implemented on massively parallel computing devices such as graphics

processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD

operation as three branchless steps: integration, linear interpolation, and differentiation, all of

which are highly amenable to massive vectorization. In this paper, we implement and evaluate a

highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture

memory and hardware interpolation on GPUs to achieve fast computational speed. The developed

branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup

for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-

art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for

forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method

was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It

obtained visually identical images as the CPU reference algorithm.

Index Terms

branchless distance-driven; projection; backprojection; computed tomography; reconstruction;
GPU

I. Introduction

X-RAY computed tomography (CT) is one of the main modern imaging modalities widely

applied in clinical diagnosis [1], pharmaceutical industries [2], [3] and other non-destructive

HHS Public Access
Author manuscript
IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

Published in final edited form as:
IEEE Trans Comput Imaging. 2017 December ; 3(4): 617–632. doi:10.1109/TCI.2017.2675705.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

evaluations [4]. The importance of x-ray CT has never been underestimated for its high

spatial resolution, high temporal resolution, and fast scanning speed. However, modern CT

systems require a variety of modeling, correction, and image reconstruction algorithms to

generate high quality images.

Projection and backprojection (P/BP) operations are the key components of many CT

algorithms. The projection operation is widely applied in the simulation of CT imaging

systems or acquisition processes [5]–[7]. Another important application of P/BP is in

iterative reconstruction algorithms (IRAs), where P/BP are performed alternatively to find an

optimum solution that fits the measurements and prior knowledge according to an objective

function. IRAs are becoming more popular because they can improve image quality when

the projection data are truncated or very noisy. It is possible to integrate IRAs with physical

models, statistical models, detector response model, and prior knowledge. Despite the

various advantages of IRAs, they usually demand high computational cost dominated by the

P/BP operations.

To improve the computational efficiency, the distancedriven (DD) model [8], [9] is widely

applied in P/BP for its highly sequential memory access pattern and low arithmetic cost on

CPU platforms. Its overlapping kernel avoids high-frequency artifacts and ensures that the

P/BP operators are matched. The DD model is based on the overlap length of voxel and

detector cell footprints when mapped to a common axis. A typical DD implementation has

an inner loop that adjusts the calculation with an if-else branch depending on the relative

positions between voxel and detector cell boundaries. For fan-beam and cone-beam

tomography, the patterns of voxel and detector cell boundaries are generally non-uniform

when they are mapped to the common axis, resulting in irregularity and poor predictability

of the branch behavior and making it difficult to effectively implement on multiple-core

vector computing devices such as GPUs.

To overcome the irregular branch behavior of the original DD algorithm, Basu and De Man

proposed a branchless DD algorithm [10] by factorizing the DD operation as three

branchless steps: integration, linear interpolation, and differentiation. All three steps are

highly parallelizable and very suitable for vectorized implementation. However, the

branchless DD algorithm in [10] was only shown as a one-dimensional conceptual example.

It has yet been clear how to translate the branchless concept to more realistic 2D and 3D CT

geometry. In terms of the number of arithmetic operations, the branchless implementation

actually requires more operations compared to the non-branchless implementation with if-

else statements. On CPU platforms, it is generally believed the overhead of the branchless

DD would outweigh its potential benefits in parallelism.

In the past decade, massively parallel GPU devices have become a commodity for general-

purpose computing. With more of its on-chip estates allocated for computing cores but

thread divergence being detrimental, GPUs seem to be a suitable platform to realize the full

potential of the branchless DD. In an earlier conference publication [11], we reported a 3D

implementation of branchless DD on GPU and applied it IRAs from simulation and real CT

data. The algorithm utilized the texture memory and hardware interpolation on GPUs to

achieved ultra-fast computational speed.

Liu et al. Page 2

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This paper extends the work in [11] by providing details of the derivation of branchless DD

in 3D, and explaining how GPU threads were allocated for both forward and backprojection,

and the steps undertaken by each thread to compute DD values. Pseudocode of our

implementation is provided in supplementary martial. Moreover, due to the limited precision

of the texture mapping hardware utilized in the branchless operation to achieve the ultra-fast

speed, a substantial effort in the present study focuses on the analysis and quantification of

the precision loss relative to CPU reference code. We report the measured precision loss in

both the P/BP operations as single modules and in iteratively reconstructed images where

error accumulation and numerical instability could be concerns. We implemented several

popular non-regularized and regularized IRAs (OS-SART, PCG, FISTA, with q-GGMRF

and TV penalties) on both CPU and GPU platforms. We also report results of a GPU non-

branchless DD implementation and a GPU double-precision branchless DD implementation

as higher-accuracy references. Finally, we propose and evaluate a “Z-line” based branchless

DD backprojection to reduce the memory access times and provide better performance in

certain cases.

During the peer-review process of this paper, we noticed independent conference

publications on GPU implementations of branchless DD. Schlifske and Medeiros [12]

reported a GPU implementation of branchless DD algorithm similar to [11]., Degirmenci,

Politte, et al. [13] also used a GPU branchless DD for CT reconstruction. While the

emergence of these recent publications shows increasing recognition of the merits of the

branchless DD on GPU platforms, these studies lacked a complete derivation of the

branchless algorithm in 3D and lacked details about how the algorithm can be mapped to

GPUs. Moreover, there has not been a systematical and rigorous analysis and quantification

of the precision loss in the GPU implementations. For example, these studies did not

quantify the difference between GPU and CPU implementations in either single modules in

iteratively reconstructed images. Schlifske and Medeiros [12] measured difference between

reconstructed images relative to a ground truth phantom image, but the results could be more

affected by factors such as lacking of convergence (only three iterations were used), choice

of regularization, and noise in the data, instead the precision of the P/BP themselves. They

also only used limited simulation data. In particular, Schlifske and Medeiros [12] attributed

the precision loss to the integration step of branchless DD, but did not discuss the precision

loss due to the texture mapping hardware, which we will discuss in more details in the

present paper.

The rest of the paper is organized as follows. In section II, we briefly review several P/BP

models and some GPU relevant CT image reconstruction works. In section III, the

conventional DD algorithm and the branchless DD algorithm are reviewed. The branchless

DD algorithm is extended to 3D, and its implementation on GPU is described. In section IV,

the proposed GPU branchless DD model is evaluated in both speed and accuracy. In section

V, some related issues are discussed and the conclusions are made.

Liu et al. Page 3

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

II. Related Works and Background

A. Different P/BP models

P/BP models are different in their trade-offs between the computational speed and modelling

accuracy. Ray-driven P/BP works by tracing rays through the image. The contribution from

a voxel to a ray can be calculated based on the intersection length [14]–[17], or be

interpolated based on the distance from the voxel to nearby rays [16], [18]. The ray-driven

models usually work well for forward projection. However, they tend to introduce Moiré

pattern artefacts in backprojection [8], [9]. Also, ray-driven backprojection algorithms are

not straightforward to parallelize. One technique to parallelize the ray-driven backprojection

is the boundary box technique [19], where the perspective projected voxel forms a convex

shadow on the detector. The backprojection value from one view is the sum of detector cells

inside the convex shadow respectively reweighted by intersection lengths between the voxel

and x-ray paths. This method requires the traversal of detector cells inside the shadow and it

is time consuming. Furthermore, the ray-driven methods also perform in a non-sequential

memory access pattern, and the out-of-order memory writing makes it difficult to be highly

parallelized directly.

Pixel-driven P/BP models, on the other hand, work well for backprojection but are less

effective for forward projection. Pixel-driven backprojection is suitable for hardware

implementation with specialized circuit [20] and is widely used for FBP algorithms when

the detector array is regular [14], [16], [21]. However, pixel-driven forward projection

introduces Moiré pattern artefacts [8], [9], [17]. They are also difficult to be parallelized

because they access memory in a non-sequential pattern. Although the Moiré pattern

artefacts in pixel-driven forward projection can be prevented with sophisticated weighting

schemes [22], the increased computational complexity makes it seldom applied. It was also

proposed to store the projection weightings to reduce its computational complexity [23]–

[25]. However, it is impractical to be applied in CT imaging for its huge data size. For higher

computational efficiency, other pixel- and ray-driven P/BP models were also proposed by

simplifying the estimation of the weighting factors [21], [26], [27]. The high frequency

artefacts were also reduced by designing non-standard rectangular pixel shapes[16], [28]–

[30].

More accurate P/BP models have been proposed. For example, the area integral model

(AIM) [31] or volume integral model (VIM) calculate the projection weighting factor by

considering the intersection area or volume between the x-ray path and the pixel/voxel. The

Sutherland-Hodgman clipping algorithm is one common algorithm in computer graphics to

calculate the common intersection volume [32]. The clipped convex polyhedron will be

decomposed into a number of tetrahedrons to calculate the volume size [33]. Both the AIM

and VIM describe the intersection weighting factors in high accuracy and ensure matched

forward and back operations. However, the difficulty is their high computational complexity.

The AIM and VIM are difficult to be implemented and optimized for high computational

performance.

It is desirable to develop P/BP models with low computational complexity and high

accuracy. Two representative models are the distance driven (DD) model [8], [9] and

Liu et al. Page 4

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

separable footprint (SF) model [34]. Both DD and SF models accurately describe the

contribution of a voxel to a detector cell and provide matched forward and back operators.

Both DD and SF methods are separable, in the sense that they are both factorized into a

transaxial coefficient (in the xy plane) and a longitudinal coefficient (in the z direction). The

DD model replaces the ideal trapezoidal voxel footprint by the so-called overlap kernel in

both dimensions, ignoring the depth of the voxel. The SF model is essentially a variation on

the DD model where that approximation by the overlap kernel is only made in the z-

direction, while the xy-dimension still uses the exact trapezoidal voxel footprint, aiming at a

better tradeoff between accuracy and performance.

B. GPU Acceleration for CT reconstruction

The design of parallel algorithms depends on computing architectures. PC clusters [35] are

very expensive and take large space, while FPGAs are difficult to program or upgrade [36],

[37]. In contrast, the GPU is more flexible and receives more attention. It is initially

designed to accelerate the rendering of images and video streams outputting on a display

device. It features many computing cores and high bandwidth memory bus which are

suitable to execute highly data-parallel and arithmetic-intensive algorithms. At the very

beginning, the GPU application programming interfaces (APIs) (e.g. DirectX, OpenGL,

HLSL and CG API) are only intended for computer graphics applications. To implement

general purpose algorithms on GPU, programmers need to acquire the knowledge of

computer graphics and represent their algorithms in graphical operation semantics. More

recently, to reduce the coding difficulty, general APIs (i.e. Compute Unified Device

Architecture (CUDA) [38], Open Computing Language (OpenCL) [39]) were developed. As

a result, researchers and programmers only need to focus on the algorithm design instead of

considering how to map their algorithms to graphic operation semantics. In this paper, we

choose CUDA to implement the branchless DD P/BP model. The CUDA inherits C/C++ as

an extension and is rapidly exploited in several application fields including medical imaging

[40], [41].

The GPU based CT reconstruction was first proposed in [42] to accelerate a filtered

backprojection algorithm. High performance backprojection algorithms on GPU and other

devices have been explored [40], [43], [44]. Rohkol et al [45] developed a RabbitCT

platform providing a benchmark to evaluate the performance of GPU based analytical

reconstruction algorithms. Muller and his partners demonstrated an GPU-accelerated CT

reconstruction and achieved high speedups with respect to their CPU counterparts [46]–[48].

They accelerated the CT reconstruction on GPU by using the RGBA channels of 2D texture

operations [47] or with shading language for backprojection in FDK algorithms [48], [49].

They also investigated the efficiency of ordered subset reconstruction algorithm using

conjugate gradient method in GPU [50]. CUDA based GPU acceleration for CT

reconstruction was reported in [40]. The multiple GPUs acceleration in CUDA for IRAs

were reported in [51], where the tasks were simply divided into several sub-problems and

distributed to multiple GPUs. An abundant of research and literatures have been published

focusing on the GPU-acceleration of image reconstruction algorithms [36]–[41].

Liu et al. Page 5

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

III. Methods

A. Cone-beam CT Geometry

The cone-beam geometry with a circular or helical scanning trajectory is applied. In Fig. 1, a

right-hand Cartesian coordinate system with an arc-detector is assumed. The x-ray source

and the detector rotate simultaneously around the z-axis in a helical scanning mode. The

distance from the source to the rotation center z-axis is Dso. The x-ray source position p⃗s can

be calculated as sin

(1)

The rotation angle θ is defined counter-clockwise in the plane containing p⃗s and

perpendicularly to z-axis from the direction of a vector parallel to y-axis and h is the helical

pitch. When h = 0, it degrades to the well-known circular scanning trajectory. (β, t) denotes

the local coordinate on an arc-detector, where β is the in-plane fan angle and t is the local Z
coordinate (See Fig. 1). The coordinate of point p⃗1 on the detector can be calculated from:

(2)

where Dsd is the source to the detector distance. The x-ray path vector from p⃗s to p⃗1 can be

normalized as

(3)

where φ is the polar angle calculated from

(4)

Let the function f(x, y, z) be the linear attenuation coefficients to be reconstructed (image

volume). The line integral of the object is given by

Liu et al. Page 6

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(5)

where L(β, t, θ) represents the x-ray path determined by parameters β, t, and θ as well as

constants Dso and Dsd,

(6)

On one hand, given a rotation angle θ and a point (x, y, z) between the source and the

detector, its projection position p⃗1(β, t) on the detector can be calculated from

(7)

and

(8)

We assume that the sizes of the detector cells are the same with no gap. The fan angle of

each detector cell is Δβ and the height of the detector cell is Δt. Given the center index of the

detector(icβ, jct), the indices of the intersection point p⃗1(β, t) are

(9)

On the other hand, given the source position p⃗s, an x-ray path vector e⃗, and x coordinate xn

on this x-ray path, the corresponding y and z coordinates can be calculated from

(10)

Similarly, given the y coordinate yn on this x-ray path, x and z can be calculated from

Liu et al. Page 7

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(11)

With the center index of the object (icx, jcy, kcz) and the voxel size (Δx, Δy, Δz), the index of

the point (xm, yn, zl) in the image volume can be calculated by

(12)

B. Distance-Driven Model

In Fig. 2(a), the normalized 1D DD interpolation from bL to bH can be represented in an

integral form as

(13)

Under the specific case shown in Fig. 2(a), the integral form can be represented

arithmetically in [9]. For projection, the calculation of the overlapping between detector and

pixel boundaries defines the traversal range for DD interpolation which is conducted by the

if-else instructions. The calculation of fan-beam DD projection on one detector cell can be

divided into many 1D DD interpolation sub-problems. The projection is the accumulation of

the 1D DD interpolations from all rows of the image reweighted by the slope of the x-ray

path and the pixel size.

In 3D DD projection, the volumetric image is modeled as f(x, y, z). The source position is

p⃗s(xs, ys, zs). For any detector cell under a given projection angle, the middle points of the

left, right, top and bottom boundaries can be respectively calculated according to Eq. (2).

These four middle points are marked as p⃗L, p⃗R, p⃗U and p⃗D, respectively (see Fig. 2(b)).

Therefore, four directions from x-ray source to these four middle points can be calculated as

eL⃗, e⃗R, e⃗U, and e⃗D by Eq. (3). The volumetric image is viewed as a stack of slices along the

sagittal direction (x = xn, n ∈ Nn) or along the coronal direction (y = yn, n ∈ Ny). The slice

orientation is determined based on the current projection angle θ and is chosen such that the

slices are as close to perpendicular as possible to the x-ray path. If |xs| < |ys|, the volumetric

image will be viewed as a stack of slices along the y (coronal) direction; otherwise, the

volumetric image is viewed as a stack of slices along the x (sagittal) direction.

Liu et al. Page 8

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The contribution of one slice of the volumetric image to the detector cell is the integral of

f(x, y, z) reweighted by the intersection area in Fig. 2(b), which can be approximately

viewed as a rectangle determined by four intersections. Given the slice position y = yn, the

projection value is the integral of the volumetric image f(x, y, z), divided by the intersection

lengths and heights calculated from the intersection points of e⃗L = (eLx, eLy, eLz), e⃗R = (eRx,

eRy, eRz), e⃗U = (eUx, eUy, eUz), and e⃗D = (eDx, eDy, eDz) with current slice y = yn and

reweighted by the pixel size the current spatial slope of the x-ray path. We can calculate four

intersection positions

(14)

In Fig. 2(b), the intersection length in y = yn is

(15)

while the intersection height is

(16)

The 3D DD interpolation on one slice can be calculated by

(17)

Therefore, the 3D DD projection is

(18)

where fyn = f(x, yn, z), fxn = f(xn, y, z) and Δv = ΔxΔyΔz is the voxel volume. In the case |xs|

< |ys | of Eq. (18), in Eq. (15) and Eq. (16). The integral range in the

upper case of Eq. (18) is determined by Eq. (14). In case |xs| ≥ |ys | of Eq. (18), the

Liu et al. Page 9

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

calculations for integral ranges and intersection length and height are similar to Eq. (14) ~

Eq. (16) but exchanging means of symbols x and y.

The 2D integral is implemented by accumulating all related voxels inside the rectangle area.

When a curved detector is applied, the boundary positions of the detector cells are non-

uniform on the common plane. Therefore, it is inevitable to use the if-else instructions to

determine the traversal range for accumulating related voxels. Such branch behavior is

detrimental to computational efficiency on GPUs because of the divergence of parallel

execution paths. We implement the non-branchless DD projection in CUDA (referred as

GPU-BS).

C. Branchless DD Model

A branchless DD algorithm was previously proposed as a variant of implementation of the

DD model in which the inner loop is essentially branchless, making it highly parallelizable

[10]. In branchless DD, Eq. (13) is reformulated as the difference of two indefinite integrals

as

(19)

where

(20)

C is constant which has no effect on the final result but is proposed in [10] that the DC

component could be subtracted to reduce the dynamic range of F(t). Because f(x, y, z)

represents a spatially restricted volumetric image, it is integrable from minus infinity to

infinity. Therefore, the 2D integral part in Eq. (17) can be reformulated as

(21)

Let

(22)

Liu et al. Page 10

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The 2D integral can be written as

(23)

Similarly, we can define FXn(yL, YR, zD, zU) along sagittal direction. Therefore, the

branchless DD projection can be calculated by

(24)

3D Branchless DD can be implemented in three steps:

S.1. Integration—Two integral image sets were generated along sagittal and coronal

directions respectively as

(25)

Fig. 3(a) shows how the integral image is generated.

S.2. Interpolation—Given the source position p⃗s and the detector cell position (p⃗L, p⃗R, p⃗U

and p⃗D in Fig. 2(b)), the x-ray path cone can be determined. Then, the integral image set will

be selected. For each integral image in the set, a rectangle area can be determined by four

intersection points between the x-ray cone and the integral plane according to Eq. (10) and

Eq. (11) (see Fig. 2(b)). Therefore, four integral values at the rectangle corners marked with

golden dots in Fig. 2(b) can be calculated.

S.3. Differentiation—The 2D integral of each slice of the volumetric image can be

calculated by Eq. (23) (see Fig. 3(b) and (c)). This avoids to traversal all pixels inside this

rectangle as in Eq. (17). The projection is to accumulate all reweighted 2D integrals in the

selected integral image set as Eq. (24). The reweighting factors are the intersection area

(calculated by multiplying the intersection length lLn and intersection lHn) and the voxel

volume size Δv divided by the x-ray path slope.

D. CUDA implementation of Branchless DD Model

We implement the branchless DD projection in CUDA (referred as GPU-BL). In our parallel

implementation, one thread calculates one detector cell value in one angle. The calculation

Liu et al. Page 11

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of the integral image sets is accomplished in GPU. For each slice of the volumetric image

along sagittal/coronal direction, the pixels are accumulated along vertical direction and then

accumulated along horizontal direction in order (see Fig. 3(a)). Two integral image sets are

mapped to the texture object for high cache and hardware based interpolation mechanism. In

the interpolation step, we need to fetch texels on each slice of the integral image. Because

the image pixel indices for the intersections xL, xR, zD, zU are not always integers, the values

on F(x,z) or F(y,z) at the corner have to be estimated by interpolation. Since f(x,y,z) is

piecewise constant, each slice of the integral image set along horizontal or vertical directions

is piecewise linear. Therefore, the values on F(x,z) or F(y,z) can be evaluated by bilinear

interpolation which is achieved automatically by hardware based interpolation in texture

memory.

The 3D branchless DD backprojection is calculated in a similar way. In our implementation,

one thread calculates one voxel backprojection value. The calculation of the integral image

set is performed on every projection data as in Fig. 3(a) which is also performed in GPU.

The integral image set is then mapped to the texture object. For a given voxel, we select its

middle plane along sagittal or coronal direction for each projection view (Fig. 4(a)) to

compute backprojection. Four intersections on the detector are determined by connecting the

x-ray source with four middle points on the edges of the middle plane. A rectangle region

can be determined as in Fig. 4(b). The integral values at the corner of the rectangle area are

fetched and the 2D DD value is calculated by Eq. (23). The backprojection value is the

accumulation of all reweighted 2D DD values on every integral image of the projection data.

The proposed GPU-BL was also extended to multiple GPUs. Different GPUs were

configured in our workstation. With different number of cores and clock rates in these

GPUs, the tasks need to be unevenly distributed. To simplify the problem, we did not

consider the device memory capacity. The computational power of each GPU is estimated

by multiplying the number of CUDA cores and the core clocks. Then, the task scales are

tuned manually based on the NVIDIA Profiler software to balance the time consuming for

all GPUs for one specific P/BP configuration. Multiple GPUs P/BP is accomplished with

OpenMP+CUDA where OpenMP is used to distribute the tasks to GPUs.

E. Precision of hardware interpolation and calculation of integral images

To utilize Eq. (23) for branchless operation, the integral image sets are mapped to the texture

memory for hardware based interpolation. However, the texture memory does not represent

texel position in IEEE 754 standard but in a 9-bit fixed point value according to the NVIDIA

documentation [52]. One bit represents the sign. Although the inaccuracy of using fixed

point values to represent interpolation positions may not cause any visual difference in

computer graphics applications, the impact of the precision loss in general purpose

computing remains an open question. The calculation of the integral image involves

summing numbers with very large dynamic ranges and may result in precision loss if it is

performed with single-precision floating-point datatype. Although subtracting the DC

component can be applied to reduce dynamic range, it cannot completely solve the problem.

Both the hardware based texture interpolation and huge dynamic range will cause the

inaccuracy.

Liu et al. Page 12

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

F. Branchless DD based on double-precision software interpolation (GPU-DB)

To mitigate the potential precision loss due to GPU hardware fixed-point interpolation and

the calculation of the integral image, we also develop a branchless DD implementation

based on a software double-precision interpolation (referred as GPU-DB). After determining

the rectangle area as in Fig. 2(b), for every corner of the rectangle, the integral values of its

four nearest integer index neighbors are fetched and interpolated to calculate the value at

that corner as in Fig. 5.

Both the projection and volumetric images are stored in double-precision floating-point

datatype. However, the NVIDIA GPU does not support double-precision floating-point

texture. The double-precision floating-point number is casted as a structure composed with

two integral numbers and bound to the texture. In the kernel function, the structure

composed with two integrals can be casted and interpolated. This method can avoid the

inaccuracy caused by the hardware interpolation and integral image limitations. However,

because of 4 times texture fetching, slow software interpolation and inefficient GPU

computing in double-precision floating-point number, the proposed method is much slower

than the original branchless DD method. The speedup performance is only comparable with

multi-threads CPU implementation. The pseudocode for GPU-DB and GPU-BL projection

and backprojection are integrated together and provided as supplement in Alg. 1 and Alg. 2,

respectively.

G. Z-line Backprojection (GPU-BZ)

In our implementation, both the volume and the projection data are stored in an order of

priority on the Z-direction. For backprojection, a column of continuously stored voxels

shares the same middle plane. Every middle plane of the voxel indicates four texture

accesses. Adjacent voxels share edges resulting in redundant texture accesses as illustrated

in Fig. 6. For example, in the conventional branchless DD, to calculate the backprojection of

a column of three voxels, totally 12 texture accesses and 9 +/− operations are required as

(26)

where vj, vj+1 and vj+2 are three backprojeciton values of the adjacent voxels along Z-

direction from one view angle, and Fn means the integral image of the nth view of the

projection data. We can see that there are totally 4 redundant texture fetchings. In Z-line

backprojection, the calculation of Eq. (26) is decomposed into two steps. The first step is to

fetch the texels and calculate the differences along transverse plane

Liu et al. Page 13

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(27)

The second step is to calculate results by subtracting adjacent differences along Z-direction

(28)

Therefore, the total texture accesses is reduced to 8 times and the +/− operations are reduced

to 7 times. This implementation strategy in the backprojection is referred to as GPU-BZ.

We can see that the intermediate values wj have to be stored during the calculation. In our

implementation, wj is stored in shared memory. We calculate backprojection values of one

column voxels in one thread. Therefore, if the dimension of the image volume is Nz, it

requires Nz+1 space to store the intermediate values. If we assign M threads in one block,

there will be M · (Nz+1) shared memory allocated. Because the shared memory is very

limited, we cannot assign too many threads in one block. However, if M is not large enough,

the warp occupancy of the SM will be low. Therefore, we need to choose M carefully. On

the other hand, if the dimension of the image volume Nz is large, we cannot directly allocate

the shared memory as required but allocate M · NS shared memory, where NS is the size of

the shared memory allocated for one thread. The backprojection values of one column will

be calculated in ⌈(Nz+1)/NS⌉ groups sequentially.

Different from backprojection, the projection requires to allocate much more shared memory

to calculate the projections of one column detector cells. It is too difficult to limit the usage

of the shared memory while guarantee high warp occupancy in the SM simultaneously.

Therefore, we will not implement GPU-BZ for projection in this paper. The pseudocode of

GPU-BZ backprojection is provided as supplement Alg. 3.

IV. Results

A. Experimental Configuration

The GPUs used in our experiments were GM200 (NVIDIA GeForce Titan X), GK104s

(NVIDIA Tesla K10) and NVIDIA GeForce GTX 670. The GM200 contains 3072 cores

with a core clock of 1.0GHz and the device memory is 12GB with a 336.5 GB/sec

bandwidth. While for Tesla K10, two GK104 GPUs are configured. Each GK104 contains

1536 CUDA cores with a core clock 745MHz and the device memory is totally 8GB with a

320GB/sec bandwidth. For GTX 670, the GK104 GPU contains 1344 cores with a core

clock 915MHz and the device memory is 2GB with a 192GB/s bandwidth.

Liu et al. Page 14

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Two Intel Xeon CPUs are configured and each CPU contains 8 physical cores (16 logical

cores in hyper-threading) with a 3.1GHz core clock. The proposed methods are implemented

in GPU with CUDA 7.5 runtime API. The CPU reference DD is implemented in ANSI C

routine. POSIX threads are used to parallelize the CPU implementation. To evaluate the

speedup and accuracy performance, single module evaluations, numerical simulations and

image reconstructions from clinical applications are performed.

B. Forward and Back-projector as Single Modules

The speed of GPU-BL was compared with several DD implementations including single-

thread CPU DD (referred as CPU-1), 8-threads CPU DD (referred as CPU-8), 32-threads

CPU DD (referred as CPU-32), GPU-BS, GPU-DB, and GPU-BZ (only for backprojection).

The comparison was based on the GE CT750 HD scanner. The configuration of this

geometry is summarized as in Table I.

1) Speedup Ratios—The P/BP speedup ratios of different DD implementation are

summarized in Table II.

The speedups are calculated with respect to CPU-1. Both projection and backprojection

achieved about 8-fold accelerations in CPU-8 which agrees well with the number of threads

used. The hyper-threading technique of the Intel Xeon CPU provided slightly greater

acceleration than 8-fold because the number of physical cores was larger than the number of

threads. However, this improvement was only 5% to 15%. Therefore, 32-threads

implementation only achieved about 17-fold acceleration with 16 physical cores. The GPU-

BL projection achieved 137-fold acceleration, and the GPU-BL backprojection achieved

almost 188-fold accelerations. We can also observe that the GPU-BL forward projection was

slower than GPU-BL backprojection. This was because two integral image sets were

calculated before projection and only one integral image set was calculated before

backprojection. The computing costs of integral image sets for P/BP are the same in GPU-

BL, GPU-DB, and GPU-BZ. They are 1.1% (15.62ms) of the total projection time and 2.8%

(29.12ms) of the total backprojection time, respectively. The computing time for integral

image sets in forward projection only depends to the volumetric image size, and the

computing time for integral image sets in backprojection only depends on the projection

size.

The GPU-BS requires about double time of GPU-BL in projection while about triple time of

GPU-BL in backprojection. This is caused by the branches divergence and the nested dual

for-loops in the kernel function to traverse all voxels inside the rectangle area defined in Eq.

(17). In backprojection, both GPU-BL and GPU-BS requires loop to traversal all views.

However, GPU-BL calculates the integral values in the rectangle area with a complexity

0(1). The efficiency of if-else instructions in GPU dramatically depends on the GPU

architecture. With the same configuration, GPU-BS spent about 40 seconds and 45 seconds

for projection and backprojection respectively in Tesla K10 (Kepler architecture). However,

the time costs are much shorter in Titan X (Maxwell architecture) collected in Table II. This

is because Maxwell architecture outperforms Kepler architecture in branch divergence.

Liu et al. Page 15

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Maxwell architecture improved the control logic partitioning, workload balancing, and

instruction scheduling, etc.

The GPU-DB projection performed a little bit worse than CPU-32. As what we have

mentioned, the GPU-DB required 4 times more texture memory accesses compared to the

GPU-BL and the texel position calculation was achieved by software interpolation instead of

the hardware interpolation. Meanwhile, the gaming oriented GeForce Titan X is not

optimized for double-precision floating-point arithmetic. Meanwhile, the GPU-BZ did not

outperform GPU-BL for backprojection, either. A separate experiment will be performed to

further analyze this phenomenon in detail later.

We further analyzed the kernel functions of GPU-BL by the CUDA Visual Profiler version

7.5. With the CT geometry described in Table I, the projection kernel took 1.016 seconds

while the backprojection kernel took 0.807 second. The SMs in both projection and

backprojection are fully utilized. The performance of P/BP kernel was mainly limited by the

memory bandwidth. Except for the kernel functions in P/BP, generating integral image sets

also occupied a large portion of the computational time. In our implementation, the integral

images were first generated along the horizontal direction, and then along the vertical

direction slice by slice. It approximately occupied 0.13 seconds and 0.15 seconds for the

projection and backprojection, respectively. About 0.4 seconds was required for the P/BP to

transfer the data from/to the host memory. We listed the corresponding giga updates per

second (GUPS) that is independent of the problem size in the first order approximation. The

giga updates is the total number of ray or voxel updates divided by 10243. According to the

GUPS calculation formula in [53],

(29)

where the detector cell number is set to 512×512, the image size is set to 5123 and the

number of views is 360. In this configuration, the GUPS of several competitive methods are

listed in Table III. The GUPS results are consistent with the speedup performance in Table

II.

2) Speed with Respect to Number of Views—Fixing the image size and the detector

size, the speedup performances of GPU-BL was also evaluated by increasing the number of

views from 100 to 11,000. In our implementation, we did not use asynchronous technique to

hide the data transfer latency. The CPU-1 and CPU-8 were not tested here because of their

low speeds. The P/BP time and speedup ratios with respect to CPU-32 are shown in Fig. 7.

We can see the time for projection and backprojection almost linearly increased with respect

to the number of views. When the number of views was small, the speedup was low because

of the overhead for data transfer between CPU and GPU. When the number of views

increased, the relative overhead of data transfer became small compared to the computation

time on GPU, and the benefit of GPU acceleration dominates. The speedup factor was up to

10× for projection and 11× for backprojection. With more views, the speedup gradually

Liu et al. Page 16

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

increased and reached a constant. For GPU-BS, the speedup of P/BP almost keeps the same,

because its implementation is the parallelization of the CPU version. We can also see that

GPU-DB is much slower than other methods.

3) Speed with Respect to Image Size In-Plane—The speeds of different P/BP

implementations were evaluated with respect to different image sizes in-plane. With the

numbers of views and detector columns fixed, we increased the image size from 2562 to

14082 with a step size of 128 pixels along both X and Y directions. The CPU-32 was also

used as the reference to calculate the speedups. The P/BP time and speedups are shown in

Fig. 8. We can see that the computational time of CPU-32 in both projection and

backprojection increased approximately as a quadratic function which was consistent with

the computational scale. However, the computational time of projection with GPU-BL and

GPU-DB increased approximately linearly. In branchless DD projection, both the size and

the number of integral images increases linearly with in-plane image size, thus the

computational complexity of the integration step is quadratic with respect to the in-plane

image size. However, the complexity of both the interpolation and differentiation steps is

constant for each integral image slice and the computational time of these two steps scales

linearly with the number of image slices. Since the computational time of branchless DD

projection is dominated by the interpolation and differentiation steps, its overall complexity

is approximately linear with respect to in-plane image size within practical configurations.

For the above reasons, although the GPU-DB was slower compared to the CPU-32 when the

image volume was small, the computational complexity of GPU-DB was lower than

CPU-32. From the speedup charts, with the increase of image size, we can see that the

projection speedup of GPU-BL is greater for larger in-plane image sizes. When the number

of pixels in-plane is small, the speedup of GPU-BS is comparable to GPU-BL, but the

speedup of GPU-BL increases faster than GPU-BS. When the image size is up to 14082 in

plane, the speedup of GPU-BS almost approaches to its limit. However, we can also observe

that the computational time of backprojection with GPU-BL, GPU-BS and GPU-BZ

increased approximately quadratically. This is because one thread calculates the

backprojection value of one voxel in GPU-BL and GPU-BS or one column of voxels along

the Z direction in our GPU-BZ. When the projection data size is fixed and the image size

increases quadratically, the amount of computational load also increase quadratically. The

speedup of GPU-BS backprojection is slightly decreasing when the in-plane image size

increases.

4) Speed with Respect to Image and Detector along Z-direction—The speed of

different P/BP implementations were also evaluated with respect to image and detector sizes

along the Z-direction. The image and detector sizes in Z-direction were increased

simultaneously from 64 to 480 with a step size of 32. We also applied the CPU-32 as the

baseline to calculate the speedup ratio. As shown in Fig. 9, the computational time of

projection and backprojection both linearly increased with respect to the numbers of pixels

and detector cells along the Z-direction. This linear increase in computation time was

consistent with all DD implementations. The sizes of image and detector cell along Z-

direction did not affect the speedup ratio.

Liu et al. Page 17

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

From the previous experiments, one can see that the GPU-BL outperformed GPU-BZ. This

is due to severe data latency caused by too much shared memory allocation to store wj.

Inadequate threads for each block reduce the warp occupancy resulting in a large portion of

cores idle in the streaming multiprocessor (SM). In fact, it is very difficult to balance the SM

occupancy and data latency. We evaluated the speedup performances of backprojection with

GPU-BL and GPU-BZ by simultaneously increasing the number of pixels and the detector

cells along Z-direction. The time profiles are shown in Fig. 10. We can see that the GPU-BZ

outperforms GPU-BL when the number of slices and the detector cells along z direction is

not large. The time profile of GPU-BZ shows an obvious stair-liked increasing pattern and

the stair width is 16 slices. The stair jumps at integer multiples of 16. In our implementation,

we allocate Ns = 17 for every thread. Therefore, each time, the backprojection values of 16

voxels will be calculated. For every 16 slices, one more loop will be added in GPU-BZ to

perform Eq. (27) and Eq. (28) but calculate only one slice of the voxel. At this time, the

speedup will be worse than GPU-BL. If we allocate Ns = 32 + 1 for every thread to calculate

32 voxel values simultaneously, the number of thread of each block M has to be reduced to

avoid too much shared memory allocation. However, this will reduce the occupancy of the

SM. The time profile of GPU-BL also shows a stair-liked increasing pattern but this pattern

is not as obvious as in GPU-BZ. Its stair width is 32 slices. CUDA runs every 32 threads in

the SM. This is why the stair width of GPU-BL is 32. In every 32 threads, when more voxels

need to be backprojected, the number of memory writing will also linearly increase with

more texture memory fetching. Therefore, the time of GPU-BL profile increases linearly in

every 32 slices.

5) Accuracy as individual modules—As the aforementioned, the texture memory

represents the texels and their positions with 9-bits fixed floating point (eight bits for

fractional representation and one bit for sign). Therefore, the position distinction can be only

1/29–1 between two neighborhood texels. We evenly fetched 32,768 = 215 points between

two neighborhood texels with values zero and one by texture interpolation. The first 1024

values are depicted in Fig. 11 (b). The interpolated profile is not a straight line from zero to

one but a staircase (Fig. 11 (b)). The step width is 128 = 27 = 215–8 pixels which show that

the texel position distinction is determined by 8-bits fractional representation. The

differences between the exact linear interpolation results and the hardware based texture

interpolation are plotted in Fig. 11 (c), We can see that the difference is controlled in 1/29 ≈
0.2%.

Because GPU-BZ utilizes the shared memory to reduce the texture fetching times during the

calculation of GPU-BL, there are no differences in accuracy between GPU-BL and GPU-

BZ. Because GPU-BS is a simple parallelization of CPU implementation, the accuracy of

GPU-BS and CPU-32 are identical. Therefore, we evaluated the accuracies of the GPU-BL

and GPU-DB compared to CPU-32. In GE HD750 CT geometry, an all-one volumetric

image is projected. The results from 0 and 45 degrees are shown in Fig. 12. The differences

between CPU-32 and GPU-BL are hardly visible unless shown with a very narrow display

window. The differences can be further reduced with GPU-DB except at the edge. In this

test, the RMSE of GPU-BL projection is 2.77 × 10−2 and the RMSE of GPU-DB projection

is 3.50 × 10−4.

Liu et al. Page 18

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the same geometry, a projection with value 1.0 at view angle 0 was backprojected. The

contours from CPU-32, GPU-BL and GPU-DB were shown in Fig. 13 (a) (b) and (c),

respectively. From the center slice of the volumetric image, we can see that the contours of

GPU-BL are not as smooth as those in CPU-32 and GPU-DB. The contours of CPU-32 and

GPU-DB are visually identical. Fig. 13(d) shows the central slice of the volumetric image

backprojected from GPU-BL. In a greater display window, the results are smooth and they

are not as rough as the contours in Fig. 13 (b). The normalized differences between CPU-32

and GPU-BL are given in Fig. 13(e) in a narrow display window. We can observe some

regular patterns caused by the inaccuracy of hardware-based interpolation. For GPU-DB, the

differences in the same display window can be hardly observed (Fig. 13 (f)). Then, we

backprojected 984 views to the volumetric image. The same comparisons are collected in

Fig. 14. The roughness of the contours in GPU-BL is weaker. The normalized differences

are much weaker than in one view. We showed the normalized differences in a much

narrower display window in [−0.0002, 0.0002]. With GPU-DB, the ring disappears. In this

case, the RMSE of GPU-BL backprojection is 5.24 × 10−2 and the RMSE of GPU-DB

projection is 6.92 × 10−4.

To quantify the relative errors of the GPU-BL and demonstrate the merits of GPU-DB in

accuracy improvement, a 25 × 1 pixels bar (value = 1.0) on x-axis, whose central pixel index

is 12, was projected onto the detector in parallel geometry for several view angles. We set

the pixel size to 1.00mm. The detector size in channel direction is 1.41mm while the

detector cell size in bench moving direction is 0.71mm. When the projection view is 0, the

GPU-BL and CPU implementations are still the same. We plotted the projections of 30, 45,

and 179.5 degrees in Fig. 15. Because of the inaccurate expression of the value for fast

hardware-based interpolation in texture memory, the projection errors in GPU-BL can be

observed in a magnified display window. The relative error is smaller than 0.2% in Fig. 15

(a). Using the software based interpolation, the spur liked error can significantly suppressed.

Therefore, the GPU-DB is useful for applications that require high accuracy.

6) Multi-GPUs Branchless DD—The performance of multi-GPUs-BL is summarized in

Table IV. We show the total times, kernel times, and computing times for integral image sets.

The Multiple GPUs computation cannot provide much higher speedups compared to single

GPU when the number of views was small. The GPUs with weaker computational power

had lower bandwidth which made the data transfer more time consuming. Furthermore, the

calculation of integral images also occupied appreciable computational cost. Although more

GPUs were employed, the total cost to compute the integral images did not decrease. When

the number of views was large, the P/BP time was reduced significantly.

C. Iterative Reconstruction

1) Simulation data—Noiseless numerical simulations were conducted to investigate the

performance of GPU-BL for IRAs. In our numerical simulations, a monochromatic x-ray

cone-beam CT with equal-angular detector was assumed. A modified Shepp-Logan phantom

and a FORBILD head phantom were employed, and the image sizes are 512×512×64. The

full scan projection datasets were evenly acquired with 2200 views on a circular scanning

trajectory. A ray-tracing model was applied to simulate the projection in size 3552×256.

Liu et al. Page 19

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Then for each view, every 4×4 neighboring detector cells were averaged to form the 888×64

projection. The linear attenuation coefficients of the two phantoms were reconstructed by an

OS-SART algorithm with the proposed GPU-BL projector. The final results were compared

with the ground truth and CPU-32 based OS-SART results. The number of ordered subsets

was 10. The maximum iteration number was 40.

The reconstructed modified Shepp-Logan from CPU-32 and GPU-BL are shown in Fig.

16(a) and (b), respectively. The difference between CPU-32 and GPU-BL, and between

CPU-32 and the ground truth are shown in Fig. 16(c) and (d), respectively, in a much

narrower display window, and the representative profiles along horizontal and vertical

directions of the center transverse plane are shown in (e) and (f). We can see that the

reconstruction errors are greater at the top and bottom slices. This is because the top and

bottom slices cannot be completely irradiated in circular cone-beam geometry. From (e) and

(f), we can see that the profiles match the ground truth very well except some Gibbs artifact

at the edges of the object, usually seen in numerical simulations with piece-wise constant

objects.

The reconstructed FORBILD head images in transverse, sagittal and coronal planes are

shown in Fig. 17(b) and (c) in a display window[1.0, 1.2]. The corresponding reconstruction

errors in a narrower window are shown in (e) and (f). As indicated by the arrows in (b) and

(c), the reconstruction errors can be observed in sagittal and coronal planes from both GPU-

BL and CPU-32. As aforementioned, the mismatch between GPU-BL and CPU-32 is about

0.2% (see Fig. 17(d)). The computation time per iteration of FORBILD head phantom

reconstruction are summarized in Table V. We can see that the acceleration rate of GPU-BL

is significant. Although GPU-BS is also faster than CPU-32, the computing times for P/BP

are 2 to 3 times longer than those of GPU-BL. The kernel times of GPU-BS are closer to the

total time than GPU-BL because there are no integration steps in GPU-BS.

2) Real Phantom Reconstruction—We also acquired real phantom data from a GE

Discovery CT750 HD system (GE Healthcare, Waukesha, WI) with 888 detector channels

and 984 views per rotation. We scanned an oval-shaped phantom with a quality-assurance

insert and two Teflon rods on both sides. The data were acquired with a 32-row helical scan

with a pitch of 31/32 at 120 kVp, 835 mA, and 1 second rotation. Images were reconstructed

on a grid of 512×512×64 with a field-of-view of 50 cm, an in-plane pixel size of 0.98 mm,

and a slice thickness of 0.625 mm. All reconstructions used q-GGMRF regularization [54]

and weighted-least-squares data-fit term. All reconstructions were based on 100 iterations of

a preconditioned conjugate gradient algorithm initialized with standard FBP images [55].

The reconstruction is presented in Fig. 18. The differences between Fig. 18(a) and (b) are

hardly noticeable unless displayed within a much narrower window in Fig. 18(c). The

RMSE of GPU-BL with respect to CPU-32 was 0.57 HU. The differences between Fig.

18(a) and (b) are almost imperceptible, although there is very small difference inside the red

rectangle under very careful comparison.

3) Clinical Application—Finally, with the approval of Wake Forest University School of

Medicine, a clinical patient dataset was used to evaluate the GPU-BL. The dataset was

acquired for cardiac imaging of coronary artery in high-resolution model with focal spot

Liu et al. Page 20

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

deflection, with 2,200 views, 120kVp, and 300mA. The volumetric image was reconstructed

by the SART algorithm in the same geometry as in Table. 1. Because the dose is relatively

high, we did not employ any regularization term, and FDK was implemented as a reference.

A 512×512×64 volumetric image was reconstructed. We used the Titan X to perform our

experiments. 300 SART iterations were run and the FISTA technique [56] was also applied

for acceleration. The FDK reconstruction was also provided as a reference in Fig. 19(a).

After 300 iterations, the reconstruction results from GPU-BL and CPU-32 are shown in Fig.

19(b) and (c), respectively. The differences between GPU-BL and CPU-32 are shown in Fig.

19(d) in a narrow display window [−0.5, 0.5] HU. The differences relative to the FDK

reconstruction are displayed in Fig. 19(e) and (f) in a window of [−20, 20] HU. One can also

see the greater difference at the top and bottom slices of the reconstructed volumetric image.

The SSIM [57] of the central slice of GPU-BL result relative to the FDK reconstruction is

0.9905.

V. Discussions and Conclusions

In this paper, we implemented a branchless DD P/BP algorithm for 3D cone beam CT. The

developed algorithm eliminated the irregular branch behavior of the original DD algorithm

and made the DD operation highly amenable to massive vectorization of GPUs. For a GE

Discovery CT750 HD system, the proposed method achieved 137-fold speedup for

projection and 188-fold speedup for backprojection compared to a single thread CPU

implementation. Compared to a state-of-the-art 32-thread CPU implementation, the

proposed branchless DD P/BP achieved 8-fold acceleration for forward projection and 10-

fold acceleration for backprojection. Different branchless DD implementations (GPU-BL,

GPU-BS, GPU-DB and GPU-BZ) compromise between the speedup performance and

accuracy. Our implementation of branchless DD also fully leveraged the cache mechanism

and the hardware interpolation supported by the texture memory in GPUs.

For the multi-GPU implementation, we showed the speedup with different types of GPUs.

The tasks were distributed according to the computational power of different GPUs.

Manually tuning is required to achieve best balance and utilization for each GPU. It is still

an open problem on how to automatically distribute the tasks to heterogeneous GPUs to

achieve best performance.

We evaluated our branchless DD methods with extensive numerical simulation, physical

simulation and real clinical dataset. Some loss of precision of the branchless algorithm can

be caused by the integration and interpolation steps when implemented with single-precision

data type and hardware based interpolation. The errors are approximately controlled in 0.2%

which is about 1/29. Because NVIDIA texture memory applied 9 bits to represent one

floating number address. However, our reconstruction results from simulation and real data

showed that the precision loss was small and the GPU-based branchless algorithm obtained

visually identical images as the CPU reference algorithm.

This study focused on algorithm development and the GPU implementation was not fully

optimized. In particular, the integration step of branchless DD occupied a considerable

portion of the computational time. However, highly optimized GPU algorithms [58] exist for

Liu et al. Page 21

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computing the integral of 2D images and can be readily incorporated for further

acceleration. Although our implementation has not been fully optimized, its speedup

performance is better than [12] for backprojection. Our implementation of iterative

reconstruction involved repeated data transfer between GPU device memory and CPU host

memory. Some standard GPU programming techniques can be used in the future to reduce

or hide this data transfer latency. The overhead of data transfer could also be eliminated by

implementing the entire iterative reconstruction in GPUs.

Acknowledgments

The work was initally an internship project at the Image Reconstruction Lab at GE Global Research. This work was
partially supported by the NSF CAREER Award 1540898 and NIH/NIBIB grant EB017140. The authors would like
to thank Evgeny Drapkin, Ryan Thome, and Debashish Pal at GE Healthcare for helpful discussion, and Masako
Yamada and Kang Zhang in the Advanced Computing Lab at GE Global Research for providing computing
resources and helpful discussion.

References

1. Chen B, Ning R. Cone-beam volume CT breast imaging: Feasibility study. Medical physics. 2002;
29(5):755–770. [PubMed: 12033572]

2. Popovtzer R, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano
letters. 2008; 8(12):4593–4596. [PubMed: 19367807]

3. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R. An X-ray computed tomography
imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature materials. 2006;
5(2):118–122. [PubMed: 16444262]

4. Hanke R, Fuchs T, Uhlmann N. X-ray based methods for non-destructive testing and material
characterization. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment. 2008; 591(1):14–18.

5. Man BD, Nuyts J, Dupont P, Marchal G, Suetens P. Metal streak artifacts in X-ray computed
tomography: a simulation study. IEEE Transactions on Nuclear Science. Jun; 1999 46(3):691–696.

6. De Man, B. Iterative reconstruction for reduction of metal artifacts in computed tomography.
University of Leuven; 2001.

7. Liu, R., Yu, H. CUDA based Spectral CT simulation. presented at the 2015 BMES Annual Meeting;
2015.

8. De Man, B., Basu, S. Distance-driven projection and backprojection. 2002 IEEE Nuclear Science
Symposium Conference Record; 2002. p. 1477-1480.

9. Man BD, Basu S. Distance-driven projection and backprojection in three dimensions. Physics in
Medicine and Biology. Jun; 2004 49(11):2463–2475. [PubMed: 15248590]

10. Basu, S., De Man, B. Branchless distance driven projection and backprojection. presented at the
SPIE; 2006. p. 60650Y–60650Y-8.

11. Liu, R., Fu, L., De Man, B., Yu, H. GPU Acceleration of Branchless Distance Driven Projection
and Backprojection. presented at the 4th International Conference on Image Formation in X-Ray
Computed Tomography; Bamberg, Germany. 2016.

12. Schlifske D, Medeiros H. A fast GPU-based approach to branchless distance-driven projection and
back-projection in cone beam CT. 2016; 9783:97832W-97832W–8.

13. Mitra, A., Degirmenci, S., Politte, DG., O’Sullivan, JA. Fast Parallel GPU Implementation for
Clinical Helical CT using Branchless DD. presented at the GPU Technology Conference; 2016. p.
6234

14. Herman, GT. Fundamentals of Computerized Tomography. London: Springer London; 2009.

15. Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array.
Medical Physics. Mar; 1985 12(2):252–255. [PubMed: 4000088]

16. Zhuang W, Gopal SS, Hebert TJ. Numerical evaluation of methods for computing tomographic
projections. IEEE Transactions on Nuclear Science. Aug; 1994 41(4):1660–1665.

Liu et al. Page 22

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

17. Zeng, GL., Gullberg, GT. A Ray-driven Backprojector For Backprojection Filtering And Filtered
Backprojection Algorithms. Nuclear Science Symposium and Medical Imaging Conference, 1993.,
1993 IEEE Conference Record; 1993. p. 1199-1201.

18. Joseph PM. An Improved Algorithm for Reprojecting Rays through Pixel Images. IEEE Trans Med
Imaging. 1982; 1(3):192–196. [PubMed: 18238275]

19. Liu R, Luo Y, Yu H. GPU-Based Acceleration for Interior Tomography. IEEE Access. 2014;
2:757–770.

20. EPMC. [Accessed: 20-Apr-2016] Backprojection for x-ray CT system - Patent - Europe PMC.
[Online]. Available: http://europepmc.org/patents/PAT/US5473654

21. Peters TM. Algorithms for Fast Back- and Re-Projection in Computed Tomography. IEEE
Transactions on Nuclear Science. Aug; 1981 28(4):3641–3647.

22. Zwicker M, Pfister H, van Baar J, Gross M. EWA Splatting. IEEE Transactions on Visualization
and Computer Graphics. Jul; 2002 8(3):223–238.

23. Fessler JA. Penalized weighted least-squares image reconstruction for positron emission
tomography. IEEE Trans Med Imaging. 1994; 13(2):290–300. [PubMed: 18218505]

24. Liu, R., He, L., Luo, Y., Yu, H. 2D Singular Value Decomposition based Interior Tomography.
presented at the The 13th International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine; Newport, Rhode Island, USA. 2015.

25. Liu R, He L, Luo Y, Yu H. Singular value decomposition-based 2D image reconstruction for
computed tomography. Journal of X-ray Science and Technology.

26. Cho ZH, Chen CM, Lee S. Incremental algorithm-a new fast backprojection scheme for parallel
beam geometries. IEEE Trans Med Imaging. 1990; 9(2):207–217. [PubMed: 18222766]

27. Yu, DC., Huang, SC. Study of reprojection methods in terms of their resolution loss and sampling
errors. Conference Record of the 1992 IEEE Nuclear Science Symposium and Medical Imaging
Conference; 1992; 1992. p. 1160-1162.

28. Lewitt RM. Alternatives to voxels for image representation in iterative reconstruction algorithms.
Phys Med Biol. Mar; 1992 37(3):705–716. [PubMed: 1565698]

29. Byonocore MH, Brody WR, Macovski A. A Natural Pixel Decomposition for Two-Dimensional
Image Reconstruction. IEEE Transactions on Biomedical Engineering. Feb; 1981 BME-28(2):69–
78.

30. Hsieh J, Molthen RC, Dawson CA, Johnson RH. An iterative approach to the beam hardening
correction in cone beam CT. Medical Physics. Jan; 2000 27(1):23–29. [PubMed: 10659734]

31. Yu H, Wang G. Finite detector based projection model for high spatial resolution. J Xray Sci
Technol. 2012; 20(2):229–238. [PubMed: 22635177]

32. Sutherland IE, Hodgman GW. Reentrant polygon clipping. Communications of the ACM. Jan;
1974 17(1):32–42.

33. Triangulation D, Lee DT, Schachter BJ. Two Algorithms for Constructing a Delaunay
Triangulation. 1978

34. Long Y, Fessler J, Balter JM, et al. 3D forward and back-projection for X-ray CT using separable
footprints. Medical Imaging, IEEE Transactions on. 2010; 29(11):1839–1850.

35. Li X, Ni J, Wang G. Parallel iterative cone beam CT image reconstruction on a PC cluster. Journal
of X-Ray Science and Technology. 2005; 13(2):63–72.

36. Li J, Papachristou C, Shekhar R. An FPGA-based computing platform for real-time 3D medical
imaging and its application to cone-beam CT reconstruction. Journal of Imaging Science and
Technology. 2005; 49(3):237–245.

37. Xue X, Cheryauka A, Tubbs D. Acceleration of fluoro-CT reconstruction for a mobile C-arm on
GPU and FPGA hardware: a simulation study. Proc SPIE. 2006; 6142:1494–501.

38. Professional CUDA C Programming. 1. Indianapolis, IN: Wrox; 2014.

39. Gaster, B., Howes, L., Kaeli, DR., Mistry, P., Schaa, D. Heterogeneous Computing with OpenCL,
Second Edition: Revised OpenCL 1.2 Edition. 2. Waltham, MA: Morgan Kaufmann; 2012.

40. Scherl, H., Keck, B., Kowarschik, M., Hornegger, J. Fast GPU-Based CT Reconstruction using the
Common Unified Device Architecture (CUDA). IEEE Nuclear Science Symposium Conference
Record, 2007. NSS ’07; 2007. p. 4464-4466.

Liu et al. Page 23

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://europepmc.org/patents/PAT/US5473654

41. Mueller K, Yagel R, Wheller JJ. A Fast and Accurate Projection Algorithm for 3D Cone-Beam
Reconstruction with the Algebraic Reconstruction Technique (ART).

42. Cabral, B., Cam, N., Foran, J. Accelerated Volume Rendering and Tomographic Reconstruction
Using Texture Mapping Hardware. Proceedings of the 1994 Symposium on Volume Visualization;
New York, NY, USA. 1994. p. 91-98.

43. Okitsu Y, Ino F, Hagihara K. High-performance cone beam reconstruction using CUDA compatible
GPUs. Parallel Computing. Feb; 2010 36(2–3):129–141.

44. Kachelriess M, Knaup M, Bockenbach O. Hyperfast parallel-beam and cone-beam backprojection
using the cell general purpose hardware. Med Phys. Apr; 2007 34(4):1474–1486. [PubMed:
17500478]

45. Rohkohl C, Keck B, Hofmann HG, Hornegger J. Technical Note: RabbitCT—an open platform for
benchmarking 3D cone-beam reconstruction algorithms. Medical Physics. 2009; 36(9):3940.
[PubMed: 19810466]

46. Mueller K, Yagel R. Rapid 3-D cone-beam reconstruction with the simultaneous algebraic
reconstruction technique (SART) using 2-D texture mapping hardware. IEEE Trans Med Imaging.
Dec; 2000 19(12):1227–1237. [PubMed: 11212371]

47. Xu F, Mueller K. Accelerating popular tomographic reconstruction algorithms on commodity PC
graphics hardware. IEEE Transactions on Nuclear Science. Jun; 2005 52(3):654–663.

48. Xu F, Mueller K. Real-time 3D computed tomographic reconstruction using commodity graphics
hardware. Physics in Medicine and Biology. 2007; 52(12):3405. [PubMed: 17664551]

49. Mueller K, Xu F, Neophytou N. Why do commodity graphics hardware boards (GPUs) work so
well for acceleration of computed tomography? SPIE Electronic Imaging. 2007; 6498:64980N.

50. Xu F, et al. On the efficiency of iterative ordered subset reconstruction algorithms for acceleration
on GPUs. Computer methods and programs in biomedicine. 2010; 98(3):261. [PubMed:
19850372]

51. Jang, B., Kaeli, D., Do, S., Pien, H. Multi GPU implementation of iterative tomographic
reconstruction algorithms. IEEE International Symposium on Biomedical Imaging: From Nano to
Macro, 2009. ISBI ’09; 2009. p. 185-188.

52. [Accessed: 04-May-2016] CUDA Toolkit Documentation. [Online]. Available: http://
docs.nvidia.com/cuda/#axzz47h6lb3uY

53. Chou CY, Chuo YY, Hung Y, Wang W. A fast forward projection using multithreads for multirays
on GPUs in medical image reconstruction. Med Phys. Jul; 2011 38(7):4052–4065. [PubMed:
21859004]

54. Thibault JB, Sauer KD, Bouman CA, Hsieh J. A three-dimensional statistical approach to
improved image quality for multislice helical CT. Med Phys. Nov; 2007 34(11):4526–4544.
[PubMed: 18072519]

55. Fu L, et al. A preliminary investigation of 3D preconditioned conjugate gradient reconstruction for
cone-beam CT. 2012; 8313:83133O-83133O–9.

56. Beck A, Teboulle M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems. SIAM J Imaging Sci. Jan; 2009 2(1):183–202.

57. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing. Apr; 2004 13(4):600–612. [PubMed:
15376593]

58. Hensley J, Scheuermann T, Coombe G, Singh M, Lastra A. Fast Summed-Area Table Generation
and its Applications. Computer Graphics Forum. 2005; 24(3):547–555.

Liu et al. Page 24

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://docs.nvidia.com/cuda/#axzz47h6lb3uY
http://docs.nvidia.com/cuda/#axzz47h6lb3uY

Fig. 1.
Circular cone-beam geometry with a curve-detector.

Liu et al. Page 25

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Illustration of DD models. (a) 1D DD interpolation model; (b) 2D DD integral to calculate

the projection of one slice of the volumetric image.

Liu et al. Page 26

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Computing the integral over a rectangle region using the integral image. (a) how integral

image is generated where x1, x2, x3 and z1, z2, z3 are coordinates of the image pixels.

Calculating the integral over the rectangle region in (b) is the same as fetching four integral

values at four corners in (c) by applying Eq. (23).

Liu et al. Page 27

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Branchless DD backprojection of one voxel. (a) the selections of different center planes is

determined by current projection view angle, (b) the corresponding projection plane 1 and

plane 2 with respect to different center planes. The texels are fetched at the black dots on the

integral images.

Liu et al. Page 28

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Software interpolation based branchless DD. (a) directly fetch the integral value at (xR, zD).

(b) fetch the integral values at the positions calculate from integer indices around (xR, zD)

and the integral value is calculated by bilinear interpolation.

Liu et al. Page 29

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Illustration of Z-line based branchless DD backprojection.

Liu et al. Page 30

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Speedup performance with respect to view number. (a) and (b) are the projection and

backprojection computational costs with respect to different view numbers. (c) and (d) are

the corresponding speedups compared to CPU-32.

Liu et al. Page 31

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Speedup performance with respect to image size along transverse plane. (a) and (b) are the

projection and backprojection computational costs with respect to different image size along

in-plane direction. (c) and (d) are the corresponding speedups compared to CPU-32.

Liu et al. Page 32

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Speedup performance with respect to image and detector sizes along Z-direction. (a) and (b)

are the projection and backprojection computational costs with respect to image/detector

size along the cross-plane direction. (c) and (d) are the corresponding speedups compared to

CPU-32.

Liu et al. Page 33

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Backprojection time performances of GPU-BL and GPU-BZ for different number of slices

and detector cells along z direction.

Liu et al. Page 34

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
Illustration of interpolation errors. (a) The real linear interpolation. (b) The texture fetching

based hardware interpolation. (c) The interpolation error between (a) and (b).

Liu et al. Page 35

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
Projection accuracy comparison. The left profiles are the center detector row at 0 degree and

45 for CPU-32, GPU-BL and GPU-DB projections on the right in a display window [0,

250]. The normalized differences between GPU-BL/GPU-DB and CPU-32 are shown below

their projections in a display window [−0.002, 0.002].

Liu et al. Page 36

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 13.
Backprojection accuracy comparison for one view. (a), (b) and (c) are contours of the center

slice of the volumetric image backprojected from one view with value 1.0 by CPU-32, GPU-

BL, and GPU-DB, respectively. (d) is the central slice of the volumetric image

backprojected from GPU-BL. (e) is the normalized difference between CPU-32 and GPU-

BL, and (f) is the normalized difference between CPU-32 and GPU-DB.

Liu et al. Page 37

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 14.
Backprojection accuracy comparison for 984 views. (a), (b) and (c) are contours of the

center slice of the image volume backprojected from 984 views with value one by CPU-32,

GPU-BL, and GPU-DB respectively. (d) is the center slice of the image volume

backprojection result from GPU-BL. (e) is the normalized difference between CPU-32 and

GPU-BL, and (f) is the normalized difference between CPU-32 and GPU-DB.

Liu et al. Page 38

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 15.
Projection accuracy comparison between GPU-BL and GPU-DB at different view angles for

a uniform bar. The red dash lines in (a), (c), and (e) are the projection profiles for GPU-BL,

and the red dash line in (b), (d), and (f) are the projection profiles for GPU-DB.

Liu et al. Page 39

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 16.
Numerical simulation results of the modified Shepp-Logan phantom. (a) are the transverse,

sagittal and coronal planes reconstructed by the CPU-32 in a display window [0, 1]. (b) are

the counterpart of (a) reconstructed by the GPU-BL. (c) is the error between CPU-32 and

GPU-BL in display window [−0.001, 0.001]. (d) is the corresponding error of ground truth

and GPU-BL in display window [−0.02 0.02]. (e) and (f) are the horizontal and vertical

profiles of the center slice of the images.

Liu et al. Page 40

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 17.
Numerical simulation results of the FORBID head phantom. (a) is the ground truth. (b) and

(c) are the reconstruction results from GPU-BL and CPU-32, respectively. The display

window for on the first row images is [1.0,1.2]. (d) is the differences between (b) and (c) in a

display window [−0.005,0.005]. (e) and (f) are the reconstruction errors of (b) and (c) with

respect to (a) in a display window [−0.02,0.02].

Liu et al. Page 41

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 18.
Real phantom reconstruction results. (a) and (b) are reconstructed by the CPU-32 and GPU-

BL from high dose (835mAs) projections in a display window [800 1200]HU. (c) is the

difference image between CPU-32 and GPU-BL for low dose case in a display window [−3,

5]HU.

Liu et al. Page 42

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 19.
Reconstructed results from a clinical data set. (a) is reconstructed by the FDK algorithm as a

reference. (b) and (c) are reconstructed by the GPU-BL CPU-32, respectively. (d) is the

differences between GPU-BL and CPU-32 in a display widow [−0.5, 0.5] HU. (e) and (f) are

the differences between the FDK reference and GPU-BL and CPU-32 in display window

[−20, 20] HU, respectively.

Liu et al. Page 43

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 44

TABLE I

The Configuration of GE CT750 HD Geometry

Parameters Value

Source-to-iso-center distance 541mm

Source-to-detector distance 949mm

In-plane detector cell size 1.0239mm

Cross-plane detector cell size 1.0963mm

Number of detector columns 888

Number of detector rows 64

Reconstruction FOV 500 × 500mm2

Detector offset (−1.28,0)mm

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 45

TABLE II

Running time of projection and backprojection (unit: s) in GE CT750 HD geometry.

Projection(s) Backprojection (s)

CPU-1 195.59(1.00x) 195.44(1.00x)

CPU-8 24.10(8.12x) 24.89(7.85x)

CPU-32 11.48(17.04x) 11.48(17.02x)

GPU-BL 1.42(137.74x) 1.04(187.92x)

GPU-BS 2.77(57.61x) 3.02(64.72x)

GPU-DB 13.46(14.53x) 17.68(11.05x)

GPU-BZ N/A 1.21(161.52x)

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 46

TA
B

L
E

 II
I

G
U

PS
 o

f
Pr

oj
ec

tio
n

an
d

B
ac

kp
ro

je
ct

io
n.

C
P

U
-3

2
G

P
U

-B
L

G
P

U
-B

S
G

P
U

-D
B

G
P

U
-B

Z

P
ro

je
ct

io
n

1.
57

17
.6

5
5.

25
1.

34
N

/A

B
ac

kp
ro

je
ct

io
n

1.
49

17
.9

3
6.

05
0.

86
16

.5
8

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 47

TABLE IV

Computational costs (in seconds) of various components on multiple GPUs. The image volume is 512 × 512 ×

64 with (a) 984, (b) 1968 and (c) 3936 views of size 888 × 64 in HD geometry.

(A) 984 Views

Number of GPUs 1 2 3 4

Projection 1.478 1.107 1.102 1.101

Projection Kernel 1.009 0.703 0.579 0.457

Integral image set (P) 0.016 0.012 0.010 0.010

Backprojection 1.041 0.953 0.944 0.886

Backprojection Kernel 0.618 0.454 0.346 0.272

Integral image set (BP) 0.029 0.026 0.026 0.024

(B) 1968 Views

Number of GPUs 1 2 3 4

Projection 2.550 2.045 1.762 1.581

Projection Kernel 2.012 1.411 1.184 0.897

Integral image set (P) 0.033 0.028 0.025 0.021

Backprojection 1.933 1.504 1.351 1.261

Backprojection Kernel 1.260 0.832 0.703 0.552

Integral image set (BP) 0.059 0.054 0.053 0.048

(C) 3936 Views

Number of GPUs 1 2 3 4

Projection 4.685 3.513 2.841 2.542

Projection Kernel 4.029 2.853 2.305 1.791

Integral image set (P) 0.069 0.058 0.055 0.052

Backprojection 3.579 2.754 2.253 1.842

Backprojection Kernel 2.693 1.746 1.461 1.174

Integral image set (BP) 0.125 0.120 0.117 0.113

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 48

TABLE V

Speedup performance of the FORBILD head phantom reconstruction in one iteration.

Unit: second Projection Backprojection

CPU-32 24.13 26.63

GPU-BL
TOTAL KERNEL TOTAL KERNEL

2.75 2.25 2.78 1.92

GPU-BS 5.89 5.65 8.07 7.82

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

	Abstract
	I. Introduction
	II. Related Works and Background
	A. Different P/BP models
	B. GPU Acceleration for CT reconstruction

	III. Methods
	A. Cone-beam CT Geometry
	B. Distance-Driven Model
	C. Branchless DD Model
	S.1. Integration
	S.2. Interpolation
	S.3. Differentiation

	D. CUDA implementation of Branchless DD Model
	E. Precision of hardware interpolation and calculation of integral images
	F. Branchless DD based on double-precision software interpolation (GPU-DB)
	G. Z-line Backprojection (GPU-BZ)

	IV. Results
	A. Experimental Configuration
	B. Forward and Back-projector as Single Modules
	1) Speedup Ratios
	2) Speed with Respect to Number of Views
	3) Speed with Respect to Image Size In-Plane
	4) Speed with Respect to Image and Detector along Z-direction
	5) Accuracy as individual modules
	6) Multi-GPUs Branchless DD

	C. Iterative Reconstruction
	1) Simulation data
	2) Real Phantom Reconstruction
	3) Clinical Application

	V. Discussions and Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Fig. 13
	Fig. 14
	Fig. 15
	Fig. 16
	Fig. 17
	Fig. 18
	Fig. 19
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE V

