
GPU-based Branchless Distance-Driven Projection and 
Backprojection

Rui Liu [Student Member, IEEE],
Wake Forest University Health Sciences, Winston-Salem, NC 27103 USA

Lin Fu,
General Electric Global Research, 1 Research Cycle, Niskayuna, NY 12309 USA

Bruno De Man, and
General Electric Global Research, 1 Research Cycle, Niskayuna, NY 12309 USA

Hengyong Yu [Senior Member, IEEE]
Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, 
MA 01854 USA

Abstract

Projection and backprojection operations are essential in a variety of image reconstruction and 

physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are 

widely used for their highly sequential memory access pattern and low arithmetic cost. However, a 

typical DD implementation has an inner loop that adjusts the calculation depending on the relative 

position between voxel and detector cell boundaries. The irregularity of the branch behavior makes 

it inefficient to be implemented on massively parallel computing devices such as graphics 

processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD 

operation as three branchless steps: integration, linear interpolation, and differentiation, all of 

which are highly amenable to massive vectorization. In this paper, we implement and evaluate a 

highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture 

memory and hardware interpolation on GPUs to achieve fast computational speed. The developed 

branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup 

for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-

art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for 

forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method 

was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It 

obtained visually identical images as the CPU reference algorithm.

Index Terms

branchless distance-driven; projection; backprojection; computed tomography; reconstruction; 
GPU

I. Introduction

X-RAY computed tomography (CT) is one of the main modern imaging modalities widely 

applied in clinical diagnosis [1], pharmaceutical industries [2], [3] and other non-destructive 
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evaluations [4]. The importance of x-ray CT has never been underestimated for its high 

spatial resolution, high temporal resolution, and fast scanning speed. However, modern CT 

systems require a variety of modeling, correction, and image reconstruction algorithms to 

generate high quality images.

Projection and backprojection (P/BP) operations are the key components of many CT 

algorithms. The projection operation is widely applied in the simulation of CT imaging 

systems or acquisition processes [5]–[7]. Another important application of P/BP is in 

iterative reconstruction algorithms (IRAs), where P/BP are performed alternatively to find an 

optimum solution that fits the measurements and prior knowledge according to an objective 

function. IRAs are becoming more popular because they can improve image quality when 

the projection data are truncated or very noisy. It is possible to integrate IRAs with physical 

models, statistical models, detector response model, and prior knowledge. Despite the 

various advantages of IRAs, they usually demand high computational cost dominated by the 

P/BP operations.

To improve the computational efficiency, the distancedriven (DD) model [8], [9] is widely 

applied in P/BP for its highly sequential memory access pattern and low arithmetic cost on 

CPU platforms. Its overlapping kernel avoids high-frequency artifacts and ensures that the 

P/BP operators are matched. The DD model is based on the overlap length of voxel and 

detector cell footprints when mapped to a common axis. A typical DD implementation has 

an inner loop that adjusts the calculation with an if-else branch depending on the relative 

positions between voxel and detector cell boundaries. For fan-beam and cone-beam 

tomography, the patterns of voxel and detector cell boundaries are generally non-uniform 

when they are mapped to the common axis, resulting in irregularity and poor predictability 

of the branch behavior and making it difficult to effectively implement on multiple-core 

vector computing devices such as GPUs.

To overcome the irregular branch behavior of the original DD algorithm, Basu and De Man 

proposed a branchless DD algorithm [10] by factorizing the DD operation as three 

branchless steps: integration, linear interpolation, and differentiation. All three steps are 

highly parallelizable and very suitable for vectorized implementation. However, the 

branchless DD algorithm in [10] was only shown as a one-dimensional conceptual example. 

It has yet been clear how to translate the branchless concept to more realistic 2D and 3D CT 

geometry. In terms of the number of arithmetic operations, the branchless implementation 

actually requires more operations compared to the non-branchless implementation with if-

else statements. On CPU platforms, it is generally believed the overhead of the branchless 

DD would outweigh its potential benefits in parallelism.

In the past decade, massively parallel GPU devices have become a commodity for general-

purpose computing. With more of its on-chip estates allocated for computing cores but 

thread divergence being detrimental, GPUs seem to be a suitable platform to realize the full 

potential of the branchless DD. In an earlier conference publication [11], we reported a 3D 

implementation of branchless DD on GPU and applied it IRAs from simulation and real CT 

data. The algorithm utilized the texture memory and hardware interpolation on GPUs to 

achieved ultra-fast computational speed.
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This paper extends the work in [11] by providing details of the derivation of branchless DD 

in 3D, and explaining how GPU threads were allocated for both forward and backprojection, 

and the steps undertaken by each thread to compute DD values. Pseudocode of our 

implementation is provided in supplementary martial. Moreover, due to the limited precision 

of the texture mapping hardware utilized in the branchless operation to achieve the ultra-fast 

speed, a substantial effort in the present study focuses on the analysis and quantification of 

the precision loss relative to CPU reference code. We report the measured precision loss in 

both the P/BP operations as single modules and in iteratively reconstructed images where 

error accumulation and numerical instability could be concerns. We implemented several 

popular non-regularized and regularized IRAs (OS-SART, PCG, FISTA, with q-GGMRF 

and TV penalties) on both CPU and GPU platforms. We also report results of a GPU non-

branchless DD implementation and a GPU double-precision branchless DD implementation 

as higher-accuracy references. Finally, we propose and evaluate a “Z-line” based branchless 

DD backprojection to reduce the memory access times and provide better performance in 

certain cases.

During the peer-review process of this paper, we noticed independent conference 

publications on GPU implementations of branchless DD. Schlifske and Medeiros [12] 

reported a GPU implementation of branchless DD algorithm similar to [11]., Degirmenci, 

Politte, et al. [13] also used a GPU branchless DD for CT reconstruction. While the 

emergence of these recent publications shows increasing recognition of the merits of the 

branchless DD on GPU platforms, these studies lacked a complete derivation of the 

branchless algorithm in 3D and lacked details about how the algorithm can be mapped to 

GPUs. Moreover, there has not been a systematical and rigorous analysis and quantification 

of the precision loss in the GPU implementations. For example, these studies did not 

quantify the difference between GPU and CPU implementations in either single modules in 

iteratively reconstructed images. Schlifske and Medeiros [12] measured difference between 

reconstructed images relative to a ground truth phantom image, but the results could be more 

affected by factors such as lacking of convergence (only three iterations were used), choice 

of regularization, and noise in the data, instead the precision of the P/BP themselves. They 

also only used limited simulation data. In particular, Schlifske and Medeiros [12] attributed 

the precision loss to the integration step of branchless DD, but did not discuss the precision 

loss due to the texture mapping hardware, which we will discuss in more details in the 

present paper.

The rest of the paper is organized as follows. In section II, we briefly review several P/BP 

models and some GPU relevant CT image reconstruction works. In section III, the 

conventional DD algorithm and the branchless DD algorithm are reviewed. The branchless 

DD algorithm is extended to 3D, and its implementation on GPU is described. In section IV, 

the proposed GPU branchless DD model is evaluated in both speed and accuracy. In section 

V, some related issues are discussed and the conclusions are made.

Liu et al. Page 3

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. Related Works and Background

A. Different P/BP models

P/BP models are different in their trade-offs between the computational speed and modelling 

accuracy. Ray-driven P/BP works by tracing rays through the image. The contribution from 

a voxel to a ray can be calculated based on the intersection length [14]–[17], or be 

interpolated based on the distance from the voxel to nearby rays [16], [18]. The ray-driven 

models usually work well for forward projection. However, they tend to introduce Moiré 

pattern artefacts in backprojection [8], [9]. Also, ray-driven backprojection algorithms are 

not straightforward to parallelize. One technique to parallelize the ray-driven backprojection 

is the boundary box technique [19], where the perspective projected voxel forms a convex 

shadow on the detector. The backprojection value from one view is the sum of detector cells 

inside the convex shadow respectively reweighted by intersection lengths between the voxel 

and x-ray paths. This method requires the traversal of detector cells inside the shadow and it 

is time consuming. Furthermore, the ray-driven methods also perform in a non-sequential 

memory access pattern, and the out-of-order memory writing makes it difficult to be highly 

parallelized directly.

Pixel-driven P/BP models, on the other hand, work well for backprojection but are less 

effective for forward projection. Pixel-driven backprojection is suitable for hardware 

implementation with specialized circuit [20] and is widely used for FBP algorithms when 

the detector array is regular [14], [16], [21]. However, pixel-driven forward projection 

introduces Moiré pattern artefacts [8], [9], [17]. They are also difficult to be parallelized 

because they access memory in a non-sequential pattern. Although the Moiré pattern 

artefacts in pixel-driven forward projection can be prevented with sophisticated weighting 

schemes [22], the increased computational complexity makes it seldom applied. It was also 

proposed to store the projection weightings to reduce its computational complexity [23]–

[25]. However, it is impractical to be applied in CT imaging for its huge data size. For higher 

computational efficiency, other pixel- and ray-driven P/BP models were also proposed by 

simplifying the estimation of the weighting factors [21], [26], [27]. The high frequency 

artefacts were also reduced by designing non-standard rectangular pixel shapes[16], [28]–

[30].

More accurate P/BP models have been proposed. For example, the area integral model 

(AIM) [31] or volume integral model (VIM) calculate the projection weighting factor by 

considering the intersection area or volume between the x-ray path and the pixel/voxel. The 

Sutherland-Hodgman clipping algorithm is one common algorithm in computer graphics to 

calculate the common intersection volume [32]. The clipped convex polyhedron will be 

decomposed into a number of tetrahedrons to calculate the volume size [33]. Both the AIM 

and VIM describe the intersection weighting factors in high accuracy and ensure matched 

forward and back operations. However, the difficulty is their high computational complexity. 

The AIM and VIM are difficult to be implemented and optimized for high computational 

performance.

It is desirable to develop P/BP models with low computational complexity and high 

accuracy. Two representative models are the distance driven (DD) model [8], [9] and 
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separable footprint (SF) model [34]. Both DD and SF models accurately describe the 

contribution of a voxel to a detector cell and provide matched forward and back operators. 

Both DD and SF methods are separable, in the sense that they are both factorized into a 

transaxial coefficient (in the xy plane) and a longitudinal coefficient (in the z direction). The 

DD model replaces the ideal trapezoidal voxel footprint by the so-called overlap kernel in 

both dimensions, ignoring the depth of the voxel. The SF model is essentially a variation on 

the DD model where that approximation by the overlap kernel is only made in the z-

direction, while the xy-dimension still uses the exact trapezoidal voxel footprint, aiming at a 

better tradeoff between accuracy and performance.

B. GPU Acceleration for CT reconstruction

The design of parallel algorithms depends on computing architectures. PC clusters [35] are 

very expensive and take large space, while FPGAs are difficult to program or upgrade [36], 

[37]. In contrast, the GPU is more flexible and receives more attention. It is initially 

designed to accelerate the rendering of images and video streams outputting on a display 

device. It features many computing cores and high bandwidth memory bus which are 

suitable to execute highly data-parallel and arithmetic-intensive algorithms. At the very 

beginning, the GPU application programming interfaces (APIs) (e.g. DirectX, OpenGL, 

HLSL and CG API) are only intended for computer graphics applications. To implement 

general purpose algorithms on GPU, programmers need to acquire the knowledge of 

computer graphics and represent their algorithms in graphical operation semantics. More 

recently, to reduce the coding difficulty, general APIs (i.e. Compute Unified Device 

Architecture (CUDA) [38], Open Computing Language (OpenCL) [39]) were developed. As 

a result, researchers and programmers only need to focus on the algorithm design instead of 

considering how to map their algorithms to graphic operation semantics. In this paper, we 

choose CUDA to implement the branchless DD P/BP model. The CUDA inherits C/C++ as 

an extension and is rapidly exploited in several application fields including medical imaging 

[40], [41].

The GPU based CT reconstruction was first proposed in [42] to accelerate a filtered 

backprojection algorithm. High performance backprojection algorithms on GPU and other 

devices have been explored [40], [43], [44]. Rohkol et al [45] developed a RabbitCT 

platform providing a benchmark to evaluate the performance of GPU based analytical 

reconstruction algorithms. Muller and his partners demonstrated an GPU-accelerated CT 

reconstruction and achieved high speedups with respect to their CPU counterparts [46]–[48]. 

They accelerated the CT reconstruction on GPU by using the RGBA channels of 2D texture 

operations [47] or with shading language for backprojection in FDK algorithms [48], [49]. 

They also investigated the efficiency of ordered subset reconstruction algorithm using 

conjugate gradient method in GPU [50]. CUDA based GPU acceleration for CT 

reconstruction was reported in [40]. The multiple GPUs acceleration in CUDA for IRAs 

were reported in [51], where the tasks were simply divided into several sub-problems and 

distributed to multiple GPUs. An abundant of research and literatures have been published 

focusing on the GPU-acceleration of image reconstruction algorithms [36]–[41].
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III. Methods

A. Cone-beam CT Geometry

The cone-beam geometry with a circular or helical scanning trajectory is applied. In Fig. 1, a 

right-hand Cartesian coordinate system with an arc-detector is assumed. The x-ray source 

and the detector rotate simultaneously around the z-axis in a helical scanning mode. The 

distance from the source to the rotation center z-axis is Dso. The x-ray source position p⃗s can 

be calculated as sin

(1)

The rotation angle θ is defined counter-clockwise in the plane containing p⃗s and 

perpendicularly to z-axis from the direction of a vector parallel to y-axis and h is the helical 

pitch. When h = 0, it degrades to the well-known circular scanning trajectory. (β, t) denotes 

the local coordinate on an arc-detector, where β is the in-plane fan angle and t is the local Z 
coordinate (See Fig. 1). The coordinate of point p⃗1 on the detector can be calculated from:

(2)

where Dsd is the source to the detector distance. The x-ray path vector from p⃗s to p⃗1 can be 

normalized as

(3)

where φ is the polar angle calculated from

(4)

Let the function f(x, y, z) be the linear attenuation coefficients to be reconstructed (image 

volume). The line integral of the object is given by
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(5)

where L(β, t, θ) represents the x-ray path determined by parameters β, t, and θ as well as 

constants Dso and Dsd,

(6)

On one hand, given a rotation angle θ and a point (x, y, z) between the source and the 

detector, its projection position p⃗1(β, t) on the detector can be calculated from

(7)

and

(8)

We assume that the sizes of the detector cells are the same with no gap. The fan angle of 

each detector cell is Δβ and the height of the detector cell is Δt. Given the center index of the 

detector(icβ, jct), the indices of the intersection point p⃗1(β, t) are

(9)

On the other hand, given the source position p⃗s, an x-ray path vector e⃗, and x coordinate xn 

on this x-ray path, the corresponding y and z coordinates can be calculated from

(10)

Similarly, given the y coordinate yn on this x-ray path, x and z can be calculated from
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(11)

With the center index of the object (icx, jcy, kcz) and the voxel size (Δx, Δy, Δz), the index of 

the point (xm, yn, zl) in the image volume can be calculated by

(12)

B. Distance-Driven Model

In Fig. 2(a), the normalized 1D DD interpolation from bL to bH can be represented in an 

integral form as

(13)

Under the specific case shown in Fig. 2(a), the integral form can be represented 

arithmetically in [9]. For projection, the calculation of the overlapping between detector and 

pixel boundaries defines the traversal range for DD interpolation which is conducted by the 

if-else instructions. The calculation of fan-beam DD projection on one detector cell can be 

divided into many 1D DD interpolation sub-problems. The projection is the accumulation of 

the 1D DD interpolations from all rows of the image reweighted by the slope of the x-ray 

path and the pixel size.

In 3D DD projection, the volumetric image is modeled as f(x, y, z). The source position is 

p⃗s(xs, ys, zs). For any detector cell under a given projection angle, the middle points of the 

left, right, top and bottom boundaries can be respectively calculated according to Eq. (2). 

These four middle points are marked as p⃗L, p⃗R, p⃗U and p⃗D, respectively (see Fig. 2(b)). 

Therefore, four directions from x-ray source to these four middle points can be calculated as 

eL⃗, e⃗R, e⃗U, and e⃗D by Eq. (3). The volumetric image is viewed as a stack of slices along the 

sagittal direction (x = xn, n ∈ Nn) or along the coronal direction (y = yn, n ∈ Ny ). The slice 

orientation is determined based on the current projection angle θ and is chosen such that the 

slices are as close to perpendicular as possible to the x-ray path. If |xs| < |ys|, the volumetric 

image will be viewed as a stack of slices along the y (coronal) direction; otherwise, the 

volumetric image is viewed as a stack of slices along the x (sagittal) direction.
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The contribution of one slice of the volumetric image to the detector cell is the integral of 

f(x, y, z) reweighted by the intersection area in Fig. 2(b), which can be approximately 

viewed as a rectangle determined by four intersections. Given the slice position y = yn, the 

projection value is the integral of the volumetric image f(x, y, z), divided by the intersection 

lengths and heights calculated from the intersection points of e⃗L = (eLx, eLy, eLz), e⃗R = (eRx, 

eRy, eRz), e⃗U = (eUx, eUy, eUz), and e⃗D = (eDx, eDy, eDz) with current slice y = yn and 

reweighted by the pixel size the current spatial slope of the x-ray path. We can calculate four 

intersection positions

(14)

In Fig. 2(b), the intersection length in y = yn is

(15)

while the intersection height is

(16)

The 3D DD interpolation on one slice can be calculated by

(17)

Therefore, the 3D DD projection is

(18)

where fyn = f(x, yn, z), fxn = f(xn, y, z) and Δv = ΔxΔyΔz is the voxel volume. In the case |xs| 

< |ys | of Eq. (18),  in Eq. (15) and Eq. (16). The integral range in the 

upper case of Eq. (18) is determined by Eq. (14). In case |xs| ≥ |ys | of Eq. (18), the 

Liu et al. Page 9

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculations for integral ranges and intersection length and height are similar to Eq. (14) ~ 

Eq. (16) but exchanging means of symbols x and y.

The 2D integral is implemented by accumulating all related voxels inside the rectangle area. 

When a curved detector is applied, the boundary positions of the detector cells are non-

uniform on the common plane. Therefore, it is inevitable to use the if-else instructions to 

determine the traversal range for accumulating related voxels. Such branch behavior is 

detrimental to computational efficiency on GPUs because of the divergence of parallel 

execution paths. We implement the non-branchless DD projection in CUDA (referred as 

GPU-BS).

C. Branchless DD Model

A branchless DD algorithm was previously proposed as a variant of implementation of the 

DD model in which the inner loop is essentially branchless, making it highly parallelizable 

[10]. In branchless DD, Eq. (13) is reformulated as the difference of two indefinite integrals 

as

(19)

where

(20)

C is constant which has no effect on the final result but is proposed in [10] that the DC 

component could be subtracted to reduce the dynamic range of F(t). Because f(x, y, z) 

represents a spatially restricted volumetric image, it is integrable from minus infinity to 

infinity. Therefore, the 2D integral part in Eq. (17) can be reformulated as

(21)

Let

(22)

Liu et al. Page 10

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The 2D integral can be written as

(23)

Similarly, we can define FXn(yL, YR, zD, zU) along sagittal direction. Therefore, the 

branchless DD projection can be calculated by

(24)

3D Branchless DD can be implemented in three steps:

S.1. Integration—Two integral image sets were generated along sagittal and coronal 

directions respectively as

(25)

Fig. 3(a) shows how the integral image is generated.

S.2. Interpolation—Given the source position p⃗s and the detector cell position (p⃗L, p⃗R, p⃗U 

and p⃗D in Fig. 2(b)), the x-ray path cone can be determined. Then, the integral image set will 

be selected. For each integral image in the set, a rectangle area can be determined by four 

intersection points between the x-ray cone and the integral plane according to Eq. (10) and 

Eq. (11) (see Fig. 2(b)). Therefore, four integral values at the rectangle corners marked with 

golden dots in Fig. 2(b) can be calculated.

S.3. Differentiation—The 2D integral of each slice of the volumetric image can be 

calculated by Eq. (23) (see Fig. 3(b) and (c)). This avoids to traversal all pixels inside this 

rectangle as in Eq. (17). The projection is to accumulate all reweighted 2D integrals in the 

selected integral image set as Eq. (24). The reweighting factors are the intersection area 

(calculated by multiplying the intersection length lLn and intersection lHn) and the voxel 

volume size Δv divided by the x-ray path slope.

D. CUDA implementation of Branchless DD Model

We implement the branchless DD projection in CUDA (referred as GPU-BL). In our parallel 

implementation, one thread calculates one detector cell value in one angle. The calculation 
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of the integral image sets is accomplished in GPU. For each slice of the volumetric image 

along sagittal/coronal direction, the pixels are accumulated along vertical direction and then 

accumulated along horizontal direction in order (see Fig. 3(a)). Two integral image sets are 

mapped to the texture object for high cache and hardware based interpolation mechanism. In 

the interpolation step, we need to fetch texels on each slice of the integral image. Because 

the image pixel indices for the intersections xL, xR, zD, zU are not always integers, the values 

on F(x,z) or F(y,z) at the corner have to be estimated by interpolation. Since f(x,y,z) is 

piecewise constant, each slice of the integral image set along horizontal or vertical directions 

is piecewise linear. Therefore, the values on F(x,z) or F(y,z) can be evaluated by bilinear 

interpolation which is achieved automatically by hardware based interpolation in texture 

memory.

The 3D branchless DD backprojection is calculated in a similar way. In our implementation, 

one thread calculates one voxel backprojection value. The calculation of the integral image 

set is performed on every projection data as in Fig. 3(a) which is also performed in GPU. 

The integral image set is then mapped to the texture object. For a given voxel, we select its 

middle plane along sagittal or coronal direction for each projection view (Fig. 4(a)) to 

compute backprojection. Four intersections on the detector are determined by connecting the 

x-ray source with four middle points on the edges of the middle plane. A rectangle region 

can be determined as in Fig. 4(b). The integral values at the corner of the rectangle area are 

fetched and the 2D DD value is calculated by Eq. (23). The backprojection value is the 

accumulation of all reweighted 2D DD values on every integral image of the projection data.

The proposed GPU-BL was also extended to multiple GPUs. Different GPUs were 

configured in our workstation. With different number of cores and clock rates in these 

GPUs, the tasks need to be unevenly distributed. To simplify the problem, we did not 

consider the device memory capacity. The computational power of each GPU is estimated 

by multiplying the number of CUDA cores and the core clocks. Then, the task scales are 

tuned manually based on the NVIDIA Profiler software to balance the time consuming for 

all GPUs for one specific P/BP configuration. Multiple GPUs P/BP is accomplished with 

OpenMP+CUDA where OpenMP is used to distribute the tasks to GPUs.

E. Precision of hardware interpolation and calculation of integral images

To utilize Eq. (23) for branchless operation, the integral image sets are mapped to the texture 

memory for hardware based interpolation. However, the texture memory does not represent 

texel position in IEEE 754 standard but in a 9-bit fixed point value according to the NVIDIA 

documentation [52]. One bit represents the sign. Although the inaccuracy of using fixed 

point values to represent interpolation positions may not cause any visual difference in 

computer graphics applications, the impact of the precision loss in general purpose 

computing remains an open question. The calculation of the integral image involves 

summing numbers with very large dynamic ranges and may result in precision loss if it is 

performed with single-precision floating-point datatype. Although subtracting the DC 

component can be applied to reduce dynamic range, it cannot completely solve the problem. 

Both the hardware based texture interpolation and huge dynamic range will cause the 

inaccuracy.
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F. Branchless DD based on double-precision software interpolation (GPU-DB)

To mitigate the potential precision loss due to GPU hardware fixed-point interpolation and 

the calculation of the integral image, we also develop a branchless DD implementation 

based on a software double-precision interpolation (referred as GPU-DB). After determining 

the rectangle area as in Fig. 2(b), for every corner of the rectangle, the integral values of its 

four nearest integer index neighbors are fetched and interpolated to calculate the value at 

that corner as in Fig. 5.

Both the projection and volumetric images are stored in double-precision floating-point 

datatype. However, the NVIDIA GPU does not support double-precision floating-point 

texture. The double-precision floating-point number is casted as a structure composed with 

two integral numbers and bound to the texture. In the kernel function, the structure 

composed with two integrals can be casted and interpolated. This method can avoid the 

inaccuracy caused by the hardware interpolation and integral image limitations. However, 

because of 4 times texture fetching, slow software interpolation and inefficient GPU 

computing in double-precision floating-point number, the proposed method is much slower 

than the original branchless DD method. The speedup performance is only comparable with 

multi-threads CPU implementation. The pseudocode for GPU-DB and GPU-BL projection 

and backprojection are integrated together and provided as supplement in Alg. 1 and Alg. 2, 

respectively.

G. Z-line Backprojection (GPU-BZ)

In our implementation, both the volume and the projection data are stored in an order of 

priority on the Z-direction. For backprojection, a column of continuously stored voxels 

shares the same middle plane. Every middle plane of the voxel indicates four texture 

accesses. Adjacent voxels share edges resulting in redundant texture accesses as illustrated 

in Fig. 6. For example, in the conventional branchless DD, to calculate the backprojection of 

a column of three voxels, totally 12 texture accesses and 9 +/− operations are required as

(26)

where vj, vj+1 and vj+2 are three backprojeciton values of the adjacent voxels along Z-

direction from one view angle, and Fn means the integral image of the nth view of the 

projection data. We can see that there are totally 4 redundant texture fetchings. In Z-line 

backprojection, the calculation of Eq. (26) is decomposed into two steps. The first step is to 

fetch the texels and calculate the differences along transverse plane
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(27)

The second step is to calculate results by subtracting adjacent differences along Z-direction

(28)

Therefore, the total texture accesses is reduced to 8 times and the +/− operations are reduced 

to 7 times. This implementation strategy in the backprojection is referred to as GPU-BZ.

We can see that the intermediate values wj have to be stored during the calculation. In our 

implementation, wj is stored in shared memory. We calculate backprojection values of one 

column voxels in one thread. Therefore, if the dimension of the image volume is Nz, it 

requires Nz+1 space to store the intermediate values. If we assign M threads in one block, 

there will be M · (Nz+1) shared memory allocated. Because the shared memory is very 

limited, we cannot assign too many threads in one block. However, if M is not large enough, 

the warp occupancy of the SM will be low. Therefore, we need to choose M carefully. On 

the other hand, if the dimension of the image volume Nz is large, we cannot directly allocate 

the shared memory as required but allocate M · NS shared memory, where NS is the size of 

the shared memory allocated for one thread. The backprojection values of one column will 

be calculated in ⌈(Nz+1)/NS⌉ groups sequentially.

Different from backprojection, the projection requires to allocate much more shared memory 

to calculate the projections of one column detector cells. It is too difficult to limit the usage 

of the shared memory while guarantee high warp occupancy in the SM simultaneously. 

Therefore, we will not implement GPU-BZ for projection in this paper. The pseudocode of 

GPU-BZ backprojection is provided as supplement Alg. 3.

IV. Results

A. Experimental Configuration

The GPUs used in our experiments were GM200 (NVIDIA GeForce Titan X), GK104s 

(NVIDIA Tesla K10) and NVIDIA GeForce GTX 670. The GM200 contains 3072 cores 

with a core clock of 1.0GHz and the device memory is 12GB with a 336.5 GB/sec 

bandwidth. While for Tesla K10, two GK104 GPUs are configured. Each GK104 contains 

1536 CUDA cores with a core clock 745MHz and the device memory is totally 8GB with a 

320GB/sec bandwidth. For GTX 670, the GK104 GPU contains 1344 cores with a core 

clock 915MHz and the device memory is 2GB with a 192GB/s bandwidth.
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Two Intel Xeon CPUs are configured and each CPU contains 8 physical cores (16 logical 

cores in hyper-threading) with a 3.1GHz core clock. The proposed methods are implemented 

in GPU with CUDA 7.5 runtime API. The CPU reference DD is implemented in ANSI C 

routine. POSIX threads are used to parallelize the CPU implementation. To evaluate the 

speedup and accuracy performance, single module evaluations, numerical simulations and 

image reconstructions from clinical applications are performed.

B. Forward and Back-projector as Single Modules

The speed of GPU-BL was compared with several DD implementations including single-

thread CPU DD (referred as CPU-1), 8-threads CPU DD (referred as CPU-8), 32-threads 

CPU DD (referred as CPU-32), GPU-BS, GPU-DB, and GPU-BZ (only for backprojection). 

The comparison was based on the GE CT750 HD scanner. The configuration of this 

geometry is summarized as in Table I.

1) Speedup Ratios—The P/BP speedup ratios of different DD implementation are 

summarized in Table II.

The speedups are calculated with respect to CPU-1. Both projection and backprojection 

achieved about 8-fold accelerations in CPU-8 which agrees well with the number of threads 

used. The hyper-threading technique of the Intel Xeon CPU provided slightly greater 

acceleration than 8-fold because the number of physical cores was larger than the number of 

threads. However, this improvement was only 5% to 15%. Therefore, 32-threads 

implementation only achieved about 17-fold acceleration with 16 physical cores. The GPU-

BL projection achieved 137-fold acceleration, and the GPU-BL backprojection achieved 

almost 188-fold accelerations. We can also observe that the GPU-BL forward projection was 

slower than GPU-BL backprojection. This was because two integral image sets were 

calculated before projection and only one integral image set was calculated before 

backprojection. The computing costs of integral image sets for P/BP are the same in GPU-

BL, GPU-DB, and GPU-BZ. They are 1.1% (15.62ms) of the total projection time and 2.8% 

(29.12ms) of the total backprojection time, respectively. The computing time for integral 

image sets in forward projection only depends to the volumetric image size, and the 

computing time for integral image sets in backprojection only depends on the projection 

size.

The GPU-BS requires about double time of GPU-BL in projection while about triple time of 

GPU-BL in backprojection. This is caused by the branches divergence and the nested dual 

for-loops in the kernel function to traverse all voxels inside the rectangle area defined in Eq. 

(17). In backprojection, both GPU-BL and GPU-BS requires loop to traversal all views. 

However, GPU-BL calculates the integral values in the rectangle area with a complexity 

0(1). The efficiency of if-else instructions in GPU dramatically depends on the GPU 

architecture. With the same configuration, GPU-BS spent about 40 seconds and 45 seconds 

for projection and backprojection respectively in Tesla K10 (Kepler architecture). However, 

the time costs are much shorter in Titan X (Maxwell architecture) collected in Table II. This 

is because Maxwell architecture outperforms Kepler architecture in branch divergence. 
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Maxwell architecture improved the control logic partitioning, workload balancing, and 

instruction scheduling, etc.

The GPU-DB projection performed a little bit worse than CPU-32. As what we have 

mentioned, the GPU-DB required 4 times more texture memory accesses compared to the 

GPU-BL and the texel position calculation was achieved by software interpolation instead of 

the hardware interpolation. Meanwhile, the gaming oriented GeForce Titan X is not 

optimized for double-precision floating-point arithmetic. Meanwhile, the GPU-BZ did not 

outperform GPU-BL for backprojection, either. A separate experiment will be performed to 

further analyze this phenomenon in detail later.

We further analyzed the kernel functions of GPU-BL by the CUDA Visual Profiler version 

7.5. With the CT geometry described in Table I, the projection kernel took 1.016 seconds 

while the backprojection kernel took 0.807 second. The SMs in both projection and 

backprojection are fully utilized. The performance of P/BP kernel was mainly limited by the 

memory bandwidth. Except for the kernel functions in P/BP, generating integral image sets 

also occupied a large portion of the computational time. In our implementation, the integral 

images were first generated along the horizontal direction, and then along the vertical 

direction slice by slice. It approximately occupied 0.13 seconds and 0.15 seconds for the 

projection and backprojection, respectively. About 0.4 seconds was required for the P/BP to 

transfer the data from/to the host memory. We listed the corresponding giga updates per 

second (GUPS) that is independent of the problem size in the first order approximation. The 

giga updates is the total number of ray or voxel updates divided by 10243. According to the 

GUPS calculation formula in [53],

(29)

where the detector cell number is set to 512×512, the image size is set to 5123 and the 

number of views is 360. In this configuration, the GUPS of several competitive methods are 

listed in Table III. The GUPS results are consistent with the speedup performance in Table 

II.

2) Speed with Respect to Number of Views—Fixing the image size and the detector 

size, the speedup performances of GPU-BL was also evaluated by increasing the number of 

views from 100 to 11,000. In our implementation, we did not use asynchronous technique to 

hide the data transfer latency. The CPU-1 and CPU-8 were not tested here because of their 

low speeds. The P/BP time and speedup ratios with respect to CPU-32 are shown in Fig. 7. 

We can see the time for projection and backprojection almost linearly increased with respect 

to the number of views. When the number of views was small, the speedup was low because 

of the overhead for data transfer between CPU and GPU. When the number of views 

increased, the relative overhead of data transfer became small compared to the computation 

time on GPU, and the benefit of GPU acceleration dominates. The speedup factor was up to 

10× for projection and 11× for backprojection. With more views, the speedup gradually 
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increased and reached a constant. For GPU-BS, the speedup of P/BP almost keeps the same, 

because its implementation is the parallelization of the CPU version. We can also see that 

GPU-DB is much slower than other methods.

3) Speed with Respect to Image Size In-Plane—The speeds of different P/BP 

implementations were evaluated with respect to different image sizes in-plane. With the 

numbers of views and detector columns fixed, we increased the image size from 2562 to 

14082 with a step size of 128 pixels along both X and Y directions. The CPU-32 was also 

used as the reference to calculate the speedups. The P/BP time and speedups are shown in 

Fig. 8. We can see that the computational time of CPU-32 in both projection and 

backprojection increased approximately as a quadratic function which was consistent with 

the computational scale. However, the computational time of projection with GPU-BL and 

GPU-DB increased approximately linearly. In branchless DD projection, both the size and 

the number of integral images increases linearly with in-plane image size, thus the 

computational complexity of the integration step is quadratic with respect to the in-plane 

image size. However, the complexity of both the interpolation and differentiation steps is 

constant for each integral image slice and the computational time of these two steps scales 

linearly with the number of image slices. Since the computational time of branchless DD 

projection is dominated by the interpolation and differentiation steps, its overall complexity 

is approximately linear with respect to in-plane image size within practical configurations. 

For the above reasons, although the GPU-DB was slower compared to the CPU-32 when the 

image volume was small, the computational complexity of GPU-DB was lower than 

CPU-32. From the speedup charts, with the increase of image size, we can see that the 

projection speedup of GPU-BL is greater for larger in-plane image sizes. When the number 

of pixels in-plane is small, the speedup of GPU-BS is comparable to GPU-BL, but the 

speedup of GPU-BL increases faster than GPU-BS. When the image size is up to 14082 in 

plane, the speedup of GPU-BS almost approaches to its limit. However, we can also observe 

that the computational time of backprojection with GPU-BL, GPU-BS and GPU-BZ 

increased approximately quadratically. This is because one thread calculates the 

backprojection value of one voxel in GPU-BL and GPU-BS or one column of voxels along 

the Z direction in our GPU-BZ. When the projection data size is fixed and the image size 

increases quadratically, the amount of computational load also increase quadratically. The 

speedup of GPU-BS backprojection is slightly decreasing when the in-plane image size 

increases.

4) Speed with Respect to Image and Detector along Z-direction—The speed of 

different P/BP implementations were also evaluated with respect to image and detector sizes 

along the Z-direction. The image and detector sizes in Z-direction were increased 

simultaneously from 64 to 480 with a step size of 32. We also applied the CPU-32 as the 

baseline to calculate the speedup ratio. As shown in Fig. 9, the computational time of 

projection and backprojection both linearly increased with respect to the numbers of pixels 

and detector cells along the Z-direction. This linear increase in computation time was 

consistent with all DD implementations. The sizes of image and detector cell along Z-

direction did not affect the speedup ratio.
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From the previous experiments, one can see that the GPU-BL outperformed GPU-BZ. This 

is due to severe data latency caused by too much shared memory allocation to store wj. 

Inadequate threads for each block reduce the warp occupancy resulting in a large portion of 

cores idle in the streaming multiprocessor (SM). In fact, it is very difficult to balance the SM 

occupancy and data latency. We evaluated the speedup performances of backprojection with 

GPU-BL and GPU-BZ by simultaneously increasing the number of pixels and the detector 

cells along Z-direction. The time profiles are shown in Fig. 10. We can see that the GPU-BZ 

outperforms GPU-BL when the number of slices and the detector cells along z direction is 

not large. The time profile of GPU-BZ shows an obvious stair-liked increasing pattern and 

the stair width is 16 slices. The stair jumps at integer multiples of 16. In our implementation, 

we allocate Ns = 17 for every thread. Therefore, each time, the backprojection values of 16 

voxels will be calculated. For every 16 slices, one more loop will be added in GPU-BZ to 

perform Eq. (27) and Eq. (28) but calculate only one slice of the voxel. At this time, the 

speedup will be worse than GPU-BL. If we allocate Ns = 32 + 1 for every thread to calculate 

32 voxel values simultaneously, the number of thread of each block M has to be reduced to 

avoid too much shared memory allocation. However, this will reduce the occupancy of the 

SM. The time profile of GPU-BL also shows a stair-liked increasing pattern but this pattern 

is not as obvious as in GPU-BZ. Its stair width is 32 slices. CUDA runs every 32 threads in 

the SM. This is why the stair width of GPU-BL is 32. In every 32 threads, when more voxels 

need to be backprojected, the number of memory writing will also linearly increase with 

more texture memory fetching. Therefore, the time of GPU-BL profile increases linearly in 

every 32 slices.

5) Accuracy as individual modules—As the aforementioned, the texture memory 

represents the texels and their positions with 9-bits fixed floating point (eight bits for 

fractional representation and one bit for sign). Therefore, the position distinction can be only 

1/29–1 between two neighborhood texels. We evenly fetched 32,768 = 215 points between 

two neighborhood texels with values zero and one by texture interpolation. The first 1024 

values are depicted in Fig. 11 (b). The interpolated profile is not a straight line from zero to 

one but a staircase (Fig. 11 (b)). The step width is 128 = 27 = 215–8 pixels which show that 

the texel position distinction is determined by 8-bits fractional representation. The 

differences between the exact linear interpolation results and the hardware based texture 

interpolation are plotted in Fig. 11 (c), We can see that the difference is controlled in 1/29 ≈ 
0.2%.

Because GPU-BZ utilizes the shared memory to reduce the texture fetching times during the 

calculation of GPU-BL, there are no differences in accuracy between GPU-BL and GPU-

BZ. Because GPU-BS is a simple parallelization of CPU implementation, the accuracy of 

GPU-BS and CPU-32 are identical. Therefore, we evaluated the accuracies of the GPU-BL 

and GPU-DB compared to CPU-32. In GE HD750 CT geometry, an all-one volumetric 

image is projected. The results from 0 and 45 degrees are shown in Fig. 12. The differences 

between CPU-32 and GPU-BL are hardly visible unless shown with a very narrow display 

window. The differences can be further reduced with GPU-DB except at the edge. In this 

test, the RMSE of GPU-BL projection is 2.77 × 10−2 and the RMSE of GPU-DB projection 

is 3.50 × 10−4.
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In the same geometry, a projection with value 1.0 at view angle 0 was backprojected. The 

contours from CPU-32, GPU-BL and GPU-DB were shown in Fig. 13 (a) (b) and (c), 

respectively. From the center slice of the volumetric image, we can see that the contours of 

GPU-BL are not as smooth as those in CPU-32 and GPU-DB. The contours of CPU-32 and 

GPU-DB are visually identical. Fig. 13(d) shows the central slice of the volumetric image 

backprojected from GPU-BL. In a greater display window, the results are smooth and they 

are not as rough as the contours in Fig. 13 (b). The normalized differences between CPU-32 

and GPU-BL are given in Fig. 13(e) in a narrow display window. We can observe some 

regular patterns caused by the inaccuracy of hardware-based interpolation. For GPU-DB, the 

differences in the same display window can be hardly observed (Fig. 13 (f)). Then, we 

backprojected 984 views to the volumetric image. The same comparisons are collected in 

Fig. 14. The roughness of the contours in GPU-BL is weaker. The normalized differences 

are much weaker than in one view. We showed the normalized differences in a much 

narrower display window in [−0.0002, 0.0002]. With GPU-DB, the ring disappears. In this 

case, the RMSE of GPU-BL backprojection is 5.24 × 10−2 and the RMSE of GPU-DB 

projection is 6.92 × 10−4.

To quantify the relative errors of the GPU-BL and demonstrate the merits of GPU-DB in 

accuracy improvement, a 25 × 1 pixels bar (value = 1.0) on x-axis, whose central pixel index 

is 12, was projected onto the detector in parallel geometry for several view angles. We set 

the pixel size to 1.00mm. The detector size in channel direction is 1.41mm while the 

detector cell size in bench moving direction is 0.71mm. When the projection view is 0, the 

GPU-BL and CPU implementations are still the same. We plotted the projections of 30, 45, 

and 179.5 degrees in Fig. 15. Because of the inaccurate expression of the value for fast 

hardware-based interpolation in texture memory, the projection errors in GPU-BL can be 

observed in a magnified display window. The relative error is smaller than 0.2% in Fig. 15 

(a). Using the software based interpolation, the spur liked error can significantly suppressed. 

Therefore, the GPU-DB is useful for applications that require high accuracy.

6) Multi-GPUs Branchless DD—The performance of multi-GPUs-BL is summarized in 

Table IV. We show the total times, kernel times, and computing times for integral image sets. 

The Multiple GPUs computation cannot provide much higher speedups compared to single 

GPU when the number of views was small. The GPUs with weaker computational power 

had lower bandwidth which made the data transfer more time consuming. Furthermore, the 

calculation of integral images also occupied appreciable computational cost. Although more 

GPUs were employed, the total cost to compute the integral images did not decrease. When 

the number of views was large, the P/BP time was reduced significantly.

C. Iterative Reconstruction

1) Simulation data—Noiseless numerical simulations were conducted to investigate the 

performance of GPU-BL for IRAs. In our numerical simulations, a monochromatic x-ray 

cone-beam CT with equal-angular detector was assumed. A modified Shepp-Logan phantom 

and a FORBILD head phantom were employed, and the image sizes are 512×512×64. The 

full scan projection datasets were evenly acquired with 2200 views on a circular scanning 

trajectory. A ray-tracing model was applied to simulate the projection in size 3552×256. 
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Then for each view, every 4×4 neighboring detector cells were averaged to form the 888×64 

projection. The linear attenuation coefficients of the two phantoms were reconstructed by an 

OS-SART algorithm with the proposed GPU-BL projector. The final results were compared 

with the ground truth and CPU-32 based OS-SART results. The number of ordered subsets 

was 10. The maximum iteration number was 40.

The reconstructed modified Shepp-Logan from CPU-32 and GPU-BL are shown in Fig. 

16(a) and (b), respectively. The difference between CPU-32 and GPU-BL, and between 

CPU-32 and the ground truth are shown in Fig. 16(c) and (d), respectively, in a much 

narrower display window, and the representative profiles along horizontal and vertical 

directions of the center transverse plane are shown in (e) and (f). We can see that the 

reconstruction errors are greater at the top and bottom slices. This is because the top and 

bottom slices cannot be completely irradiated in circular cone-beam geometry. From (e) and 

(f), we can see that the profiles match the ground truth very well except some Gibbs artifact 

at the edges of the object, usually seen in numerical simulations with piece-wise constant 

objects.

The reconstructed FORBILD head images in transverse, sagittal and coronal planes are 

shown in Fig. 17(b) and (c) in a display window[1.0, 1.2]. The corresponding reconstruction 

errors in a narrower window are shown in (e) and (f). As indicated by the arrows in (b) and 

(c), the reconstruction errors can be observed in sagittal and coronal planes from both GPU-

BL and CPU-32. As aforementioned, the mismatch between GPU-BL and CPU-32 is about 

0.2% (see Fig. 17(d)). The computation time per iteration of FORBILD head phantom 

reconstruction are summarized in Table V. We can see that the acceleration rate of GPU-BL 

is significant. Although GPU-BS is also faster than CPU-32, the computing times for P/BP 

are 2 to 3 times longer than those of GPU-BL. The kernel times of GPU-BS are closer to the 

total time than GPU-BL because there are no integration steps in GPU-BS.

2) Real Phantom Reconstruction—We also acquired real phantom data from a GE 

Discovery CT750 HD system (GE Healthcare, Waukesha, WI) with 888 detector channels 

and 984 views per rotation. We scanned an oval-shaped phantom with a quality-assurance 

insert and two Teflon rods on both sides. The data were acquired with a 32-row helical scan 

with a pitch of 31/32 at 120 kVp, 835 mA, and 1 second rotation. Images were reconstructed 

on a grid of 512×512×64 with a field-of-view of 50 cm, an in-plane pixel size of 0.98 mm, 

and a slice thickness of 0.625 mm. All reconstructions used q-GGMRF regularization [54] 

and weighted-least-squares data-fit term. All reconstructions were based on 100 iterations of 

a preconditioned conjugate gradient algorithm initialized with standard FBP images [55]. 

The reconstruction is presented in Fig. 18. The differences between Fig. 18(a) and (b) are 

hardly noticeable unless displayed within a much narrower window in Fig. 18(c). The 

RMSE of GPU-BL with respect to CPU-32 was 0.57 HU. The differences between Fig. 

18(a) and (b) are almost imperceptible, although there is very small difference inside the red 

rectangle under very careful comparison.

3) Clinical Application—Finally, with the approval of Wake Forest University School of 

Medicine, a clinical patient dataset was used to evaluate the GPU-BL. The dataset was 

acquired for cardiac imaging of coronary artery in high-resolution model with focal spot 
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deflection, with 2,200 views, 120kVp, and 300mA. The volumetric image was reconstructed 

by the SART algorithm in the same geometry as in Table. 1. Because the dose is relatively 

high, we did not employ any regularization term, and FDK was implemented as a reference. 

A 512×512×64 volumetric image was reconstructed. We used the Titan X to perform our 

experiments. 300 SART iterations were run and the FISTA technique [56] was also applied 

for acceleration. The FDK reconstruction was also provided as a reference in Fig. 19(a). 

After 300 iterations, the reconstruction results from GPU-BL and CPU-32 are shown in Fig. 

19(b) and (c), respectively. The differences between GPU-BL and CPU-32 are shown in Fig. 

19(d) in a narrow display window [−0.5, 0.5] HU. The differences relative to the FDK 

reconstruction are displayed in Fig. 19(e) and (f) in a window of [−20, 20] HU. One can also 

see the greater difference at the top and bottom slices of the reconstructed volumetric image. 

The SSIM [57] of the central slice of GPU-BL result relative to the FDK reconstruction is 

0.9905.

V. Discussions and Conclusions

In this paper, we implemented a branchless DD P/BP algorithm for 3D cone beam CT. The 

developed algorithm eliminated the irregular branch behavior of the original DD algorithm 

and made the DD operation highly amenable to massive vectorization of GPUs. For a GE 

Discovery CT750 HD system, the proposed method achieved 137-fold speedup for 

projection and 188-fold speedup for backprojection compared to a single thread CPU 

implementation. Compared to a state-of-the-art 32-thread CPU implementation, the 

proposed branchless DD P/BP achieved 8-fold acceleration for forward projection and 10-

fold acceleration for backprojection. Different branchless DD implementations (GPU-BL, 

GPU-BS, GPU-DB and GPU-BZ) compromise between the speedup performance and 

accuracy. Our implementation of branchless DD also fully leveraged the cache mechanism 

and the hardware interpolation supported by the texture memory in GPUs.

For the multi-GPU implementation, we showed the speedup with different types of GPUs. 

The tasks were distributed according to the computational power of different GPUs. 

Manually tuning is required to achieve best balance and utilization for each GPU. It is still 

an open problem on how to automatically distribute the tasks to heterogeneous GPUs to 

achieve best performance.

We evaluated our branchless DD methods with extensive numerical simulation, physical 

simulation and real clinical dataset. Some loss of precision of the branchless algorithm can 

be caused by the integration and interpolation steps when implemented with single-precision 

data type and hardware based interpolation. The errors are approximately controlled in 0.2% 

which is about 1/29. Because NVIDIA texture memory applied 9 bits to represent one 

floating number address. However, our reconstruction results from simulation and real data 

showed that the precision loss was small and the GPU-based branchless algorithm obtained 

visually identical images as the CPU reference algorithm.

This study focused on algorithm development and the GPU implementation was not fully 

optimized. In particular, the integration step of branchless DD occupied a considerable 

portion of the computational time. However, highly optimized GPU algorithms [58] exist for 
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computing the integral of 2D images and can be readily incorporated for further 

acceleration. Although our implementation has not been fully optimized, its speedup 

performance is better than [12] for backprojection. Our implementation of iterative 

reconstruction involved repeated data transfer between GPU device memory and CPU host 

memory. Some standard GPU programming techniques can be used in the future to reduce 

or hide this data transfer latency. The overhead of data transfer could also be eliminated by 

implementing the entire iterative reconstruction in GPUs.
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Fig. 1. 
Circular cone-beam geometry with a curve-detector.
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Fig. 2. 
Illustration of DD models. (a) 1D DD interpolation model; (b) 2D DD integral to calculate 

the projection of one slice of the volumetric image.
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Fig. 3. 
Computing the integral over a rectangle region using the integral image. (a) how integral 

image is generated where x1, x2, x3 and z1, z2, z3 are coordinates of the image pixels. 

Calculating the integral over the rectangle region in (b) is the same as fetching four integral 

values at four corners in (c) by applying Eq. (23).
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Fig. 4. 
Branchless DD backprojection of one voxel. (a) the selections of different center planes is 

determined by current projection view angle, (b) the corresponding projection plane 1 and 

plane 2 with respect to different center planes. The texels are fetched at the black dots on the 

integral images.
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Fig. 5. 
Software interpolation based branchless DD. (a) directly fetch the integral value at (xR, zD). 

(b) fetch the integral values at the positions calculate from integer indices around (xR, zD) 

and the integral value is calculated by bilinear interpolation.
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Fig. 6. 
Illustration of Z-line based branchless DD backprojection.

Liu et al. Page 30

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2018 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Speedup performance with respect to view number. (a) and (b) are the projection and 

backprojection computational costs with respect to different view numbers. (c) and (d) are 

the corresponding speedups compared to CPU-32.
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Fig. 8. 
Speedup performance with respect to image size along transverse plane. (a) and (b) are the 

projection and backprojection computational costs with respect to different image size along 

in-plane direction. (c) and (d) are the corresponding speedups compared to CPU-32.
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Fig. 9. 
Speedup performance with respect to image and detector sizes along Z-direction. (a) and (b) 

are the projection and backprojection computational costs with respect to image/detector 

size along the cross-plane direction. (c) and (d) are the corresponding speedups compared to 

CPU-32.
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Fig. 10. 
Backprojection time performances of GPU-BL and GPU-BZ for different number of slices 

and detector cells along z direction.
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Fig. 11. 
Illustration of interpolation errors. (a) The real linear interpolation. (b) The texture fetching 

based hardware interpolation. (c) The interpolation error between (a) and (b).
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Fig. 12. 
Projection accuracy comparison. The left profiles are the center detector row at 0 degree and 

45 for CPU-32, GPU-BL and GPU-DB projections on the right in a display window [0, 

250]. The normalized differences between GPU-BL/GPU-DB and CPU-32 are shown below 

their projections in a display window [−0.002, 0.002].
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Fig. 13. 
Backprojection accuracy comparison for one view. (a), (b) and (c) are contours of the center 

slice of the volumetric image backprojected from one view with value 1.0 by CPU-32, GPU-

BL, and GPU-DB, respectively. (d) is the central slice of the volumetric image 

backprojected from GPU-BL. (e) is the normalized difference between CPU-32 and GPU-

BL, and (f) is the normalized difference between CPU-32 and GPU-DB.
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Fig. 14. 
Backprojection accuracy comparison for 984 views. (a), (b) and (c) are contours of the 

center slice of the image volume backprojected from 984 views with value one by CPU-32, 

GPU-BL, and GPU-DB respectively. (d) is the center slice of the image volume 

backprojection result from GPU-BL. (e) is the normalized difference between CPU-32 and 

GPU-BL, and (f) is the normalized difference between CPU-32 and GPU-DB.
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Fig. 15. 
Projection accuracy comparison between GPU-BL and GPU-DB at different view angles for 

a uniform bar. The red dash lines in (a), (c), and (e) are the projection profiles for GPU-BL, 

and the red dash line in (b), (d), and (f) are the projection profiles for GPU-DB.
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Fig. 16. 
Numerical simulation results of the modified Shepp-Logan phantom. (a) are the transverse, 

sagittal and coronal planes reconstructed by the CPU-32 in a display window [0, 1]. (b) are 

the counterpart of (a) reconstructed by the GPU-BL. (c) is the error between CPU-32 and 

GPU-BL in display window [−0.001, 0.001]. (d) is the corresponding error of ground truth 

and GPU-BL in display window [−0.02 0.02]. (e) and (f) are the horizontal and vertical 

profiles of the center slice of the images.
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Fig. 17. 
Numerical simulation results of the FORBID head phantom. (a) is the ground truth. (b) and 

(c) are the reconstruction results from GPU-BL and CPU-32, respectively. The display 

window for on the first row images is [1.0,1.2]. (d) is the differences between (b) and (c) in a 

display window [−0.005,0.005]. (e) and (f) are the reconstruction errors of (b) and (c) with 

respect to (a) in a display window [−0.02,0.02].
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Fig. 18. 
Real phantom reconstruction results. (a) and (b) are reconstructed by the CPU-32 and GPU-

BL from high dose (835mAs) projections in a display window [800 1200]HU. (c) is the 

difference image between CPU-32 and GPU-BL for low dose case in a display window [−3, 

5]HU.
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Fig. 19. 
Reconstructed results from a clinical data set. (a) is reconstructed by the FDK algorithm as a 

reference. (b) and (c) are reconstructed by the GPU-BL CPU-32, respectively. (d) is the 

differences between GPU-BL and CPU-32 in a display widow [−0.5, 0.5] HU. (e) and (f) are 

the differences between the FDK reference and GPU-BL and CPU-32 in display window 

[−20, 20] HU, respectively.
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TABLE I

The Configuration of GE CT750 HD Geometry

Parameters Value

Source-to-iso-center distance 541mm

Source-to-detector distance 949mm

In-plane detector cell size 1.0239mm

Cross-plane detector cell size 1.0963mm

Number of detector columns 888

Number of detector rows 64

Reconstruction FOV 500 × 500mm2

Detector offset (−1.28,0)mm
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TABLE II

Running time of projection and backprojection (unit: s) in GE CT750 HD geometry.

Projection(s) Backprojection (s)

CPU-1 195.59(1.00x) 195.44(1.00x)

CPU-8 24.10(8.12x) 24.89(7.85x)

CPU-32 11.48(17.04x) 11.48(17.02x)

GPU-BL 1.42(137.74x) 1.04(187.92x)

GPU-BS 2.77(57.61x) 3.02(64.72x)

GPU-DB 13.46(14.53x) 17.68(11.05x)

GPU-BZ N/A 1.21(161.52x)
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TABLE IV

Computational costs (in seconds) of various components on multiple GPUs. The image volume is 512 × 512 × 

64 with (a) 984, (b) 1968 and (c) 3936 views of size 888 × 64 in HD geometry.

(A) 984 Views

Number of GPUs 1 2 3 4

Projection 1.478 1.107 1.102 1.101

Projection Kernel 1.009 0.703 0.579 0.457

Integral image set (P) 0.016 0.012 0.010 0.010

Backprojection 1.041 0.953 0.944 0.886

Backprojection Kernel 0.618 0.454 0.346 0.272

Integral image set (BP) 0.029 0.026 0.026 0.024

(B) 1968 Views

Number of GPUs 1 2 3 4

Projection 2.550 2.045 1.762 1.581

Projection Kernel 2.012 1.411 1.184 0.897

Integral image set (P) 0.033 0.028 0.025 0.021

Backprojection 1.933 1.504 1.351 1.261

Backprojection Kernel 1.260 0.832 0.703 0.552

Integral image set (BP) 0.059 0.054 0.053 0.048

(C) 3936 Views

Number of GPUs 1 2 3 4

Projection 4.685 3.513 2.841 2.542

Projection Kernel 4.029 2.853 2.305 1.791

Integral image set (P) 0.069 0.058 0.055 0.052

Backprojection 3.579 2.754 2.253 1.842

Backprojection Kernel 2.693 1.746 1.461 1.174

Integral image set (BP) 0.125 0.120 0.117 0.113
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TABLE V

Speedup performance of the FORBILD head phantom reconstruction in one iteration.

Unit: second Projection Backprojection

CPU-32 24.13 26.63

GPU-BL
TOTAL KERNEL TOTAL KERNEL

2.75 2.25 2.78 1.92

GPU-BS 5.89 5.65 8.07 7.82
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