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Phototrophic organisms exhibit a highly dynamic proteome, adapting their biomass composition in response to diurnal light/dark
cycles and nutrient availability. Here, we used experimentally determined biomass compositions over the course of growth to
determine and constrain the biomass objective function (BOF) in a genome-scale metabolic model of Chlorella vulgaris UTEX 395 over
time. Changes in the BOF, which encompasses all metabolites necessary to produce biomass, influence the state of the metabolic
network thus directly affecting predictions. Simulations using dynamic BOFs predicted distinct proteome demands during
heterotrophic or photoautotrophic growth. Model-driven analysis of extracellular nitrogen concentrations and predicted nitrogen
uptake rates revealed an intracellular nitrogen pool, which contains 38% of the total nitrogen provided in the medium for
photoautotrophic and 13% for heterotrophic growth. Agreement between flux and gene expression trends was determined by
statistical comparison. Accordance between predicted flux trends and gene expression trends was found for 65% of multisubunit
enzymes and 75% of allosteric reactions. Reactions with the highest agreement between simulations and experimental data were
associated with energy metabolism, terpenoid biosynthesis, fatty acids, nucleotides, and amino acid metabolism. Furthermore,
predicted flux distributions at each time point were compared with gene expression data to gain new insights into intracellular
compartmentalization, specifically for transporters. A total of 103 genes related to internal transport reactions were identified and
added to the updated model of C. vulgaris, iCZ946, thus increasing our knowledgebase by 10% for this model green alga.

Microalgae are responsible for approximately 40% of
the photosynthetic carbon fixation on Earth (Geider et al.,
2001). Besides their critical role in global carbon fixation,
phototrophs are attractive cell factories due to their flex-
ible metabolism and polytrophic growth capacities (i.e.
phototrophic, mixotrophic, or heterotrophic growth),
which allow for cost-effective production of various

chemicals, including biofuels, fragrances, dyes, pigments,
pesticides, as well as food additives (Geider et al., 2001;
Hussain et al., 2012). Differences in growth conditions, i.e.
growth during day and night cycles, require phototrophs
to shift their proteome demands and therefore adjust their
metabolism. The complex interplay between energy and
carbon metabolism and its dynamics in phototrophs is
still not fully understood (Stitt, 2013). Available genome-
scale models for phototrophic organisms have provided
valuable insights into their metabolic capabilities and
helped to improve yields and growth rates by determin-
ing optimal environmental conditions (Baroukh et al.,
2015; Levering et al., 2016; Zuñiga et al., 2016). These
genome-scale models associate metabolic reactions with
the organism’s genome and enable the prediction of
complex phenotypes based on the organism’s genomic
information (Palsson, 2006). Flux balance analysis (FBA) is
awidely used tool for interrogatingmetabolicmodels and
to calculate an optimal network state given by a deter-
mined flux distribution while maximizing an objective
function (Orth et al., 2010). Commonly, the production of
biomass is used as objective function. The biomass ob-
jective function (BOF) is implemented into the model as a
reaction that pulls resources from the metabolic network
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and defines all known cellular components (such as amino
acids, nucleotides, fatty acids, carbohydrates, vitamins,
ions, and cofactors) and their fractional contributions.
Ideally, the BOF should be established based on experi-
mentalmeasurements fromagiven culture condition (Feist
and Palsson, 2010; Thiele and Palsson, 2010). To assist in
these efforts, new protocols for measuring biomass com-
positions have been established (Cordova et al., 2015, 2016;
McConnell and Antoniewicz, 2016; Gonzalez et al., 2017).
However, it is often time consuming to determine such
detailed biomass composition for the organism of interest,
and thus the vast majority of models are based on esti-
mated biomass compositions (King et al., 2016). Several
algorithms have been developed to define or to best-fit the
BOF in the absence of experimental data (Feist andPalsson,
2010); examples of such algorithms include ObjFind,
BOSS, or GrowMatch (Burgard and Maranas, 2003;
Gianchandani et al., 2008; Kumar and Maranas, 2009).
Various omics data, e.g. transcriptomics or proteomics, can
help to define the BOF if experimental measurements of
biomass components are missing (Montezano et al., 2015).
Previous studies have used random sampling to correlate
differentially expressed genes with fluxes to estimate the
composition of the BOF (Bordbar et al., 2010). Random
sampling is a statistically meaningful tool to explore the
genome-scale model solution space. This unbiased as-
sessment provides the possible flux distributions of the
network at given constraints (Megchelenbrink et al., 2014;
De Martino et al., 2015). Each stoichiometric coefficient
associated to a certainmetabolite in the BOF is a constraint
and affects the reaction activity in the network as well as
the final flux distribution and solution space (Bordbar
et al., 2010; Bordel et al., 2010).
While the proportions in the biomass composition

(carbohydrates, lipids, amino acids, and nucleotides) of
heterotrophs such as Escherichia coli does not change sig-
nificantly with changing growth conditions and growth
stages (Feist and Palsson, 2008; Thiele and Palsson, 2010;
Long et al., 2016), phototrophs exhibit more dramatic
changes in biomass composition because of their inherent
lifestyle (i.e. day-night cycle; Khoeyi et al., 2012). The bio-
mass composition of phototrophic organisms thus changes
drastically according to growth in the light or in the dark.
However, automated reconstruction tools (e.g. Model-
SEED; Henry et al., 2010) generally assemble an organism-
specific draft biomass reaction independent of the culture
stage, thus failing to account for a dynamic biomass
composition. Here, some of the conditions considered in-
clude progression of biomass composition in both photo-
trophic and heterotrophic growth with gradual nitrogen
depletion. The experimentally determined biomass com-
positions were used to constrain the genome-scale model
iCZ843 recently constructed for C. vulgaris (Zuñiga et al.,
2016) and to predict differences in growth rate and flux
distribution for various culture conditions and stages. The
constraint model captures the dynamic metabolic pro-
cesses and accurately predicts differences in the growth
rate of C. vulgaris over time. Furthermore, this theoretical
study supported by omics data (RNA-seq and proteomics)
provide insights into the dynamic proteome demands

under photoautotrophic conditions and exemplifies how
genome-scale metabolic models can be used to predict
trends in gene expression. The study highlights how sim-
ulated flux trends can help improving genome annotation
and emphasizes the importance of constraining the BOF in
genome-scalemodels using accurate biomass composition.

RESULTS

Biomass Composition Is Highly Dynamic in Phototrophs

The green algae C. vulgaris can thrive under diverse
environmental conditions and grow photoautotrophically,
heterotrophically, andmixotrophically (Perez-Garcia et al.,
2011). A model-based comparison of experimentally de-
rived BOFs and in silico BOF revealed significant differ-
ences in the biomass composition (see Supplemental Text
and Supplemental Table S1), highlighting the importance
of biomass measurements for accurately predicting bio-
mass production and growth rate as shown in Figure 1A.
We determined the effect of a dynamic biomass compo-
sition ofC. vulgarisUTEX 395 in terms of total amino acids,
nucleotides, carbohydrates, and lipids on the cells’ growth
rate under photoautotrophic or heterotrophic conditions
over time (Figs. 2 and 3). For each time point, the concen-
tration of 30 different biomass components was deter-
mined (Fig. 2). We found that macromolecular content
(Fig. 2, A and B) but also the metabolite breakdown in
each macromolecular class is highly dynamic and shows
variation between photoautotrophic and heterotrophic
growth (Figs. 2, C and D, and 3). However, under het-
erotrophy (Fig. 2B), changes in themacromolecular content
are less pronounced over the growth course as compared
to those under photoautotrophic conditions (Fig. 2A).

The experimental biomass measurements were used to
define a BOF for each time point and growth condition.
These BOFs for C. vulgaris account for carbohydrates
(rhamnose, arabinose, Xyl, Man, Glc, and Gal), fatty acids
(C14:0, C16:1, C16:2, C16:3, C16:0, C18:1, C18:2, C18:3,
C18:0), amino acids (Ala, Asn, Gly, Val, Leu, Ile, Pro, Met,
Ser, Thr, Phe, Asp, Glu, Lys, His, Tyr), and nucleotide
composition. The condition-specific BOFs and models are
provided inSupplemental File 1.Additionally,weestimated
a universal BOF computationally from the genome se-
quence using an established protocol (Thiele and Palsson,
2010). Deploying the experimentally derived BOFs in con-
junction with condition-specific constraints (i.e. carbon
uptake rate and light)were sufficient to accurately simulate
growth and nitrogen uptake rates (Fig. 4).

We used these biomass-specific models to investigate
nitrogen uptake rates under photoautotrophic and het-
erotrophic growth conditions and to determine the
interplay between intracellular metabolite pools and
growth-limiting nutrients in C. vulgaris. Figure 4 shows
the experimentally determined nitrate concentrations in
the supernatant for both growth conditions as a function
of biomass and time (Fig. 4A) and the simulated nitrogen
uptake rates at different biomass concentrations (Fig.
4B) and time (Fig. 4C). The predicted uptake rates are in
good agreement with previously reported data and our
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experimentally determined nitrate uptake rates (Taziki
et al., 2016). Under photoautotrophic and nitrogen-replete
conditions, the average predicted nitrogen uptake rate
was 0.175 6 0.02 mmolNO3/gDW/h, and our experi-
mental estimation was 0.15 6 0.02 mmolNO3/gDW/h.
Bothvalues are in syncwith thepreviously reportednitrate
uptake rate of 0.176 0.05 mmolNO3/gDW/h (Taziki et al.,
2016). Uptake rates of nitratewere decreasing over time for
photoautotrophywhile theyweremaintainedmore or less
constant during heterotrophic growth (Fig. 4B). Model
simulations predict nitrate utilization even after nitrate
has been depleted from the culture medium, suggesting
consumption of nitrogen from a so-far-uncharacterized
intracellular pool. The hypothesis that nitrogen can
be stored intracellularly by Chlorella and other algae is

corroborated by simulations based on experimental data
(Flynn and Fasham, 1997; Flynn, 1999). The simulated
uptake rates after nitrogen depletion were integrated to
estimate the total intracellular concentration of nitrogen
required to account for the experimentally determined
biomass production, while the experimental data set also
encompasses other possible nitrogen storage sources, such
as mainly amino acids and pigments.

By integrating the uptake rates and assuming that
nitrogen is stored inside the cell in the form of ammonium
(Smith, 1977), the total required ammonium for growth
from this pool (considering the total biomass) was 4.2 mM

under photoautotrophy and 1.6 mM under heterotrophy.
The predicted pool concentrations after nitrate was de-
pleted from the medium corresponded to 38% of the total

Figure 1. Overview and workflow
diagram of data analysis. A, Experi-
mental and predicted growth rates
under photoautotrophic growth. B,
Flux distributions and gene expression
data sets were independently normal-
ized. Nr,j represents the flux distribu-
tion normalized value of reaction r at j
timepoint.Ng,j is the normalizedvalue
for the g gene at time j. The normal-
ized values ranged between zero
and one in each data set. C, Iteratively
fitted regression models (linear, qua-
dratic, cubic, exponential, and two-
term exponential regression model).
D, Statistically identical models were
extracted using a homogeneity test of
coefficients to define the agreement
between the predicted flux and ex-
pression data. C1 andC2 correspond to
the two coefficients being compared,
and SEC1 and SEC2 to the SE of coeffi-
cients calculated by least-squares fit-
ting method. The number of fitted
coefficients depends of the regression
model (i.e. linear has two fitted coef-
ficients [p1 and p2] and two-term
exponential model has four). G1..n

represents the number of genes as-
sociated with specific reaction.
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nitrogen provided in the medium for photoautotrophic
and 13% for heterotrophic growth.

Growth-Course Fluxes Predict Proteome Demands

The number of all active reactions in every growth
condition and at each time pointwas determined using the
model iCZ843 (Zuñiga et al., 2016). Reactions carrying flux

were defined as active, i.e. reactions with minimal or
maximal possible flux value (as determined by flux varia-
bility analysis [FVA]) is not zero (Mahadevan and Schilling,
2003). Under photoautotrophic growth, 1,542 out of 2,294
reactions, equaling 69%, carried flux. Figure 5 shows the
subcellular localization (Fig. 5A) and main subsystem as-
sociations (Fig. 5B) for all active internal reactions andgenes
under this condition. The list of predicted active reactions

Figure 2. Overview of experimental
data breakdown. A, Growth course
biomass composition (proteins, nu-
cleotides, lipids, and carbohydrates)
under photoautotrophy. B, Biomass
composition under heterotrophy. C,
Carbohydrate composition under
photoautotrophy.D, Lipid distribution
under heterotrophy. Experimental
and predicted growth rates for C.
vulgaris in heterotrophy (McConnell
andAntoniewicz, 2016;Zuñiga et al.,
2016).

Figure 3. Comparison of experimental and estimated protein composition. Experimentally determined protein composition for
C. vulgaris for photoautotrophic or heterotrophic growth in comparison to estimated protein composition based on genome
annotation. Arg, Cys, Gln, and Trp were discarded because measurements over time were not found.
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was identical for almost all of the timepoints (Supplemental
Table S2), except reaction ACP1819ZD9DS (encoding the
NADPH-dependent Stearoyl-[acyl-carrier-protein] delta9-
desaturase), which was inactive at the 3 days time point.
However, our simulations indicate that the list of active
reactions for heterotrophic growth changed between time
points. According to our FVA analysis, 1,506 and 1,507 re-
actions were able to carry flux for the first two time points
(optical density, OD 2.05 and 2.82), respectively, and 1,504
reactions were active at each of the remaining three time
points (OD 2.82, 3.67, and 4.57). There were 12 reactions
differentially active across all sampled points. These reac-
tions are involved in the transport and the biosynthesis of
pantothenate, lipids, and CoA (Supplemental Table S3).
The models predict a specific utilization of the enzymes
O-acetyl-L-homo-Ser, hydrogen sulfide S-(3-amino-3-
carboxypropyl) transferase, O-acetyl-L-homo-Ser succinate-
lyase, and O-succinyl-L-homo-Ser succinate-lyase at OD
3.67. These enzymes are involved in Met and Cys metabo-
lism but are also drivers in the synthesis of secondary me-
tabolites during nutrient limitation (Shen et al., 2002), which
is consistentwith the depletion of nitrogen during that time.

We compared the active reactions for each growth con-
dition to gain insight into the metabolic response of C.
vulgaris to changing environmental conditions. A total of
1,489 reactions were active under both photoautotrophic
and heterotrophic growth conditions; 27 were active in
heterotrophic but not autotrophic conditions, and 93 reac-
tionswereonlyactiveunderphotoautotrophy (Supplemental
Fig. S1). A list of these reactions and their associated subsys-
tem is given in Supplemental Table S4. Under photoauto-
trophic conditions, reactions involved in light metabolism
such as light conversion (EX_photonVis(e)), efflux (demand
reactions needed formodelingpurposes, e.g.DM_photon298
(c)), and spectral decomposition (PRISM_solar_litho) are ac-
tive and expectedly inactive under heterotrophic growth.
Additionally, we found the highest number of active reac-
tions involved in carbon fixation, photosynthesis, porphyrin
and chlorophyll metabolism, and light-dependent retinol
production from rhodopsin under photoautotrophy. Under

this condition, C. vulgaris secretes formate and glycolate
(Krampitz and Yarris, 1983) and, consequently, exchange
reactions for secretion (EX_for(e), EX_glyclt(e)), reactions in-
volved in glycolate production (GCLDH, PGLYCPH,
HDAO10x, PGLYCPx, HYDAm), and transport reactions
between the cellular compartments and out of the cell
(2PGLYCth, GLYCLTth, FORti, GLYCLTt, 2PGLYCtx,
GLYCLTtx, PItx, GLYCLTtm, H2tm) are active. Also,
two starch-degrading reactions (STARCH300DEGRA,
STARCH300DEGRB) are active under light conditions.
These starch-degrading reactions differ from the ones
used in the absence of light (STARCH300DEGR2A,
STARCH300DEGR2B) in the stoichiometric coefficients.
Under heterotrophic growth, the model simulates the
degradation of internally stored starch by importing
starch using the exchange reaction (EX_starch(h)). This
reaction is manually blocked under photoautotrophic
growth, since no starch is stored internally during this
condition (Zuñiga et al., 2016). Under heterotrophic
growth, the model predicts that light-independent re-
actions required for retinol and chlorophyll a production
(CAROMO, CAROtu, PCHLDR) are active. We also
found that three reactions involved in chloroplastic car-
bon metabolism (FBAh, G6PADHh, G6PBDHh) carry
flux exclusively in the dark.

Predicting Expression Profiles

In the previous section,wedetermined the differences in
active reactions at different time points and conditions.
Here, themodels containing eachBOFwere used to extract
the active genes based on the predicted flux distributions.
Although themodel accounts for only annotatedmetabolic
genes, which represent a fraction of all genes (843 out of
7,100 total genes), these metabolic genes approximate the
same trends in gene expression as genome-wide expres-
sion trends based on the level of raw counts and corre-
sponding normalized trends (Supplemental Fig. S2). The
genes predicted to be differentially active were confirmed
bygene expression data over timeunder photoautotrophic

Figure 4. Nitrogen uptake and intracellular storage. Circles represent experimental measurements (Zuñiga et al., 2016; A and B)
and squares the predicted uptake rates (B and C). Every letter represents an experimental point in which all biomass compounds
were collected. A, Experimental nitrogen concentration in the supernatant under photoautotrophy (green solid line) and heter-
otrophy (red solid line). Dashed lines represent the nitrate concentration over time (top x axis). B, Predicted uptake rate of NO3

using the C. vulgaris genome-scale model iCZ843. Shaded areas show the experimental nitrate uptake rate under photoauto-
trophy (green) and heterotrophy (red). D, Predicted nitrogen consumption rates from the intracellular pool. The shaded areas are
equivalent to the volumetric pool concentration and indicate nitrogen depletion from the culture medium. The first point of the
definite integral was point b.
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conditions (Guarnieri et al., 2011). Based on the model
iCZ843, we identified 1,542 metabolically active internal
reactions associated with 651 genes (see “Materials and
Methods”). The behavior profiles of fluxes and the cor-
responding gene expression over time can be represented
as trends. Each experimental and predicted trend was
fitted to five different regression models as described in
detail in the “Materials and Methods”with the quality of
the fit measured as R2. For each regression model, the
distribution of R2 values was calculated for expression
data (Supplemental Fig. S3, A–E) and for predicted flux
trends (Supplemental Fig. S3, F–J). The quadratic regres-
sion model accurately describes a higher number of
trends than the linear model. The cubic and two-term
exponential models reconcile with most of the data (ex-
pression and flux trends) at R2 . 0.6. The agreement be-
tween predicted and experimental trends was performed
by statistically comparing (Student’s t test a = 0.05) the
homogeneity of the fitted coefficients in each regression
model (Fig. 5, C and D). We found over 50% (777)
agreement between predicted flux and expression data
for all active reactions. These 777 reactions have gene-
protein-reaction (GPR) associations enclosing 75% of all
active metabolic genes. Alternatively, 169 genes of the
total active genes did not show significant agreement

between predicted flux and expression data at any time
point. These 169 genes belong to 57 different subsystems
(Fig. 6). Forty percent of those genes are associated with
reactions that are located in compartments other than the
cytoplasm; for example, 35 are associated with duplicated
or triplicate reactions located in the chloroplast, mitochon-
dria, glyoxysome, or thylakoid (Supplemental Table S5).

The model predicted that 142 allosteric reactions were
active under photoautotrophic conditions. Out of those re-
actions, 91 could be explained by the expression data
(Supplemental Fig. S4). Besides, 65 active reactions are
catalyzed by multisubunit enzymes, out of which 49
showed positive results in the homogeneity test, resulting
in a predicted percentage of 75% (Supplemental Table S6).
Thus, formost of thesemultisubunit enzymes, theflux and
expression trends coincide.

Identification of Putative Transporters

Reconstruction of genome-scale metabolic models for
eukaryotic microorganisms is a challenge due to their
compartmental complexity. Conventionally, the network
connectivity in multicompartment organisms is kept by
adding transport reactions within organelles. Given our
lack of knowledge about intracellular transport, those

Figure 5. Active reactions and expression data match. A, Compartmental distribution of the active reactions and genes under
photoautotrophy. B, Distribution of the reactions and genes along the main subsystems in the metabolism. C, Differential ex-
pression fits versus predicted flux distribution fits. D, Pie charts of reactions with significant correspondence between differential
expression and flux distribution. Color match between B and D.

Plant Physiol. Vol. 176, 2018 455

Predicting Dynamic Metabolism of Chlorella

http://www.plantphysiol.org/cgi/content/full/pp.17.00605/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00605/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00605/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00605/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00605/DC1


transport reactions are often not associated with a gene.
Here, the predicted flux trend for each non-gene-associated
transport reaction in iCZ843 was compared to all expres-
sion trends of the genes in the genome. The list of tentative
associated genes for each reaction was automatically cre-
ated based on statistically similar significant trends (Fig. 1).
Thepredictionspointed to 217genes that couldbe related to
transporters (e.g. channels, facilitators, ABC transporters,
etc). Blast results against the transporter classification da-
tabase (TCDB) (Saier et al., 2014) identified 190 of these
217 genes with transport capabilities. Some examples of
automatically generated GPR are the association between
the transporter of ammonia in the chloroplast (NH4th) and
the gene genemark_Scaffold_87-abinit-gene-0.4, according
with the TCDB. Importantly, this gene is annotated as a
hypothetical protein for Chlorella but as an ammonia
transporter for Arabidopsis (Arabidopsis thaliana). Similar
results were obtained for the gene maker_Scaffold_995-
augustus-gene-0.92, which was associated with the trans-
port of Glu in the mitochondria (GLUNA1tm). After
manual curation, 103 new genes, associated with 51 trans-
port reactions, were added to the reconstruction of C. vul-
garis (Supplemental Table S7), reducing the number of
transport reactionswithoutGPR to 86. The updatedmodel
now contains 946 genes, 2,294 reactions, and 1,770 me-
tabolites (iCZ946; Supplemental File 2).

DISCUSSION

We used the genome-scale metabolic network of C.
vulgaris UTEX 395 iCZ843 (Zuñiga et al., 2016) to analyze
dynamic metabolism and biomass composition under
photoautotrophic and heterotrophic conditions. Until
now, highly dynamic biomass compositions as found in
phototrophs have not been exploited to constrain genome-
scale models. The dynamic growth-course data represent
varying macromolecular compositions including carbo-
hydrates, fatty acids, and proteins obtained by measuring
intracellular metabolite concentrations. The experimental
growth rates, lipid composition, and lipid speciation
correspond to that determined from omics data sets
(Guarnieri et al., 2013); however, here the fatty acid spe-
ciation was expanded to include detected levels of C16:3
and C18:2. The experimental data set was then used to
time-specific constrain the metabolic network iCZ843
(Supplemental File 1).

Each constraint model provides a snapshot of metabo-
lism, yielding a dynamic characterization of the solution
space over time. We compared the average flux distribu-
tions at each timepoint, comprisedof adifferent biomass, to
growth-course expression data. The condition-specific
constraint models were used to study the effect of varying
biomass compositions on the growth rate, proteome

Figure 6. Reactions with no agreement between flux
and expression trends. More than 40% of reactions
without agreement due to lack of knowledge at the
metabolic level and subcellular localization are pre-
sent in compartments different from the cytoplasm.
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demands, and flux-to-expression relationships. The result-
ingfluxdistribution of eachmodel represents a steady-state
metabolic phenotype, enabling the identification of meta-
bolic bottlenecks and activity of pathways in different
subcellular compartments in the network (Orth et al., 2010).
On the other hand, intracellularmetabolite pools,which are
common in cellular systems, are not considered in single
constraint-based modeling approaches, although changes
in these pools can affect metabolism, and thus, metabolic
flux distributions obtained from genome-scale metabolic
models (Nikolaev et al., 2005; Feist and Palsson, 2008).
Microalgae, such as C. vulgaris, exhibit complex and

intertwined metabolic networks. Organelle-specific me-
tabolism and internal metabolite pools have to be adjusted
when environmental conditions, such as light conditions
andnitrogen availability, change over time (Fig. 4). Storage
and consumption of nitrate in microalgae has been mod-
eled previously (Flynn andFasham, 1997; Flynn, 1999), but
to our knowledge never before at the genome-scale. It has
been hypothesized thatC. vulgaris takes up all nitrogen (i.e.
nitrate) from the culture medium, and stores it intracellu-
larly in form of ammonium (Smith, 1977) or potentially
other minor nitrogen compounds, such as amino acids or
pigments (Li et al., 2015; Paes et al., 2016). By using the
experimentally derived BOFs, this pool was quantitatively
characterized through the interplay between predicted
nitrogen uptake rates and nitrate concentration in the su-
pernatant. According to the predicted flux distributions,
the way to overcome nutrient depletion in the supernatant
is to create an intracellular pool of ammonium (Fig. 4). This
pool is 2.6 times larger during photoautotrophic growth
than under heterotrophic conditions, 4.2 and 1.6 mM re-
spectively,which agreeswith prior observations (5–10mM;
Smith, 1977; Paes et al., 2016). The model predicts an am-
monium consumption rate of 0.009 6 0.0003 mmol/L/h
independent of the growth condition, which could be due
to strong regulation and interconnectivity of carbon and
nitrogen metabolism in microalgae (Machado et al., 2015).
To date, systems biology approaches at genome-scale

have enabled theoretical identification of the functional
or active proteome required to support growth in het-
erotrophs (O’Brien et al., 2013; Yang et al., 2015;
Steffani-Vallejo et al., 2017). Additionally, mechanistic
analysis to correlate high-throughput data such as
transcriptomics and proteomics with predicted growth
rates and flux distributions have been successfully
performed (Lewis et al., 2012; Yang et al., 2015; Zielinski
et al., 2015; Barenholz et al., 2016). Here, the condition-
specific constraint metabolic model predicts flux dis-
tributions revealing proteome demands over a growth
course under heterotrophic or photoautotrophic con-
ditions. The increase, decrease, presence, or absence
of flux through reactions gives insights into enzyme
activities in photoautotrophic cells. Experimental ex-
pression data were compared to predicted flux trends
under photoautotrophic conditions. We found over
75% agreement between RNA-seq expression data and
predicted flux distributions trends (Fig. 5). Interest-
ingly, these reactions are spread throughout most of the
subsystems in the reconstruction (64/86). The percentage

of explained reactions by main subsystems (Fig. 5B) was
calculated showing that energy metabolism, terpenoid
biosynthesis, and gluthathione, amino sugar, and nucle-
otide sugar metabolism can be predicted using dynamic
BOFs. Over 60% of reactions in the fatty acid and nucle-
otide metabolism can be explained, and over 44% of re-
actions in amino acid, carbohydrate, and cofactor and
vitamin metabolism are captured accurately by the
model. Reactions in subsystems without agreement be-
tween expression and flux predictions (25% total) in-
cluded specific amino acids (Tyr andMet) and glyoxylate
metabolism. The results suggest that nutrient availability,
in this case nitrogen, is one of themain factors that drive a
highly dynamic biomass composition. The experimental
data showed balanced growth (as determined by OD), in
which the built-in metabolites of the biomass are syn-
thesized at its maximum rate. Balanced growth is char-
acterized by a high protein content (;50%) achieved byC.
vulgaris around mid-log phase under photoautotrophy
(OD = 3.0) and heterotrophy (OD = 2.8). The biomass
composition adjustments among protein, carbohydrate,
nucleotide, and lipid composition occurred after nitrogen
was depleted in mid-log phase. This adjustment allowed
for an increase in biomass (final OD= 6.66 0.3). Nitrogen
limitation causes a cascade of metabolic responses in al-
gae that are associated with the synthesis of carbon-rich
compounds; the exact nature of these responses, however,
is currently not fully understood (Henard et al., 2017).

Discordant trends (expression versus simulations) can
be grouped into four different categories: (1) reaction
compartmentalization, (2) multisubunit enzymes, (3) allo-
steric reactions, and (4) other regulatorymechanisms.Most
of these categories are out of the scope of constrain-based
modeling and require alternative advanced modeling
approaches (Liu et al., 2014). In the following, we will
discuss the four categories in detail: (1) identical reactions
in different compartments (Fig. 6). This category points to
the fact that we currently lack basic information regarding
intracellular transport and duplicated organelle-specific
reactions or pathways (Giordano et al., 2005). For exam-
ple, since the discovery of the chloroplast in 1905, very few
chloroplast-related channels and transporters have been
characterized (Hanson, 1985; Pottosin and Shabala, 2016).
New tools have recently been deployed to quantitatively
understand the interplay of metabolites between organ-
elles (Itzhak et al., 2016). Integration of these tools with
genome-scale models may help to elucidate metabolic
traffic inside compartmentalized cells. (2) Multisubunit
enzymes (Supplemental Table S6): These enzymes are
commonly related to promiscuous activities that are not
well understood on the genome-scale level (Nobeli et al.,
2009). The trend analysis deployed here enabled predic-
tions of expression and activity of these multisubunit en-
zymes. Genes ofmultisubunit enzymes and complexes are
often expressed differently and posttranscriptionally reg-
ulated, generating a disagreement of 25% in the active
multisubunit enzymes during our comparison. This could
be circumvented by directly measuring translation, trans-
lation efficiency, and subunit stoichiometry, e.g. byRibo-seq
(Latif et al., 2015; Henard et al., 2017). (3) Allosteric
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reactions (Supplemental Fig. S4): This type of reaction has
been challenging topredict bymetabolicmodels (Machado
et al., 2015; Du et al., 2016) and requires kineticmodels (Saa
and Nielsen, 2016), which currently exist on a genome-
scale only for E. coli (Khodayari and Maranas, 2016). We
found statistical agreement between gene expression
trends and predicted flux distributions trends, making
progress toward the understanding of the performance of
91 allosteric reactions in Chlorella’s metabolism over
growth course by considering the tendency of the fluxes
over time instead of single snapshots. However, some al-
losteric reactions still could not be predicted. Our results
hint at a lack of knowledge in the glyoxylate and dicar-
boxylate metabolism that could improve model predic-
tions. We also found that further research is needed in
order to interpret themetabolic regulation at light anddark
conditions of allosteric enzymes in oxidative phosphoryl-
ation, polyamine metabolism, riboflavin, selenoamino
acid, ubiquinone biosynthesis, and photosynthesis. (4)
Posttranscriptional or posttranslational regulation, expres-
sion of constitutive genes, and RNA and protein turnover:
To address these discrepancies, the data were used to
match the corresponding unpredicted genes with proteo-
mics information (Guarnieri et al., 2013). Due to the re-
duced coverage inherent to proteomics data, only 102 out
of 169 genes without agreement (flux-to-expression) con-
tained peptide counts. Forty-seven percent of these
102 genes had a low Pearson correlation (R2 , 0.3) or
negative correlation between transcriptomics and proteo-
mics, indicating nonlinear correlation between flux (en-
zyme activity) and expression. This discrepancy explains
why these genes cannot be accurately predicted by com-
paring the tendencies of predicted reactions rates (fluxes)
with the expression of those enzymes. Ribo-seq data could
help delineate nonlinear relationships between tran-
scriptomics and proteomics (Latif et al., 2015; Henard et al.,
2017). Furthermore, recent evidence has indicated highly
active posttranslational mechanisms in C. vulgaris, which
may also impact the discrepancy observed between gene
and protein expression levels (Henard et al., 2017).

Predicting the interaction between nutrient availability
and a dynamic biomass composition requires a nonstatic
BOF. We evaluated quantitatively how the determination
of the BOF varies based on experimental measurements in
comparison to an estimatedbiomass compositionbasedon
genome sequence alone. We compared these two protein
profiles (measured and estimated) using highly curated
models of the proteobacterium E. coli and the microalgae
Chlamydomonas reinhardtii and C. vulgaris (see Fig. 3;
Supplemental Table S1). The estimated and measured
profiles for C. vulgaris (Fig. 3) differ substantially for eight
amino acids over time. In contrast, most of the amino acid
composition in E. coli and C. reinhardtii was similar over
time. Interestingly, Gly composition over time differed in
all cases between estimated relative fraction obtained from
estimation or experimental measurements. Thus, the
macromolecular biomass composition is crucial for flux
and growth rate simulation accuracy.

Currently, constraint-based modeling methods to
contextualize omics data are limited to a single growth

condition not reflecting the highly dynamic lifestyle of
phototrophic organisms. We successfully compare exper-
imental and predicted flux-to-gene trends over the course
of growth (Figs. 1 and 5). Reconstructing a highly curated
and validated genome-scale model is a time-consuming
process and depends on the complexity of the orga-
nism’s genome and available data. One of the most time-
consuming steps of the reconstruction process is the
refinement of themodel (Thiele and Palsson, 2010), during
which the GPR of every reaction is verified. We success-
fully used our workflow to guide the GPR association,
passing from predicted flux trends to formulation of pos-
sible GPR by scanning expression trends of all genes in the
genome. Increasing the GPR associations in a metabolic
model using omics data has not been applied before, and
we argue that this workflow can substantially improve the
reconstruction process. The non-GPR transport reactions
were used as input to the workflow; thus, a GPR list was
automatically created for these reactions and enabled the
identification of new intercompartment transport genes.
After a manual curation step, the number of genes in the
reconstructions for C. vulgarisUTEX 395 was increased by
over 10% from 843 to 946, resulting in an updated and
improvedmodel iCZ946. The increased scope of themodel
resulted in predictions of exchanges between specific
subcellular compartments andyieldedgreater insights into
the general compartmentalization nature of microalgae.

MATERIALS AND METHODS

Experimental Biomass Composition and Omics Data

Biomass composition (lipid, protein, carbohydrates, and nucleic acid [RNA])
was determined over a growth course as described previously (McConnell and
Antoniewicz, 2016; Zuñiga et al., 2016; Rosenberg et al., 2014). In brief, Chlorella
vulgaris UTEX 395 was grown photoautotrophically using Bold’s basal medium at
24°C with cycling of 14/10 h light/dark at 10,000 l3 and 1% CO2. Under heterot-
rophy, C. vulgariswas grown under dark conditions in the above mediumwith the
additionof 55mMofGlc.Aminoacids, carbohydrates,RNA,and lipidsweremeasured
by gas chromatography/mass spectrometry analysis (Long and Antoniewicz, 2014).
Experiments were carried out in quadruplicate. Average SE among these experiments
varied from the mean between 7% and 14%. The amino acid content information
was completedwith data from the literature. Data for Arg, Cys, Gln, and Trp under
photoautotrophywere obtained from Faheed and Fattah (2008), and Cys content in
heterotrophy was taken from Wu et al. (2015). At the highest biomass protein
content (46%), those metabolites (Arg, Cys, Gln, Trp) represented 1% of the total
amino acid mass. Thus, biomass stoichiometric coefficients for these amino acids
were considered constant over the course of growth. Similar assumptions were
made for the 10 pigments (i.e. antheraxanthin, chloprophyll A and B, loroxanthin,
lutein, neoxanthin, violaxanthin, zeaxanthin, a-carotene, b-carotene). Pigments
represent less than 10% of the total biomass mass in C. vulgaris. Information about
pigmentswas obtained frompreviouswork (Safi et al., 2014). The photoautotrophic
growth course contained six sample points at 3, 4, 5, 6, 7, and 8 d, corresponding to
an OD600 of 1.5, 3.03, 3.42, 5.24, 6.05, and 6.98, respectively. The heterotrophic ex-
periment was sampled at 4.24, 4.75, 5.24, 5.75, and 6.25 d (OD600 = 2.0, 2.82, 3.67,
4.57, 6.29). RNA-seq and proteomics data over the growth course for photoauto-
trophic growth were obtained from Guarnieri et al. (2011) at five time points cor-
responding to optical density of 2, 4, 6, 7, and 8. All samples under this condition,
except sample with OD 2, were depleted in nitrogen (Supplemental File 1).

Determination of Biomass Composition In Silico

Biomass composition to define the BOFs was determined either based on ex-
perimental data or estimated based on a previously described protocol (Thiele and
Palsson, 2010), in which the fraction of protein, DNA, and RNA components were
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estimated from the organism’s genome. Accuracy of the growth predictions using
growth coursemeasured BOFs, and an in silico determined BOFwas evaluated and
compared to two controls obtained for the heterotroph Escherichia coli and the green
algae Chlamydomonas reinhardtii.

For C. vulgaris, we estimated the fractions of the amino acids using the
available genome sequence (GenBank LDKB00000000.1) and the measured
protein content (Zuñiga et al., 2016). For C. reinhardtii, the fractional contribu-
tion of amino acids to the protein biomass was determined using the published
genome (chloroplast genome, GenBank BK000554.2; mitochondrial genome,
GenBank U03843.1; nuclear genome, C. reinhardtii v5.5 from Joint Genome In-
stitute) and from published protein content measurements (Boyle and Morgan,
2009). ForE. coli, the fractions of the amino acids andRNAwere estimated using
NCBI NC_000913.3 and protein and RNA biomass content from the literature
(Feist et al., 2007). The estimated fractional contributions were compared to the
experimentally determined ones as reported in the corresponding genome-scale
reconstructions for C. vulgaris (Zuñiga et al., 2016), C. reinhardtii iRC1080
(Chang et al., 2011), and E. coli iJO1366 (Orth et al., 2011). To facilitate the
comparison, the amount of estimated stoichiometric coefficients was scaled to
resemble the total experimental macromolecular amount of the coefficients (e.g.
protein, nucleotides) in the corresponding model.

Metabolic Network Simulations and Solution
Space Sampling

The experimentally and in silico determined biomass compositions were
used to constrain the model for C. vulgaris iCZ843. The Glc and nitrate uptake
rates were calculated from the experimental data by adjusting time-course ni-
trate measurements to the Gompertzmodel (Acuña et al., 1999) usingMATLAB
(The MathWorks Inc.). To simulate heterotrophic conditions, Glc uptake rate
was 0.3025 mmol/gDW/h. Experimental nitrate uptake rates are shown in
Figure 4B. To simulate photoautotrophic conditions, CO2 uptake was con-
strained to 15.3 mmol/gDW/h, and the photosynthetic oxygen evolution to
8.31 mmol/gDW/h (Zuñiga et al., 2016). Under both growth conditions, the
nitrate uptake rate was not constrained. Supplemental Table S8 summarizes the
applied constraints at each condition.

Genome-scale model simulations were performed using the Gurobi Optimizer
Version 5.6.3 (Gurobi Optimization Inc.) solver in MATLAB (The MathWorks Inc.)
with theCOBRAToolbox (Schellenberger et al., 2011). FBAwas used to simulate the
genome-scale model (Orth et al., 2010). To scan the solution space, to calculate flux
ranges for each reaction, and to determine active reactions under the simulated
conditions in the metabolic model, FVA (Mahadevan and Schilling, 2003) and
random sampling of the metabolic model solution space were used. To uniformly
sample the solution spaceof iCZ843, optGpSampler (Megchelenbrink et al., 2014) for
MATLABwithGurobiOptimizerVersion 6.5.0wasused. TheBOFwasfixed to 90%
and 100% of the predicted growth rates to better characterize the solution space.
Before sampling, all reactions that could not carry flux under the simulated condi-
tionswere removed from themodels usingFVA.The reducedmodelswere sampled
with 50,000 sample points and a step count of double the number of reactions in the
correspondingmodel. Reactions carrying an absolute flux lower than 10210 were set
to zero.

Comparison of Expression Data with Flux Distributions

There is an emerging interest in developing methods to analyze nonlinear rela-
tionships inbigbiologicaldata sets (Székely andRizzo, 2009;Chenet al., 2010;Reshef
et al., 2011). Currently, omics data are often analyzed using simple mathematical
methods, such as correlations (i.e. Pearson). However, complications with correla-
tions arise when different data sources are obtained at different time points. Fur-
thermore, conventional linear comparisons may not detect nonlinear trends, risking
inaccurate interpretation of data (Pernet et al., 2013). To address these issues, we
applied an iterative regression-based statistical approach applicable for both pair-
wise andnonpairwise linear andnonlinear tendencies,which candescribe a number
of possible behaviors observed in biological systems. This approach is able to reveal
complex relationships between flux and gene expression using time-course obser-
vations, which can be sampled at equal or different time points within the same
timeframe. Figure 1 and Supplemental Figure S5 depict a case example and flow
diagram of the proposed approach.

Computational Approach and Data Preparation

To determine the agreement between predicted flux distributions and RNA-
seq data under photoautotrophic growth conditions, the model iCZ843 (Zuñiga

et al., 2016) was constrained with the biomass composition measurements. The
trends of the resulting flux distributions over the six different time points were
then compared to the trends of the expression data over the five collected
samples using a statistical approach as described schematically in Figure 1.

For each time point, all active reactions in iCZ843, i.e. reactions that can carry
flux under the simulated conditions, were determined using FVA (Mahadevan
and Schilling, 2003). Based on the FVA result, the reactions active under all
studied time pointswere collected in amaster file. Sincewewere only interested
in internal reactions, demand, exchange, and biomass reactions were removed
from this list. To quantitatively describe the flux ranges for each active reaction,
minimal, maximal, and median value were determined based on the sampling
results. Although only the median value is used in the subsequent steps, the
minimal and maximal values were kept to indicate the possible flux ranges. For
each active reaction, the associated genes were obtained from iCZ843 and used
to obtain the corresponding expression values for all time points.

Normalization and Fitting

First,we independentlynormalized (1) thepredictedfluxes for each reactionover
all six timepointsand (2) the timeseries expressiondata for eachgeneassociatedwith
the active reactions over all five time points. Note that we createdmodels with each
biomass composition measurement taken for six different time points, whereas the
RNA-seqdatawere collectedatfive timepoints.Although thenumberof samples for
both data sets is different, the time points and ODs at which the physiological and
expression data were sampled correspond to each other.

For each active reaction r, the flux value for each time point i = 1,...,6 was
normalized within a range between 0 and 1 using the median flux value Xr,i for
reaction r, at time point i and the minimal (Xr,min) and maximal (Xr,max) flux
values for reaction r over all six time points as shown in Equation 1.

Nr;i ¼ Xr;i2Xr;min

Xr;max2Xr;min
ð1Þ

To normalize the expression values for each gene g at time point j = 1,...,5 within
a range between 0 and 1, the average expression value Xg,j for gene g at time
point j and the minimal (Xg,min) and maximal (Xg,max) average expression value
for gene g over all five time points was used as shown in Equation 2.

Ng;j ¼
Xg;j2Xg;min

Xg;max2Xg;min
ð2Þ

Subsequently, the normalized trends for fluxes and expressionwere iteratively fitted to
linear, quadratic, cubic, exponential, and two-term exponential regression models. We
used thecoefficientofdetermination,R2, asameasureof thequalityof thefit.TheR2was
determined by least-minimum squares fitting using MATLAB (The MathWorks Inc.).

Testing the Consistency between Expression and Predicted
Flux Trends

The Statistics andMachine LearningToolbox ofMATLAB (TheMathWorks Inc.)
was used to fit all regression models (see Fig. 1; Supplemental Fig. S5). The toolbox
uses a least-squares method as standard approach to obtain the coefficient and SE

estimates. There are two important assumptions that are usually made for this
method. First, the difference between an observed value and the fitted value pro-
videdby amodel exists only in the response data. Second, the errors followanormal
(Gaussian) distribution with zero mean and constant variance. Regression-based
approaches, such as linear, quadratic, cubic, exponential, and two-term exponen-
tial models applied in this study, require at least three observations for linear re-
gression and four observations for the others (Simonton, 1977).Our study consists of
five (experimental expression trends) and six observations (predicted flux), respec-
tively. The significance of the regression fitted coefficients was taken into account as
well as the experimental and predicted uncertainty before performing the fitting.

The iterativefittingofeachgenetrendorreactiontrendstartedbyselectingthe less
complex model or parsimonious model (R2 . 0.6.) to avoid over fitting. If R2 was
below the threshold, the next higher order regressionmodelwas taken into account.
Once the regressionmodel with R2. 0.6 for fluxes and expressionwas determined,
the homogeneity Student’s t test a = 0.05 for each coefficient fitted in the regression
model was determined. The homogeneity test of coefficients was performed by
estimating the T-value, where the null hypothesis (H0) is that the coefficients are
equal, while the alternative hypothesis (Ha) is that the coefficients are different
(Montgomery, 2012). The chosen value or significance levelwas 0.05, corresponding
to a critical T-value of 1.83 at 9 degrees of freedom (degree of freedom for expression
data = 4, degree of freedom of flux distributions = 5). The decision rule was as fol-
lows: H0 is rejected if T-calculated is less than the critical T-value of 1.83 (Steel and
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Torrie, 1960). The agreement between the trend of gene expression over time and
predicted flux values over time was defined by full agreement of the significant
coefficients under the decision rule. Note that nonsignificant coefficients were not
consideredduring the analysis. In case the coefficients are not similar (H0 is rejected),
the test was repeated for the next higher-order regression model. When the hull
hypothesis was rejected for all regressionmodels, the accordance flux-to-expression
was detonated as nonagreement.

The R2 value of 0.6 used in the selection of a regression curvewas chosen as a
common guideline when analyzing biological data (Cook andWeisberg, 2009).
To investigate any effect of varying this parameter, we performed a robustness
analysis of the R2 parameter by varying the minimum R2 allowed to start the
iterative comparison of the fitted coefficients in each regression model. Re-
ducing the R2 results in more linear regression being chosen more often, since
this regression type is the first iteration tested. However, the total number of
genes with agreement flux-to-expression only varied from 58% to 87% for an R2

varied range from 0.1 to 0.9, indicating that identified relationships were rela-
tively consistent with respect to this parameter (see Supplemental Fig. S6).

Considerations and Decision Making

Twenty-five percent of the active internal reactions (n = 395) are associated
with more than one gene. These genes are either isozymes, i.e. they are con-
nected by an OR relationship, or form multisubunit enzyme complexes,
meaning that they all are required to catalyze the reaction and are connected by
an AND relationship. If the reaction is catalyzed by two or more isozymes, the
first gene for which the homogeneity test was positive was selected to describe
the reaction flux; the other isozymes were not taken into account for further
analyses. In the case of multienzyme complexes, the flux trend was said to be in
agreement with the expression data profile over time if the homogeneity test
was positive for all genes participating in the multisubunit enzyme.

Feedback Validation Methods: Omics Data Correlation and
Allosteric Information

An analysis of how the transcription values (fragments per kilobase million
values) of the metabolic genes correlate with proteomics data (normalized
spectral abundance factors; Guarnieri et al., 2011) was performed by calculating
the Pearson correlation coefficient between transcriptomic and proteomic data.
A bidirectional BLAST analysis was done to match the proteins originating
from this transcriptome study and the genome-based transcriptome as used in
the metabolic model iCZ843 (Zuñiga et al., 2016). The reactions without sta-
tistical agreement (flux-to-expression) were linked to the available allosteric
reactions information. Because of the current lack of knowledge about allosteric
regulation in Chlorella species as well as for other phototrophs (Krusteva et al.,
1984; Weinstein and Beale, 1985), mapping was based on the available list of
known allosteric reactions in the database ASD v3.0 (Shen et al., 2016).

Predicting Gene-Protein-Reaction Association Based on
Flux-to-Expression Trend Matching

Theconstraints applied to themodel resulted in thepredictionofflux through
reactions that are necessary to produce biomass. Within these active reactions,
there are 137 transport reactions that have no GPRs associated. In order to
providegene annotation for those reactions and increase the knowledge of the so
far poorly understood exchange between organelles inChlorella, we performed a
reverse identification, in which predicted flux trends of the active reactions
were compared to expression trends of all genes in the genome by following the
methodology depicted in Figure 1B. Using trends of statistical similarity be-
tween their expression and flux across conditions, putative GPRswere assigned
to these transport reactions. After the identification of putative GPRs, manual
curation and quality control (i.e. bidirectional BLAST) was performed.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data li-
braries under accession numbers LDKB00000000.1, U03843.1, and NC_000913.3.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. A comparison of active reactions between pho-
toautotrophic (PA) and heterotrophic (H) growth conditions.

Supplemental Figure S2. Normalized expression under photoautotrophy.

Supplemental Figure S3.Histograms of calculated R2 by regression model.

Supplemental Figure S4. Venn diagram overview of the active reactions.

Supplemental Figure S5. Flow diagram of the regression-based approach
described in Figure 1.

Supplemental Figure S6. Robustness analysis of the coefficient of deter-
mination (R2).

Supplemental Table S1. Calculation of C. vulgaris protein composition
based on the genome information.

Supplemental Table S2. Active reactions at each sampled point and
condition.

Supplemental Table S3. Sampled point-specific active reactions under het-
erotrophic growth.

Supplemental Table S4. Reactions only active under heterotrophic or pho-
toautotrophic growth.

Supplemental Table S5. Reactions associated to genes without agreement.

Supplemental Table S6. Active reactions associated with multisubunit
proteins in the C. vulgaris genome-scale model.

Supplemental Table S7. Transport reactions list with new GPR association.

Supplemental Table S8. Applied constraints to simulate the growth of
C. vulgaris using iCZ843 under photoautotrophic and heterotrophic con-
ditions (adapted from Zuñiga et al., 2016).

Supplemental Text. Methods and results of the comparison between in
silico BOF and experimental BOF.

Supplemental File 1. Condition-specific C. vulgaris genome-scale metabolic
models.

Supplemental File 2. C. vulgaris model iCZ946.
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