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Chloroplasts are multifunctional organelles whose morphology is affected by environmental stresses. Although the three-
dimensional (3D) architecture of thylakoid membranes has been reported previously, a 3D visualization of chloroplast under
stress has not been explored. In this work, we used a positive-strand RNA ((+)RNA) virus, barley stripe mosaic virus (BSMV) to
observe chloroplast structural changes during infection by electron tomography. The analyses revealed remodeling of the
chloroplast membranes, characterized by the clustering of outer membrane-invaginated spherules in inner membrane-derived
packets. Diverse morphologies of cytoplasmic invaginations (CIs) were evident with spherules at the periphery and different
sized openings connecting the CIs to the cytoplasm. Immunoelectron microscopy of these viral components verified that the
aberrant membrane structures were sites for BSMV replication. The BSMV aa replication protein localized at the surface of the
chloroplasts and played a prominent role in eliciting chloroplast membrane rearrangements. In sum, our results have revealed
the 3D structure of the chloroplasts induced by BSMV infection. These findings contribute to our understanding of chloroplast
morphological changes under stress conditions and during assembly of plant (+)RNA virus replication complexes.

Chloroplasts are responsible for the eukaryotic pho-
tosynthesis and carbon fixation, thus providing energy
for much of life on the earth. Chloroplast biogenesis is a
complex process and is highly integrated with cellular
and plant development (Yang et al., 2010; Pogson et al.,
2015). Although three-dimensional (3D) models of the
thylakoid membrane architecture have been created using
electron tomography of higher plant chloroplasts (Shimoni
et al., 2005; Daum et al., 2010; Austin and Staehelin, 2011;
Kowalewska et al., 2016) and Chlamydomonas reinhardtii

chloroplasts (Engel et al., 2015), a 3D visualization of
chloroplast changes in response to external stresses
(e.g. viral attack) has not been investigated.

Positive-strand RNA viruses often manipulate host
membrane systems to form microenvironments for
replication and use diverse intracellular membranes to
assemble viral replication complexes (VRCs; Salonen
et al., 2005; Laliberté and Sanfaçon, 2010; Verchot, 2011;
Romero-Brey and Bartenschlager, 2014). The VRCs, on
one hand, are thought to shield viruses from host de-
fense systems such as RNA silencing, and on the other
hand, provide a microenvironment for enriching viral
replication proteins, diverse host factors, and energy
needed for efficient replication of progeny viral RNAs
(Schwartz et al., 2004; Novoa et al., 2005; Miller and
Krijnse-Locker, 2008; Verchot, 2011). VRCs have been
detected in mitochondrial membranes (Kopek et al.,
2007), endoplasmic reticulum membranes (Restrepo-
Hartwig and Ahlquist, 1996), chloroplast membranes
(Hatta et al., 1973), and peroxisomal membranes
(Fernández de Castro et al., 2017). Intriguingly, some
viruses, such as tomato bushy stunt virus, can utilize
alternative organelles for replication (Jonczyk et al.,
2007; Xu and Nagy, 2014). Despite the different loca-
tions of VRCs, the viral replication compartments share
some common features such as invaginated vesicles/
spherules or double membrane vesicle structures and a
pore-like opening to the cytoplasm (den Boon et al.,
2010; Paul and Bartenschlager, 2013).
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Random sectioning used in conventional electron
microscopy often misses crucial and subtle structural
dimensions such as the sizes and shapes of vesicles
(Baumeister, 2002). To more fully understand mem-
brane structures within organelles and their functions,
electron tomography based on transmission electron
microscopy (TEM) or dual beam focused ion beam
scanning electron microscopy (FIB-SEM) are increas-
ingly used for 3D reconstructions of altered membranes
during viral infection (Laliberté and Zheng, 2014; Risco
et al., 2014; Harak and Lohmann, 2015; Fernández de
Castro et al., 2017). Kopek et al. reported the first 3D
architecture of the membrane-bound (+)RNA virus
replication compartments in flock house virus-infected
Drosophila cells (Kopek et al., 2007). A recent electron
tomographic analysis of turnip mosaic virus (TuMV)-
induced intracellular rearrangements revealed that the
vesicle-like structures apparent in two-dimensional
(2D) TEM images are, in fact, tubules (Wan et al.,
2015). In 2015, a reconstruction analysis of ER-derived
membranous spherules induced during beet black
scorch virus infection provided the first 3D model of
VRCs of a plant (+)RNAvirus (Cao et al., 2015). Gómez-
Aix et al. also determined the 3D architecture of
remodeled mitochondria in melon necrotic spot virus-
infected cells by focused ion beam-field emission
scanning electron microscopy (Gómez-Aix et al., 2015).
Collectively, electron tomography has become a pow-
erful tool that can accurately define the overall archi-
tecture of intracellular membranes as well as changes in
organelles during virus infection.
Viral proteins often play crucial roles in mediating

the rearrangement of host endomembrane systems
during virus infection (Paul and Bartenschlager, 2013).
For example, hepatitis C virus NS5A and NS4B can
induce the formation of double- and single-membrane
vesicles, respectively (Romero-Brey et al., 2012). Brome
mosaic virus (BMV) expression of different ratios of the
1a and 2a proteins induces distinct spherules with al-
tered sizes (Schwartz et al., 2004). The closterovirus 1a
and 1ab proteins also facilitate membrane remodeling
and formation of multivesicular replication platforms
(Gushchin et al., 2017). TuMV 6K2 is responsible for
endomembrane alterations (Beauchemin et al., 2007). In
addition, it has also become evident that remodeling of
host endomembrane systems involves participation of
viral RNAs and diverse host factors (Kallio et al., 2013;
Wang, 2015; Kovalev et al., 2016).
Barley stripe mosaic virus (BSMV) is the type mem-

ber of the genus Hordeivirus and infects numerous
monocots and dicots (Jackson et al., 2009). BSMV has a
tripartite positive-strand RNA genome encoding seven
major proteins. The aa and ga proteins are encoded by
the RNAa and RNAg genomes, respectively, and are
essential for BSMVRNA replication. RNAb encodes the
coat protein (CP) for viral RNA encapsidation, and
subgenomic (sg) RNAs derived from RNAb serve as
mRNAs for the triple gene block proteins responsible
for cell-to-cell movement. The multifunctional gb pro-
tein is a BSMV pathogenicity determinant that is

translated from sgRNAg (Jackson et al., 2009). During
BSMV infection and VRC formation, chloroplast abnor-
malities are induced that include cytoplasmic invagina-
tions (CIs) and peripheral vesicles in the chloroplasts
(Carroll, 1970;McMullen et al., 1978; Lin and Langenberg,
1984, 1985; Torrance et al., 2006). Although previous
studies indicated that chloroplasts are deformed in
BSMV-infected plant cells, aberrant chloroplast struc-
tures arising during infection, particularly the 3D ar-
chitecture and the molecular mechanisms underlying
formation of the chloroplast-derived membranous struc-
tures, have not been investigated in detail. To clarify
details of the chloroplast architecture in BSMV-infected
Nicotiana benthamiana, we performed electron tomogra-
phy to unravel the 3D structure of abnormal chloroplast-
derived VRCs and CIs and carried out experiments to
explore the functions of viral factors functioning in re-
modeling the chloroplasts.

RESULTS

Ultrastructural Analysis of BSMV-Infected Cells by
Transmission Electron Microscopy

To investigate the ultrastructural changes in cells
during BSMV infection, leaf tissues from healthy or
BSMV-infected N. benthamiana leaves were chemically
fixed and embedded in resin for TEM analysis. During
BSMV infection, dramatic alterations of chloroplast
structure occurred as CIs containing large amounts of
virus-like particles (VLPs), and peripheral invagina-
tions appeared (Fig. 1, B–D), whereas similar structures
were absent in uninfected N. benthamiana chloroplasts
(Fig. 1A). Interestingly, membrane invaginations con-
nected to CIs were also observed at the periphery of the
CIs (Fig. 1C, white arrows), and they were very similar
to the other invaginations at the chloroplast periphery
(Fig. 1, C and D, white arrowheads). In addition, spher-
ules with an ;50 nm diameter were observed occasion-
ally within chloroplast envelope invaginations (Fig. 1D,
boxed region). Moreover, other cellular changes, includ-
ing membrane inclusions and elongated mitochondria,
were observed occasionally (Supplemental Fig. S1, A and
B). At the late stages of BSMV infection, cytoplasm con-
taining large amounts of VLPs often protruded into the
vacuole (Supplemental Fig. S1C). Taken together, these
results reveal that numerous dramatic cytopathological
changes are induced during BSMV infection, in particular
chloroplast membrane remodeling.

Localization of BSMV Double-Stranded RNAs (dsRNAs) and
Proteins in BSMV-induced Chloroplast Membrane Structures

Our previous results revealed that chloroplasts are
sites for replication of BSMV (Zhang et al., 2017). To
further determinewhether the BSMVreplication protein
aa and dsRNA replicative intermediates associate
with chloroplast-derived membrane structures, immu-
noelectron microscopy was performed. Gold particles
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conjugated to dsRNA antibodies specifically labeled
chloroplast invaginations of the chloroplast envelope or
at the periphery of the CIs (Fig. 2, A and B, boxed re-
gions). Meanwhile, antibodies against the aa protein
showed specific labeling of the chloroplasts, which was
characterized by the distribution of gold particles on
the envelope membranes, invaginations, and the CI
membranes (Fig. 2, C–E, boxed regions and arrow-
heads). In addition, labeling with a BSMV CP-specific
antiserum revealed specific decoration of VLPs within
the CIs, as well as the cytoplasm (Fig. 2, F and G),
demonstrating that the abundant VLPs present within
the CIs are indeed the BSMV virions. For control healthy
leaf tissue, only a very low background labeling was

detected in the chloroplasts or other cellular regions
(Supplemental Fig. S2).

Moreover, chloroplasts from mock- and BSMV-
inoculated N. benthamiana leaves were purified and
subjected to western blot and reverse transcription
(RT)-PCR analyses (Supplemental Fig. S3). The results
showed that the aa protein and the CP can be readily
detected in chloroplasts purified from the BSMV-
infected leaf tissues, but not from mock-inoculated
plants (Supplemental Fig. S3A). As a control, poten-
tial contamination of the purified chloroplasts by
cytoplasmic constituents was eliminated because the
cytoplasmic-localized phosphoenolpyruvate carboxylase
(PEPC) was only detected in total protein extracts from

Figure 1. Ultrastructural changes in chloroplasts during BSMV infection of N. benthamiana. A, Healthy N. benthamiana leaves
served as a control. B to D, Deformed chloroplasts in BSMV-infected N. benthamiana leaf tissues. B, CIs present in chloroplasts
within a BSMV-infected cell. C, Virus-like particles (black arrows) were present within a CI, and membrane invaginations were
observed at both the periphery of CI and the chloroplast envelope membranes (white arrows and arrowheads). D, Invaginations
present around the chloroplast envelope (white arrowheads). Inset area showsmagnification of the spherule that was occasionally
observed inside the invagination. Chl, Chloroplast; S, starch granule; CI, cytoplasmic invagination; VLP, virus-like particle; CW,
cell wall. Scale bars, 500 nm.
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leaf tissues, but not from isolated chloroplasts (Supple-
mental Fig. S3A). RT-PCR analysis also showed that both
plus- andminus-strand BSMVRNAswere present in the
isolated chloroplasts. Controls also indicated that chlo-
roplast PSII core protein C was restricted to the chloro-
plast fraction, whereas cytoplasmic 18S rRNA (18S
rRNA) control was difficult to detect in the isolated
chloroplasts (Supplemental Fig. S3B). Collectively, these
data indicate that viral RNA synthesis occurs in the
chloroplast membrane invaginations.

3D Reconstruction of BSMV-Induced Chloroplast
Membrane Structures

To characterize the 3D architecture of BSMV repli-
cation factories, and the CIs of chloroplasts induced by
BSMV, we performed electron tomography analysis.

The results showed that peripheral invaginations and
spherules from the envelope membranes and large
CIs are present in the remodeled chloroplasts (Fig. 3A),
whereas such structural abnormalities in chloro-
plasts were absent in healthy N. benthamiana cells
(Supplemental Movie 1). The peripheral invaginations
were continuous with the inner chloroplast membrane,
but not the outer membrane (Fig. 3, B and C, arrow-
heads), and spherules were frequently observed inside
the inner membrane-invaginated packets (Fig. 3, B and
C; Supplemental Movie 2). These spherules were con-
nected to the outer membrane in some slices (Fig. 3, B
and C), indicating that the smaller spherules are in-
vaginations of the outer membrane. In addition, one or
more spherules were surrounded by inner membrane-
derived packets (Fig. 3, B and C; Supplemental Movie
2), and the CIs with large amounts of virus particles
inside were double-membrane bounded (Fig. 3A;
Supplemental Fig. S4, A and B). A 3D surface render-
ing of the chloroplast membranes clearly demon-
strates that all of the spherules (Fig. 3D, light yellow)
originate from the outer membranes (Fig. 3D, light
blue) and have a tight neck-like opening to the cyto-
plasm (Fig. 3H, arrowhead and black dashed circle).
The inner chloroplast membrane-derived invagina-
tions (Fig. 3, D, E, and G, translucent white) form
packets of varying sizes that enclose one or more
outer membrane-derived spherules (Fig. 3, D–G; Supple-
mental Movies 3 and 4). The inner membrane invagina-
tions had an average diameter of 1126 41 nm (n = 16).
The average length and width of the spherules were
55 6 8 nm and 42 6 7 nm (n = 20), respectively, and
their necks had an average diameter of 116 4 nm (n= 20).
Taken together, 3D electron tomography clearly
revealed that the chloroplast invaginations are com-
posed of inner chloroplast membrane-derived packets
containing variable numbers of outer membrane-
derived spherules. Each of the spherules has a narrow
opening to the cytoplasm, supporting a role in BSMV
replication.

FIB-SEM Tomography of the Chloroplasts Reveals Diverse
Morphology of CIs During BSMV Infection

In addition to peripheral invaginations on the chlo-
roplast surfaces (Fig. 3D), another remarkable feature of
BSMV-induced chloroplast abnormalities is the forma-
tion of CIs (Figs. 1 and 3). Electron tomography was
also performed to characterize the CIs. Transmission
electron tomographic analyses revealed that CIs are
bound by double membranes and that some invag-
inations are present at the periphery of the CIs
(Supplemental Fig. S4, A and B). Furthermore, spher-
ules were also observed in these invaginations and
were connected to the CI (Supplemental Fig. S4B, ar-
rowheads) and are similar to spherules within the
chloroplast membrane packets as described in Figure
3B. A 3D surface rendering of the CI confirmed that
these spherules are identical to the chloroplast outer

Figure 2. Immunoelectron microscopy of viral dsRNA and proteins in
BSMV-infectedN. benthamiana cells. A and B, Immunogold labeling of
dsRNA in BSMV-infected N. benthamiana cells. Insets I and II show
magnifications of the corresponding boxed regions. C to E, aa locali-
zation at envelope membranes (white arrowheads), small invaginations
(boxed regions), and CI periphery (white arrowheads) in BSMV-infected
N. benthamiana cells. Black arrows point to virus-like particles. Boxed
areas show the invaginations at the CI periphery. F and G, CP-specific
antiserum showed specific labeling of virus-like particles (black arrows)
in the cytoplasm and CIs. Note: OsO4 fixation of the leaf tissues was
omitted to preserve antigenicity of target molecules. Hence, the fine
structure of cellular membranes could not be unambiguously visual-
ized. Chl, Chloroplast; CI, cytoplasmic invagination; VLP, virus-like
particle; CW, cell wall. Scale bars, 200 nm.
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membrane-invaginated spherules, as evidenced by their
similar sizes and external connections (Supplemental
Fig. S4, C–F; Figure 3D; Supplemental Movies 4 and 5).
Due to the large sizes of the CIs, we could only obtain
partial CI structures by transmission electron tomogra-
phy (Supplemental Fig. S4, C and D; Supplemental

Movie 5). Nevertheless, these preliminary data imply
that the CIs resemble cavern-like structures generated by
continuous invagination of the chloroplast envelope
membranes.

In order to reconstruct whole chloroplast CI struc-
tures, FIB-SEM, a powerful tool to determine the struc-
tures of large organelles, was performed to reconstruct
the whole chloroplast with CIs. Figure 4, A to D, shows
different slices from the same chloroplast. The images
clearly show that a small CI opening was present in
some slices (Fig. 4, B and C, arrowheads), but that the
openings were not evident in contiguous slices (Fig. 4,
A and D, arrowheads). These results indicate that the
above CI has a very small opening because the dis-
tance between the two slices is only 50 nm. In addition,
a mitochondrion was enclosed in the CI of this chlo-
roplast (Fig. 4, A–D). However, in some chloroplasts,
the opening of the CI is very large (Fig. 4, E–H, ar-
rowheads). A 3D reconstruction of the chloroplast
shown in Figure 4, A–D reveals a large number of
small invaginations (Fig. 4, I and J, white arrowheads)
at the surface of the chloroplast (Fig. 4, I and J, green
envelope) that correspond to the membrane invagi-
nations shown in Figure 3D. Meanwhile, small open-
ing of the CI was present on the surface of the
chloroplast (Fig. 4J, black arrow). In order to visualize
the 3D architecture of the CI in more detail, the color of
the chloroplast membrane was changed to translucent
(Fig. 4J; Supplemental Fig. S5B). The results of this
manipulation show that the CIs (yellow) have irreg-
ular shapes (Fig. 4J; Supplemental Fig. S5, A and B),
with many protrusions present on the CI surface (Fig.
4J; Supplemental Fig. S5B; Supplemental Movies
6 and 7), that correspond to the small invaginations
around the CIs. These data suggest that the double-
membrane bound CIs with openings are also gener-
ated by the invagination of the chloroplast membranes.
A 3D reconstruction of the chloroplast shown in Figure
4, E to H, was also performed. In addition to small in-
vaginations on the surface of the chloroplast envelope
membranes (Fig. 4, K–M, white arrowheads), the big
opening shown in Figure 4, E to H (white arrowheads),
was, in fact, a deep invagination of chloroplast enve-
lope (Fig. 4K, black arrow; Supplemental Movie 8). In-
triguingly, cavern-like invaginations were frequently
observed on the surface of the chloroplast (Fig. 4, L and
M, white arrows), indicating the irregular appearance of
chloroplast membranes under viral attack (Supplemental
Movie 8). The experiments described above provide
a high-resolution model of chloroplast remodeling
occurring during BSMV infection and suggest that
the complex invaginations provide sites for virus
replication.

The aa Replication Protein Plays a Major Role in Initiating
Chloroplast Remodeling during BSMV Infection

To identify BSMV components contributing to chloro-
plast remodeling, Agrobacterium tumefaciens derivatives

Figure 3. Three-dimensional visualization of remodeled chloroplast
membranes in BSMV-infected cells by transmission electron tomogra-
phy. A, Representative tomogram slice generated from a 250-nm-thick
section of systemically infectedN. benthamiana leaves. BSMV-induced
peripheral invaginations and large CI can be observed in chloroplast.
Boxed area shows the invaginations at the chloroplast periphery. B
and C, Different slices of the boxed area shown in A. Yellow ar-
rowheads show peripheral invaginations with internal spherules. D,
3D model of chloroplast membranes shown in A. Light blue, outer
chloroplast membrane; translucent white, inner chloroplast mem-
brane; light yellow, spherules derived from the outer membrane;
white arrowheads, peripheral invaginations of the chloroplast. E,
Close-up view of the area indicated by white arrowheads in D
without showing the outer chloroplast membrane. F, Close-up view
of the area indicated by white arrowheads in D without showing the
inner chloroplast membrane. G, Close-up view of the area indicated
by white arrowheads in D showing both the outer and inner chlo-
roplast membranes. H, A 90° rotation of G highlighting spherule
connections (arrowhead and black dashed circle) to the cytoplasm.
CI, Cytoplasmic invagination. Scale bars, 200 nm. This tomogram is
shown in Supplemental Movies 2 to 4.
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harboring pCass4-Rz-BSMV (pCaBS)-a and pCaBS-g,
which are sufficient to support BSMV replication
(Jackson et al., 2009), were coinfiltrated into N. ben-
thamiana leaves. TEM analysis was performed at 3 d
postinoculation (dpi). As shown in Figure 5, expression
of RNAa and RNAg is sufficient to induce peripheral
invaginations and large CIs in chloroplasts (Fig. 5, A
and B), andmore than 70% of the chloroplasts observed
in the infiltrated regions developed structural anoma-
lies similar to those of wild-type BSMV-infected plants
(Fig. 1). Some CIs had large openings to the cytosol (Fig.
5A), in agreement with the feature of the CIs as de-
scribed in Figure 4. Next, each component encoded by
RNAa and RNAg was transiently expressed in N. ben-
thamiana leaves. In order to achieve high expression levels
and easy detection of protein expression, the aa and ga
genes were fused to the 59 terminus of the GFP gene
and cloned under control of the CBF3 super promoter

(Chinnusamy et al., 2003; Yang et al., 2010). The results
revealed thataa-GFP can induce formation of CIs similar
to those observed in BSMV-infected cells (Fig. 5C, white
arrows), and the altered chloroplasts accounted for
about 20% of the observed chloroplasts. In contrast, CIs
were not observed in either ga-GFP or gb-infiltrated
leaves (Fig. 5, D and E). Expression of these three
proteins was confirmed by western blotting (data not
shown). However, we should point out that despite
the ability of aa-GFP to induce CI formation, spher-
ules were difficult to observe in aa-GFP-expressing
leaf tissues (Fig. 5C). This may be explained by a re-
quirement for coexpression of the ga, gb, or perhaps
BSMV RNA components for complete formation of
membranous replication vesicles. Irrespectively, our
results indicate that aa is a major factor mediating
chloroplast membrane rearrangements during BSMV
infection.

Figure 4. Three-dimensional visualization of
BSMV-induced cytoplasmic invaginations by
FIB-SEM. A to D, Four different slices from
the same chloroplast selected to illustrate CI
structures. Arrowheads indicate 3D variations
in the CI opening. E to H, A series of slices from
another chloroplast showing morphological
changes of the CI. Arrowheads indicate 3D
variations in the CI opening. I to J, A 3D surface
rendering of the chloroplast tomogram in A to
D. Green, chloroplast; Yellow, CI. To empha-
size the CI (yellow) inside the chloroplast, the
appearance of chloroplast shown in I was
changed to translucent (J). White arrowheads
indicate chloroplast envelope invaginations
similar to those in Fig. 3D; black arrow point to
the CI opening. The image inset in J is an en-
larged view of the CI. Note: the 3Dmodel in I to
J represent partial 3D architecture of the chlo-
roplast shown in A to D; see Supplemental
Movies 6 and 7 for the complete 3Dmodel. K to
M, Different views of the 3D model corre-
sponding to the chloroplast shown in E to H.
White arrowheads indicate chloroplast enve-
lope invaginations similar to those in Fig. 3D;
black arrow points to the CI apertures; white
arrows indicate cavern-like invaginations pre-
sent on the surface of the chloroplasts. This to-
mogram is shown in Supplemental Movie 8.
Chl, Chloroplast; CI, cytoplasmic invagination;
Mt, mitochondria. Scale bars, 500 nm.
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aa Localizes to the Surface of the Chloroplast

Our previous reports revealed that aa-GFP localizes
to the chloroplasts (Zhang et al., 2017), and our current
immuno-EM analyses demonstrate that aa also is tar-
geted to the membranous invaginations (Fig. 2, C–E).
To investigate whether aa localizes to the surface or
the interior of the chloroplasts, protease protection
assays were performed as previously described (Ham
et al., 2006). Intact chloroplasts were isolated from
N. benthamiana leaves infiltrated with Agrobacterium
harboring aa-GFP, AtTOC64-GFP (Breuers et al., 2012),
or chloroplast stroma marker ribulose-1,5-bisphosphate
carboxylase small subunit GFP fusion (RbcS-GFP) plas-
mids (Lee et al., 2002), and the chloroplasts were treated
with thermolysin in the presence or absence of Triton
X-100. The results showed that GFP-fused aa (aa-GFP)
was only detected in purified chloroplasts prior to
thermolysin incubation (Fig. 6A). Control leaves
expressing AtTOC64-GFP, a protein localized to the
outermembrane of the chloroplast (Breuers et al., 2012),
also had similar results. In contrast, the internal RbcS-
GFP protein (Lee et al., 2002)was digested by thermolysin
only after the chloroplast membrane was permeabilized
by Triton X-100 (Fig. 6A).

In addition, a bimolecular fluorescence complemen-
tation (BiFC)-based method described previously was
used to confirm the localization of aa to the cytosolic
surface of the chloroplast (Zamyatnin et al., 2006; Chen
et al., 2016). AtTOC64 is an outer-membrane-targeting
protein whose C-terminal domain is exposed on the
cytosolic surface (Qbadou et al., 2007), which provides
putative binding to the aa protein. In contrast, contact
between the aa and AtTIC40 proteins is unlikely in
living cells, as AtTIC40 localizes to the chloroplast inner
membranes (Chou et al., 2003). These protein sequences
were engineered into BiFC vectors to provide C-terminal

fusions with split YFP derivatives and transformed into
A. tumefaciens. At 3 dpi, confocal laser-scanning micro-
scopic analysis of the infiltrated leaf tissues revealed that
YFP signals could be observed only for the combinations
of AtTOC64 and aa, and the interaction between
AtTOC64 and aa occurs on the chloroplast surface, in
agreement with the subcellular localization of either
AtTOC64 and aa (Fig. 6B). In contrast, coexpression of
the aa-nYFP and AtTIC40-cYFP or the aa-cYFP and
AtTIC40-nYFP combinations failed to result in fluores-
cence signals (Fig. 6B), and control leaves coexpressing
split YFP-fused AtTOC64 or AtTIC40 with the corre-
sponding empty BiFC vectors also did not elicit fluo-
rescence signals (Fig. 6B, bottom). These results indicate
that the C terminus of aa faces the cytoplasm, like
AtTOC64, and are consistent with the results of the
protease protection assay showing that aa-GFP is sen-
sitive to thermolysin. Furthermore, total protein extracts
from N. benthamiana leaves agroinfiltrated with the var-
ious BiFC constructs were subjected to western blot
analyses with GFP antibodies to demonstrate that all of
the split YFP-fused proteins are expressed in the infil-
trated leaf tissues (Supplemental Fig. S6). Collectively,
these data demonstrated that aa localizes at the surface
of the chloroplasts.

DISCUSSION

Chloroplasts are one of the most important plant cell
organelles because they are responsible for photosyn-
thesis, synthesis of major phytohormones, participation
in defense response, and are crucial for interorganelle
communication. Chloroplast biogenesis is a complex
process that is affected by environmental factors such
as salt, high temperature, light intensity, and other
stress factors (Ballantine and Forde, 1970; Gounaris

Figure 5. Function of aa in chloroplast
remodeling during BSMV infection.
TEM of agroinfiltrated leaf tissues infec-
ted with BSMV. A and B, TEM of N.
benthamiana leaf tissues coexpressing
BSMV RNAa and RNAg stands. Note
the altered chloroplast membrane struc-
tures like cytoplasmic invaginations and
peripheral invaginations. Inset: enlarged
box in A shows cytoplasmic invagina-
tionswith openings facing the cytoplasm.
C to E, TEM of N. benthamiana leaf tis-
sues agroinfiltrated with bacteria harbor-
ingaa-GFP (C),ga (D), andgb (E) plasmids.
Arrows indicate the CIs. Chl, Chloroplast;
CI, cytoplasmic invagination;CW,cellwall;
Mt, mitochondria; Nu, nucleus; Ag, Agro-
bacteria in intercellular spaces. Scale bars,
500 nm.
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et al., 1984; Salama et al., 1994). In addition, the subject
of chloroplast-virus interplay has been recently attract-
ing more and more attention (Zhao et al., 2016;
Bhattacharyya and Chakraborty, 2017). In this study,
electron tomography of the remodeled chloroplasts in
BSMV-infected cells provided a model for the 3D ar-
chitecture of the reorganized chloroplasts, and the viral
proteins involved in the BSMV-induced chloroplast
structural changes were also investigated.

BSMV-Induced Chloroplast Rearrangements Are
Intimately Associated with Virus Replication

Lin and Langenberg (1985) first used root tips from
BSMV-infected wheat cells to probe the location of
dsRNA by immunoelectron microscopy, and revealed
that peripheral vesicles in proplastids contain dsRNA
(Lin and Langenberg, 1985). Our results consistently
showed the intimate association of dsRNA with chlo-
roplast peripheral invaginations in BSMV-infected
N. benthamiana leaf tissues (Fig. 2, A and B). Our results,

in conjunction with those of Lin and Langenberg
(1985), suggest that the chloroplast changes induced
by BSMV are evolutionarily conserved among mono-
cot and dicot families. In addition, BSMV aa replication
protein was also found in close proximity to membra-
nous invaginations (Fig. 2, C–E). These data, together
with the pore-like openings presented in the 3D archi-
tecture of spherules inside these invaginations (Fig. 3H),
unequivocally verifying the chloroplast membrane-
derived spherules are BSMV replication sites.

3D Reconstructions of the Remodeled Chloroplasts During
BSMV Infection

Although diverse plant-virus interactions are able to
cause chloroplast malformations (Zhao et al., 2016),
only a limited amount of detailed information is avail-
able about structural alterations in chloroplasts during
virus infection. Previous studies have shown that turnip
yellowmosaic virus (TYMV) andwild cucumbermosaic

Figure 6. aa localizes to the surface of the
chloroplasts. A, Protease protection assay to
determine chloroplast localization of aa. Intact
chloroplasts were isolated from N. benthamiana
leaves expressing aa-GFP, AtTOC64-GFP, or
RbcS-GFP and subjected to thermolysin diges-
tion with or without Triton X-100 treatment.
Protein samples were prepared from 5-mg
chlorophyll equivalent of chloroplasts and
subjected to western blot analyses using anti-
bodies specified on the right of the panels.
Phosphoenolpyruvate carboxylase (PEPC), a
cytoplasmic enzyme, served as a control to
assess cytosolic contaminations of isolated
chloroplasts. Arrowheads indicate the specific
band of the target protein. B, BiFC analysis
of interactions between the BSMV aa protein
and the chloroplast outer membrane protein
AtTOC64or the innermembrane proteinAtTIC40.
YFP signals are depicted as a false-green color, and
chlorophyll autofluorescence is displayed in red.
Scale bars, 10 mm.
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virus (WCMV) infections lead to the ultrastructural
changes in chloroplasts, including peripheral vesicles
and cytoplasmic invaginations (Ushiyama andMatthews,
1970; Allen, 1972). However, 3D electron tomography
revealed that deformation of chloroplasts induced by
BSMV is distinct from that of TYMV or WCMV. The
BSMV-induced invaginations of the chloroplast inner
membrane are larger than those of TYMV and WCMV,
and the enlarged space could frequently encompass
more than one spherule (Fig. 3), rather than one in the
cases of TYMV and WCMV (Ushiyama and Matthews,
1970; Allen, 1972).

The 3D architecture of BSMV replication compart-
ments also reveals an intriguing parallel among mem-
branous vesicles induced by distantly related viruses
(Kopek et al., 2007; Cao et al., 2015), even though these
membranes are derived from different organelles
(Verchot, 2011; Romero-Brey and Bartenschlager, 2014).
A representative example is the neck-like channel that
connects the interior of the spherule to the cytosol. It is
assumed that these pore-like openings permit entry of
virus and cellular components required for replication,
and exit of progeny RNAs to the cytoplasm. The
structural similarity among membranous vesicles in-
duced by different viruses supports the hypothesis that
an evolutionary conserved mechanism underlies the
assembly of virus replication factories.

Although the formation of CIs on the chloroplasts has
been described in previous 2D EM analyses (McMullen
et al., 1978; Lin and Langenberg, 1984, 1985; Torrance
et al., 2006), the overall architecture of the CIs and de-
tailed mechanisms whereby CIs are generated during
virus infection are obscure. Therefore, electron tomog-
raphy was performed to reconstruct the 3D structure
of BSMV CIs. The results show that abundant virus
particles are present in the CIs (Figs. 1 and 2) and that
spherules are present at the periphery of the CIs
(Supplemental Fig. S4), arguing that replication and
packaging of BSMV replicon RNA are tightly coupled
processes. Considering the fact that both the BSMV
replication proteins aa and ga localize to the chloro-
plast, targeting of viral replication machinery to the
chloroplast is initially mediated by the expression of aa
and ga, followed by recruitment of the gb protein,
BSMVRNAs, and diverse host factors to the chloroplast
to help membranes to curve, stabilize, and activate the
replication complexes for replication (Zhang et al., 2017).
In addition, a replication-coupled packaging strategy
widely utilized in other positive-strand RNA viruses is
also applicable to BSMV, as suggested by virus particles
present in the chloroplast CIs.

FIB-SEM analyses indicated that the BSMV-induced
CIs are irregular cavern-like structures with an opening
of varied sizes that have invaginated into the chloro-
plast interior (Fig. 4). Previous studies reported that
potato mop-top virus (PMTV) also elicited formation of
cytoplasmic invaginations into chloroplasts during in-
fection (Cowan et al., 2012). Serial sections of the chlo-
roplast in PMTV-infected cells revealed open flask-shaped
invaginations (Cowan et al., 2012), similar to those

generated by BSMV. However, the PMTV invagina-
tions differ from the BSMV-induced CIs, in that few
PMTV particles were observed in these CIs and that
peripheral spherules were also absent (Cowan et al.,
2012). In addition, in TYMV-infected cells, enlarged
membrane spaces between two clumped chloroplasts
with large numbers of virus particles inside were ob-
served (Ushiyama and Matthews, 1970), which may
have similar nature with BSMV-induced CIs.

In addition, our studies revealed that the shapes of
the BSMV-induced CIs differ and that the sizes of the
CIs’ openings varied greatly, from large to small
openings (Fig. 4), and in some cases, it was difficult to
discern openings of the CIs (Fig. 4; SupplementalMovie
6). CIs with varied sizes of openings present in the FIB-
SEM analysis allowed us to devise a model whereby
invagination of chloroplast membranes proceeds gradu-
ally during BSMV infection, leading to the appearance of
CIs with diverse morphologies. This can be verified to
some extent by the presence of mitochondrion within the
CIs (Fig. 4, A–D).

Electron tomography analyses of BSMV-induced
structural changes in the chloroplast indicated that
spherules were often observed at the periphery of the
CIs (Supplemental Fig. S4), suggesting a potential rela-
tionship during morphogenesis of these two structures.
In addition, chloroplasts with CIs are more prevalent in
the late stage of BSMV infection than in the early infected
leaf tissues (data not shown), suggesting that the for-
mation of CIs may be resulted from combined effects of
BSMV replication and the physiological responses of the
chloroplasts to virus attack. Also, abundant viral parti-
cles present inside the CIs might imply that involvement
of BSMV virions contributes to some extent to the for-
mation of CIs with diverse morphologies.

The aa Protein Is Essential But not Sufficient for the
Formation of Chloroplast Membrane-Derived Vesicles

Virus-induced remodeling of host endomembranes is
a complicated process that has been shown to involve
participation of diverse viral and host factors. For ex-
ample, formation of ER-derived spherules during BMV
infection requires the viral 1a’s amphipathic a-helix,
helix A, (Liu et al., 2009), and 1a-1a interactions (O’Reilly
et al., 1997; Diaz et al., 2012). In addition, several host
proteins, including membrane-shaping reticulon pro-
teins (Diaz et al., 2010), endosomal sorting complex re-
quired for transport proteins (Diaz et al., 2015), and a
lipid synthesis-related choline requiring2 protein (Zhang
et al., 2016), are recruited by 1a to form spherules.

Our studies reveal that the aa replication protein has
a significant role in rearranging the chloroplast mem-
branes. This finding is in agreement with many previ-
ous reports showing that one or more virus-encoded
proteins contribute predominately to the ultrastructural
changes in cellular endomembrane systems (Schwartz
et al., 2002; Liu et al., 2009; Welsch et al., 2009; Romero-
Brey et al., 2012). However, this does not mean that the
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roles of other viral components in remodeling cellular
membranes are negligible. In fact, we detected the BSMV
aa replication protein and abundant BSMVvirions in the
CIs and chloroplast-derived spherules (Figs. 1 and 2).
We also previously detected colocalization of the aa and
ga proteins, as well as gb, in chloroplasts (Jackson et al.,
2009; Zhang et al., 2017), implying that these viral com-
ponents, together with the aa, may coordinately con-
tribute to chloroplast remodeling and formation of
malformed chloroplasts with diverse morphologies (Fig.
5). Hence, these findings provide the basis for further
studies underway to investigate the detailed molecular
mechanisms responsible for the chloroplast remodeling
during BSMV infection.
In conclusion, our results enhance our understanding

of chloroplast biogenesis under stress conditions and
present the first 3D reconstruction of aberrant chloro-
plast structures induced in response to a (+)RNA virus
infection and provide new insights into the assembly of
(+)RNA virus replication complex.

MATERIALS AND METHODS

Plasmid Construction

All plasmids were constructed according to the standard molecular cloning
methods (Sambrook and Russell, 2001). For transient expression assays, the ga
and gb genes were amplified from pCaBS-g (Yuan et al., 2011; Hu et al., 2015)
and cloned into pSuper1300-GFP containing the CBF3 super promoter
(Chinnusamy et al., 2003; Yang et al., 2010) and pGD as described previously
(Zhang et al., 2017). For BiFC assays, AtTOC64 and AtTIC40 were cloned from
the plasmids AtTOC64-GFP and AtTIC40-GFP (Breuers et al., 2012), re-
spectively, and inserted into pSPYCE-35S or pSPYNE-35S (Walter et al.,
2004). The plasmids pSPYCE-35S-NbrbcL and pSPYNE-35S-NbrbcL were
described in a previous report (Cao et al., 2015). For protease protection
assays, the NbRbcS gene was amplified from Nicotiana benthamiana cDNA
and inserted into pSuper1300-GFP to generate pSuper1300-NbRbcS-GFP.
Primers used for constructing these plasmids are listed in Supplemental
Table S1, and sequence analyses were performed to confirm the accuracy of
all plasmids.

TEM

TEM was performed as described previously (Cao et al., 2015). In brief,
N. benthamiana leaves were cut into pieces and fixed overnight at 4°C in fixation
buffer (2.5% glutaraldehyde, 0.05 M phosphate, pH 7.2). Samples were then
washed three times with fixation buffer followed by postfixation in 2% osmium
tetroxide at 4°C for 2 h. After dehydration in a graded ethanol series (50%, 70%,
80%, 90%, 95%, and 100%), the tissue samples were embedded in Spurr’s resin.
Ultrathin sections (70–90 nm) were cut using a Leica EM UC7 ultramicrotome
and sequentially stained with uranyl acetate for 20 min and Reynolds’ lead
citrate for 5 min. The sections were then viewed with a Hiltachi H-7650 or a
JEM-1230 transmission electron microscope operated at 80 kV.

Immunoelectron Microscopy

Immunogold labeling was performed according to previously described
methodswithminormodifications (Liu et al., 2015). Leaf tissues fromhealthy or
BSMV-infected N. benthamiana were vacuum-infiltrated with a mixture of 3%
formaldehyde, 0.1% glutaraldehyde, 4% Suc in 0.1 M phosphate buffer (pH 7.2)
and fixed at 4°C for 2 to 3 h. After washing with phosphate buffer, the samples
were dehydrated in increasing ethanol concentrations (30%, 50%, 70%, 80%,
95%, and 100%), infiltrated in increasing concentrations of Lowicryl K4M resin
(50%, 75% in methanol, and pure resin), and polymerized under UV light
(360 nm) for 72 h at 220°C, and then for 48 h at room temperature. After
polymerization, ultrathin sections were cut from blocks and collected on

Formvar-coated nickel grids. The grids were incubated in blocking solution
(0.01 M phosphate-buffered saline [PBS], pH 7.2, with 1% bovine serum albu-
min, 0.05% Triton X-100, 0.05% Tween 20) for 5 min at room temperature to
reduce nonspecific binding, and incubated with primary mouse monoclonal
anti-dsRNA antibody (J2, English & Scientific Consulting Kft), rabbit polyclonal
anti-CP or anti-aa antibodies, respectively. Polyclonal aa-specific antibodies
were prepared from the sera of rabbits immunized with the purified aa protein
helicase domain (Zhang et al., 2017). After washing six times with 0.01 M PBS
buffer, the grids were incubated with goat anti-mouse or goat anti-rabbit sec-
ondary antibodies conjugated with 10 nm gold particles, followed by rinsing
with 0.01 M PBS buffer. Finally, sections were stained with uranyl acetate and
Reynolds’ lead citrate prior to viewing with a Hiltachi H-7650 or JEM-1230
transmission electron microscope.

Transmission Electron Tomography

All procedures were performed as described previously with minor modi-
fication (Kang et al., 2011; Toyooka and Kang, 2014). Serial sections (250 nm)
were cut from blocks of BSMV-infected or control N. benthamiana leaf tissues,
and collected on slot grids followed by staining with uranyl acetate and lead
citrate as described above. Fiducial markers consisting of 15 nm gold particles
were deposited on both sides of the sections to facilitate image tracing and
alignment. For BSMV-infected and control samples, double-axis tilt series was
collected with a cooled slow-scan charge-coupled-device camera (4K Eagle) of
FEI TF20 (200 kV) at 1.5° tilt increments from 260° to 60° to obtain 81 images.
After one double-axis tilt series finished, the grid was turned 90° and started the
second double-axis tilt series. For each tilt series, two sections were collected
and joined using the IMOD software package (Kremer et al., 1996), with
324 images were recorded for two sections in one sample in total. The magni-
fication was 14,5003, corresponding to a pixel size of 1.50 nm. The 3D surface
renderings of the tomogramswere performedwith the IMOD software package
(http://bio3d.colorado.edu/imod/doc/3dmodguide.html)

FIB-SEM

Samples for FIB-SEM analysis were prepared as described for TEM with
minor modifications. To enhance the contrast, samples were postfixed in a
mixture of 2% osmium tetroxide and 1.5% potassium hexacyanoferrate at 4°C
for 2 h, followed by block staining with 2% aqueous uranyl acetate overnight at
4°C. Dehydration and embedding were performed as described above.

For FIB-SEM observations, blocks were trimmed to obtain a smooth flat
surface, interested areas were exposed, and the samples were glued on a stage
and sputtered with gold (HITACHI, E1010) for 90 s, followed by placing in the
FIB-SEM microscope (FEI Helios NanoLab G3 UC). A 500-nm-thick layer of
platinum was deposited on the top surface of the block with the gas injector
system. The focused gallium ion beam was used with the slice thickness of
50 nm, and an accelerating voltage of 30 kV (a current of 9.3 nA). After FIB
milling, the freshly milled block face was tilted to 7° in order to be vertical to the
electron beam. The accelerating voltage of electron beam was 2 kV and the
current to 0.4 nA (10 ms pixel dwell time). Images were taken at a magnification
of 11,4773 with a resolution of 4096 3 3536 pixels, and the horizontal field of
view was 24.1 mm corresponding to a pixel size of 5.88 nm. The SEM images
were aligned, processed, and 3D surface-rendered using the IMOD software
package (http://bio3d.colorado.edu/imod/doc/3dmodguide.html).

Agroinfiltration

Infiltration of A. tumefaciens into the N. benthamiana was described previ-
ously (Yang et al., 2000). To enhance protein expression, suspensions of Agro-
bacterium carrying plasmids were often coinfiltrated with Agrobacterium
harboring the p19 expression cassette. At 3 dpi, the infiltrated leaves were
viewed under confocal microscopy or used for transmission electron micro-
scopic analysis.

Confocal Laser-Scanning Microscopy

Confocal analysis was performed as described previously (Cao et al., 2015).
YFP or chlorophyll autofluorescence was observed using an Olympus FV1000
laser scanning confocal microscope with an excitation wavelength of 514
or 633 nm, respectively. Images were processed with Imaris 7.4.2 software
(Bitplane).
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Protease Protection Assays

Protease protection assays were performed according to previously de-
scribed methods with minor modifications (Ham et al., 2006). In brief, intact
chloroplasts were isolated from N. benthamiana leaves as described previously
(Ling and Jarvis, 2015). Chloroplast yields were calculated using a unit chlo-
rophyll basis. Ten microliters of chloroplast suspension was added to 1 mL of
80% acetone prior to centrifugation at 3,000g for 2 min. Absorbance of the su-
pernatant was measured at 652 nm with a spectrophotometer (METASH) and
inserted into the Sigma chloroplast isolation kit formula: mg chlorophyll/mL =
A652 3 100/36. To obtain the same concentration of chloroplast suspension,
chloroplast suspension was diluted to 1 mg/mL chlorophyll with the treating
buffer containing 1 mM CaCl2, 300 mM sorbitol, 50 mM HEPES[4-(2-Hydrox-
yethyl)-1-piperazineethanesulfonic acid]-KOH (pH 8.0). Two hundred micro-
grams thermolysinwas added for every 1mg chlorophyll in treating bufferwith or
without the addition of 0.5% Triton X-100 followed by incubation on ice for 0.5 h.
After thermolysin treatment, protease inhibitor cocktail (Sigma) and 5 mM ethyl-
enediamine tetraacetic acid (EDTA) were added to terminate the reaction. For the
treatment with Triton X-100, the suspension was directly subjected to western blot
analysis. For the treatmentwithout TritonX-100, intact chloroplastswere reisolated
using 40%/80% Percoll density gradient centrifugation followed by western blot
analyses.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Ultrastructural changes in BSMV-infected
N. benthamiana cells.

Supplemental Figure S2. Immunoelectron microscopic analysis of healthy
N. benthamiana leaf tissues.

Supplemental Figure S3. Analysis of viral components in agroinfiltrated
N. benthamiana leaves and isolated chloroplasts.

Supplemental Figure S4. Transmission electron tomography showing
three-dimensional visualization of the partial structure of BSMV-induced
cytoplasmic invaginations.

Supplemental Figure S5. 3D model of the BSMV-induced cytoplasmic in-
vaginations generated from FIB-SEM.

Supplemental Figure S6.Western blot analysis of the total protein samples
from N. benthamiana leaves expressing split YFP-fused proteins.

Supplemental Table S1. List of primers used for plasmid constructions.

Supplemental Table S2. List of primers used for RT-PCR.

Supplemental Movie S1. Representative electron tomograms of chloro-
plast in a healthy N. benthamiana cell.

Supplemental Movie S2. Representative electron tomograms of chloro-
plast in a BSMV-infected N. benthamiana cell.

Supplemental Movie S3. 3D surface rendering of rearranged chloroplast
envelope membranes based on the transmission electron tomograms.

Supplemental Movie S4. Observation of the 3D architecture of rearranged
chloroplast envelope membranes at different angles.

Supplemental Movie S5. 3D surface rendering of BSMV-induced chloro-
plast CI based on the transmission electron tomograms.

Supplemental Movie S6. Merged images of BSMV-induced cytoplasmic
invaginations from FIB-SEM analysis.

Supplemental Movie S7. 3D surface rendering of BSMV-induced cytoplas-
mic invaginations based on the merged FIB-SEM images.

Supplemental Movie S8. Observation of the 3D architecture of an aberrant
chloroplast from a BSMV-infected N. benthamiana cell.
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