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Transport networksmaybe defined as sets of connected
nodes or hubs where cargo from different origins are
sorted to their final destinations. The trans-Golgi net-
work (TGN) is the most discussed and arguably busiest
hub operating in the cell. The versatility of the plant TGN
distinguishes it from its mammalian counterpart. It is
essential for the assembly of cell walls, including the cell
plate, and organizes traffic of cargoes not only to but also
from the plasma membrane, two pathways that animal
cells separately confine to TGN and endosomes, respec-
tively.We stand far frommodels that integrate themultiple
trafficking functions of the plant TGN in physiologically
different cellular contexts; however,with current and recent
studies, we are gaining insights into the molecular deter-
minants, trafficking routes, and functions of TGN sub-
compartments.

PLANT TGN BIOGENESIS

The trans-Golgi network (TGN) is defined as the mem-
brane compartment on the trans-side of Golgi stacks re-
sponsible for the sorting and packaging of cargomolecules
for delivery to the plasma membrane and vacuoles (Roth
et al., 1985; Griffiths and Simons, 1986; Kang et al., 2011). In
plants, the TGNnot only provides afinal sorting station for
Golgi-derived cargoes but also is involved in trafficking/
recycling of endosomalmaterial; therefore, the termTGN/
early endosome (TGN/EE) better suits its function (Fig. 1;
Tanchak et al., 1988; Dettmer et al., 2006; Viotti et al., 2010).
The identity of the plant TGN as a distinct organelle and
not just a tubular reticulum on the trans-side of the Golgi
has been supported by results from a number of experi-
mental approaches in recent years. Cell fractionation and
electron microscopy/tomography studies allowed Kang
et al. (2011) to propose a model for TGN biogenesis in
which the trans-most Golgi cisterna is first transformed
into a TGN-type compartment that is still tightly associ-
ated with the trans-Golgi stack. Transformation of a trans-
most Golgi cisterna into a TGN cisterna is accompanied

by cisternae peeling, proliferation of round, secretory-
type vesicle (SV) buds, and a reduction of the cisternal
membrane area (Kang et al., 2011). These authors ele-
gantly showed that there are two forms of TGN: (1) the
Golgi-associated TGN (GA-TGN) cisternae attached to
the trans-side of the Golgi; and (2) the detached, free
TGN cisternae. The amounts of associated clathrin-
coated vesicles (CCVs) and SV buds distinguished the
two fractions. Both CCVs and SV buds were more
abundant in the free TGN cisternae (Kang et al., 2011).

Superresolution live imaging of the TGN-localized
soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE) protein SYP43 was used re-
cently to characterize the dynamic behavior of the
GA-TGN and Golgi-independent TGN (GI-TGN) pop-
ulations (Uemura et al., 2014), corroborating the Golgi
cisternal maturation model (Kang et al., 2011). The
GA-TGNs localized on the trans-side of the Golgi
apparatus, while the GI-TGNs (Golgi-released inde-
pendent TGNs) were located away from the Golgi
apparatus and behaved independently (Uemura et al.,
2014). The authors proposed that segregation of
GA-TGNs gives rise to the GI-TGNs with a core of the
GA-TGN remaining after the process.

It is plausible that GA-TGN represents a population
characterized by the TGN-localized COV1 and RAB
GTPase-interacting YIP4A/B proteins, since both yip4a/b
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and cov1 mutants affect the TGN association with Golgi
(Gendre et al., 2013; Shirakawa et al., 2014). Further
characterization of these proteins could reveal impor-
tant, unknown elements regarding the functional con-
nections between Golgi and GA-TGN, which appear
bidirectional.

Brefeldin A (BFA) is a fungal inhibitor that causes ag-
gregation of TGN, endosomal, and Golgi material in
large intracellular bodies (Langhans et al., 2011). Regen-
eration of Golgi and TGN populations after the removal
of BFA from treated cells proceeded independently in
tobacco (Nicotiana tabacum) BY2 cells (Ito et al., 2017),
supporting the notion that plant TGN is an independent
organelle. How GI-TGN and GA-TGN functionally
connect and how TGN functions feed back Golgi func-
tions remain poorly understood. Notably, GI-TGNswere
found highly abundant in the differentiation zone of the
root, in contrast with the meristematic region (Uemura
et al., 2014). Thus, it would be interesting to explore
the likely reorganization of TGN during physiological

responses, such as those evoking a more active secretory
function.

PROTON PUMPS AND LEAKS: TGN PH
IS ESSENTIAL

The regulation of pHhomeostasis within the secretory
pathway is crucial (for review, see Schumacher, 2014).
An increase of only 0.2 pH units markedly impairs ter-
minal a(2,3)-sialylation of an N-glycosylated reporter
protein and induces mislocalization of the correspond-
ing sialyltransferase into the endosomal compartments
of mammalian cells (Rivinoja et al., 2009). Genetically
encoded pH sensors targeted to specific endomembrane
organelles have been engineered in an effort to establish
a pH map of the plant endomembrane system. A grad-
ual acidification from pH 7.1 in the endoplasmic reticu-
lum (ER) to pH 5.2 in the vacuole was observed recently,
with the pH of TGN at 6.3 (Shen et al., 2013). However,

Figure 1. Simplified illustration of TGN/EE-mediated trafficking. The plant TGN comprises a very dynamic and heterogenous
network of vesicles. An essential function of plant TGN is the secretion of cell wall polysaccharides and plasmamembrane (PM)-
associated CSC. TGN compartments defined by SYP61/ECH and SCAMP2 have been implicated in the secretory transport of
CSCs, pectin, and hemicellulose (light blue vesicles). TGN also functions in the delivery of cargo to the vacuole via the multi-
vesicular body/prevacuolar compartment (MVB/PVC; purple vesicles). Vacuolar sorting receptors (VSR) are used in this cartoon to
depict the recycling of vacuolar cargo back to the TGN. In plants, TGN operates as an EE in the recycling of PM proteins (pink
vesicles). Different classes of proteins regulate the trafficking functions of TGN/EE and define specific subcompartments. These
include SNAREs, RAB GTPases, and tethering factors, of which examples are provided in the cartoon. The physical properties of
TGN/EE are crucial for its functions. A role for vesicle lipid composition in defining TGN subcompartmentalization is emerging,
here exemplified by the different lipid profiles of the SYP61 and RABA2a SVs (orange versus yellow bilayer). V-ATPase VHA-a1
and NHX antiporters are provided as examples of ion transporters involved in the critical regulation of TGN pH (see light blue-
shaded inset on the left, representing a magnification of a TGN membrane fragment). The dotted interior of the Golgi represents
cargo. RE, Recycling endosome; RER, rough endoplasmic reticulum; SER, smooth endoplasmic reticulum.
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lower TGN pH values of 5.6 and 6.1 have been reported
by other groups (Martinière et al., 2013; Luo et al., 2015).
In eukaryotic cells, acidification of the various endo-

membrane compartments has been proposed to depend
largely on the proton pump activity of highly conserved
vacuole-typeH+-ATPases (V-ATPases;Hager andHelmle,
1981; Nishi and Forgac, 2002; Dettmer et al., 2006).
V-ATPases are organized in two multisubunit domains.
The peripheral V1 domain, responsible for ATP hy-
drolysis, is composed of eight different subunits (A–H),
while the integral V0 domain forms the proton pore and
includes a, c, c9, c99, d, and e subunits (Nishi and Forgac,
2002; Toei et al., 2010). In plant cells, interfering with the
TGN-resident VHA-a1 isoform causes the swelling of
Golgi cisternae and inhibits cell expansion and hypo-
cotyl growth (Dettmer et al., 2006; Brüx et al., 2008).
Mutants with reduced activity of the cytosolic VHA-c
subunit alter the steady-state pH in the TGN/EE, lead-
ing to reduced motility of both Golgi and TGN and de-
fects in secretion of the brassinosteroid receptor BRI1
and Cellulose Synthase (Luo et al., 2015). Curiously, the
TGN/EE-localized V-ATPase seems to contribute via an
undefined mechanism to vacuolar pH (Kriegel et al.,
2015). Such results suggest a rather complex interplay
between different V-ATPase isoforms in the regulation
of pH within each compartment of the plant endomem-
brane system.
Luminal pH initially determined by the activity of H+

pumps is thought to be fine-tuned by alkalization
mechanisms (Orlowski and Grinstein, 2011; Bassil and
Blumwald, 2014). Exchange of luminal H+ for Na+ or K+

by NHX antiporters counteracts the acidity gener-
ated by the H+ pumps (proton leaks; Orlowski and
Grinstein, 2011; Reguera et al., 2015). Two Arabidopsis
(Arabidopsis thaliana) NHX isoforms (NHX5 and NHX6)
are expressed at the TGN, where they colocalize with
the H+ pump VHA-a1 and likely counteract its activity
(Bassil et al., 2011, 2012). nhx5 nhx6 double mutants
have a more acidic TGN lumen, altered trafficking to
the vacuole, and are hypersensitive to salt (Bassil et al.,
2012). The latter highlights the relevance of luminal pH
in the orchestration of crucial adaptive responses. The
transporter AtCLC-d is yet another player thought to
adjust TGN’s pH bymediating the transport of a counter
anion such as Cl2 or NO3

2 into the TGN lumen. As
NHX5/6, it colocalizeswithVHA-a1 at the TGN, and the
deleterious effect of inhibiting VHA-a1 was exaggerated
in the clcd-1 mutant, indicating synergistic activities be-
tween the two transporters (von der Fecht-Bartenbach
et al., 2007).

LIPID COMPOSITION: AN INDEPENDENT
SORTING MECHANISM?

A role for lipid rafts in the regulation of post-Golgi
sorting events has received extensive attention. Lipid
rafts are nanoassemblies of specific proteins and lipids
that define highly dynamic membrane microdomains
and influence the spatiotemporal organization of

protein complexes, thereby allowing the regulation of
cellular processes (Simons and Sampaio, 2011; Cacas
et al., 2012; Malinsky et al., 2013). Rafts might sort
proteins and lipids by clustering them together at the
TGN into bigger patches, which would then pinch off
as vesicles for delivery to the plasma membrane (Schuck
and Simons, 2004). Using a shotgun lipidomics approach,
Klemm and coworkers first demonstrated that yeast TGN
selectively sorts ergosterol and sphingolipid-enriched SVs
transporting plasmamembrane cargo (Klemm et al., 2009;
Surma et al., 2011). C-Laurdan spectrophotometry mea-
surements revealed a higher membrane order in the
immunoisolated vesicles, compared with TGN, support-
ing the hypothesis that lipid rafts play a role in the TGN
sorting machinery (Klemm et al., 2009; Surma et al., 2011).

To our knowledge, lipid rafts have not been observed
in the plant TGN, but evidence for lipid-based TGN
sorting was obtained recently in Arabidopsis, where
sphingolipids with a-hydroxylated acyl chains of at
least 24 carbon atoms were enriched in SV subdomains
of the TGN. Importantly, the authors established a
novel link between a-hydroxylated acyl chain enrich-
ment of TGN membranes and secretory trafficking,
specifically in polarized transport to the apical mem-
brane of epidermal cells (Wattelet-Boyer et al., 2016).

TGN-ASSOCIATED RABS, SNARES, TETHERS, AND
ACCESSORY PROTEINS: ENSURING THE PRECISION
OF DELIVERY

RAB GTPases

As a trafficking hub, one may conceive the TGN as
organized into distinct domains, facilitating cargo sorting
into specific vesicles to be dispatched to the next desti-
nation. In such a scenario, it is tempting to assume that
different RAB GTPases (for review, see Zhen and
Stenmark, 2015), a major class of cellular proteins deter-
mining membrane identity and trafficking specificity,
define separate TGN sorting compartments (Grosshans
et al., 2006; Woollard and Moore, 2008; Hutagalung and
Novick, 2011;BhuinandRoy, 2014). Several linesof evidence
support such RAB-determined subcompartmentalization.
Two subclasses within the large A group of plant RABs,
RABA2 and RABA3, identify a distinct TGN/EE
membrane domain that functions in cargo delivery to
the cell plate during cytokinesis (Chow et al., 2008).
Whereas RABA2a defines TGN domains distinct from
SYP61 vesicles, evidenced by differing lipid composi-
tion, RABA4b preferentially localizes to TGN SV sites
together with SYP61, where it is involved in the
transport of cell wall components (Preuss et al., 2004;
Kang et al., 2011; Wattelet-Boyer et al., 2016; Jonsson
et al., 2017). Another TGN domain harboring the se-
cretory SNAREs VAMP721/722 and defined by
RABA1 also has been suggested (Asaoka et al., 2013).

As to members of the plant RABB and RABD clades,
they have been postulated to operate in traffic between
the ER and Golgi (Cheung et al., 2002; Rutherford and
Moore, 2002; Zheng et al., 2005; Woollard and Moore,
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2008). However, fluorescently tagged RABD1 and
RABD2a localized to punctate structures associated
with TGN, and both RABD2a and RABD2b were found
abundantly in isolated SYP61 vesicles that define a
pathway en route from TGN to the plasma membrane
(Pinheiro et al., 2009; Drakakaki et al., 2012).

SNAREs

SNAREs are integral membrane proteins required
for the fusion of vesicles with their target membrane (for
review, see Bombardier andMunson, 2015). SNAREs can
be classified based on their site of function: v (vesicle)-
SNAREs are localized to the vesicle membrane, and
t (target)-SNAREs are localized to the target membrane
(Rothman, 1994; Søgaard et al., 1994). Syntaxins are a
family of SNAREs involved in recognizing and com-
plexing with other SNAREs on the target membrane to
create a t-SNARE complex. The genome of Arabidopsis
encodes 24 syntaxins or Syntaxin of Plants (SYPs;
Sanderfoot et al., 2000; Bassham and Blatt, 2008).

Distinct types of Arabidopsis syntaxins reside on the
various membranes of the secretory pathway. The
SYP4-type syntaxins (SYP41–SYP43) and their ortho-
logs from yeast (Tlg2p) and mammals (Syntaxin16)
have all been localized to TGN (Holthuis et al., 1998;
Simonsen et al., 1998; Bassham et al., 2000). SYP4
members are implicated in the transport of secretory
and vacuolar cargo from the TGN. Whether SYP4s
function redundantly and localize to the same TGN
compartment is to be determined (Bassham et al., 2000;
Uemura et al., 2012; Kim and Bassham, 2013). TNO1
(TGN-localized SYP41-interacting protein1) is a TGN-
localized coiled-coil protein that interacts with the
SYP41 SNARE machinery. TNO1 mutants affect TGN
dynamics, vacuolar cargo sorting, and the response to
salt stress (Kim and Bassham, 2011).

The Arabidopsis SYP5 family of SNAREs consists of
two members, SYP51 and SYP52, which localize to
tonoplast and TGN (Sanderfoot et al., 2001; Carter et al.,
2004; De Benedictis et al., 2013). Both SYP5s mediate
traffic to the vacuole, although they seem to differ in
cargo selectivity. Intriguingly, SYP5s appear to inhibit
homotypic fusion (SNARE interfering or i-SNARE)
when accumulated at the tonoplast. Such an i-SNARE
function could provide a control for cargo delivery to
the vacuole (De Benedictis et al., 2013).

The SYP6 group is encoded by a single gene, SYP61
(Sanderfoot et al., 2000). SYP61 is proposed to form
separate complexes with the SNARE VTI12 and either
SYP41 or SYP42 at the TGN (Sanderfoot et al., 2001);
however, some lines of evidence suggest that other
members of the SYP and VTI families also could take
part in these complexes. In the absence of VTI12, pre-
vacuolar compartment-localized VTI11 is able to in-
teract with SYP4s, and proteoliposome fusion assays
demonstrated that SYP42 and SYP43 can substitute for
SYP41 while VTI11 can substitute for VTI12 in driving
lipid mixing (Surpin et al., 2003; Kim and Bassham,

2013). Finally, the ability of SYP41 and SYP61 to inde-
pendently mediate the fusion of liposomes was shown
by Chen et al. (2005), who also identified YKT61 and
YKT62, two functionally interchangeable components
of the SNARE complexes, required for both SYP41- and
SYP61-mediated vesicle fusion

A role for the SYP4/SYP61/VTI12 complex in the
recycling of vacuolar sorting receptors to the TGN has
been suggested. Vacuolar Protein Sorting45, an inter-
actor of the complex, was proposed to positively reg-
ulate this function (Zouhar et al., 2009). The role of the
SYP61 compartment in post-Golgi trafficking is dis-
cussed later in this review.

Tethers

Tethering factors are traffic facilitators that function
upstream of SNARE proteins in the establishment of an
initial connection between an intracellular trafficking
vesicle and its target membrane (Barlowe, 1997; Cao
et al., 1998; for review, see Dubuke and Munson, 2016).
Mechanistically, they have been suggested to mediate
vesicle capturing, in virtue of their larger size compared
with SNAREs, to accelerate the assembly of SNARE
complexes and to provide checkpoints for SNARE
specificity (Yu and Hughson, 2010). Plant tethers (for
review, see Vukašinovi�c and �Zárský, 2016; Ravikumar
et al., 2017) relevant to TGN-mediated trafficking in-
clude several members of the TRAPP family and the
Golgi-associated retrograde protein (GARP) complex.
TRAPPs assemble into fairly well-characterized multi-
subunit complexes in yeasts and mammals (Sacher
et al., 2008; Kim et al., 2016). Our current knowledge of
the function and organization of plant TRAPP homo-
logs is extremely limited, although some lines of evi-
dence have started to emerge with TGN-associated
TRAPP involved in cytokinesis (Ravikumar et al., 2017).
Several members of putative Arabidopsis TRAPP com-
plexes were found in the proteome of TGN-associated
SYP61 vesicles, suggesting a role for yet uncharacterized
plant TRAPPs in the transport and/or delivery of se-
cretory cargo to the plasmamembrane (Drakakaki et al.,
2012). The role of TGN-associated TRAPPs in cell plate
formation and plant development (for review, see
Vukašinovi�c and �Zárský, 2016; Ravikumar et al., 2017) is
discussed at length in the cell plate section below.

In mammals, TGN-localized tetrameric GARP is re-
quired for retrograde trafficking from endosomes to the
Golgi (Schmitt-John et al., 2005; Pérez-Victoria and
Bonifacino, 2009). Mutants of Arabidopsis GARP sub-
units have implicated the complex in pollen tube elon-
gation, acclimation to heat stress, and vacuolar targeting
of the auxin carrier PIN1, necessary for PIN1 polar lo-
calization during the establishment of leaf vein pattern-
ing (Lobstein et al., 2004; Wang et al., 2011; Pahari et al.,
2014). Interestingly, GARP shares three subunits with
the Endosome-Associated Recycling Protein (EARP),
which resides on recycling endosomes and is required
for bringing recycling proteins/cargo to the cell surface
(Schindler et al., 2015; Ravikumar et al., 2017). This
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phenomenon, also characteristic in TRAPP complexes,
has been referred to as modularity. Multisubunit teth-
ering complexes can exist in a variety of modular forms
as a result of subunit exchange (Desfougères et al., 2015;
Ravikumar et al., 2017). The existence of an Arabidopsis
homolog also for the EARP-specific subunit, syndetin,
hints at GARP modularity conservation in plants.

Adaptins

While the role of CCVs in plant endocytosis is well
documented (Bandmann et al., 2012; Bashline et al., 2013;
Di Rubbo et al., 2013), their involvement in post-Golgi
trafficking remains poorly understood. Adaptor protein
complexes (AP1–AP5) consisting of four adaptin sub-
units select cargo proteins into CCVs (Boehm and
Bonifacino, 2001; Nakatsu and Ohno, 2003; Pertl-
Obermeyer et al., 2016). The Arabidopsis genome en-
codes putative subunits of allfiveAP complexes (Happel
et al., 2004; Hirst et al., 2011; Park et al., 2013). Arabi-
dopsis AP1 localizes to the TGN (Park et al., 2013; Wang
et al., 2014), and mutants of the AP1M2 subunit are af-
fected in the secretory and vacuolar transport pathways.
In addition, trafficking of the essential SNARE KNOLLE
from the TGN to the cell plate is impaired in dividing
cells of ap1m2mutants (Park et al., 2013). More recently,
TGN-localized AP1 g-adaptins were found to mediate the
targeting of membrane proteins with di-Leu motifs to the
tonoplast (Wang et al., 2014). Intriguingly,ArabidopsisAP3
has been implicated in a TGN-bypass pathway that trans-
fers cargo directly fromGolgi cisternae to the vacuole and is
facilitated by the HOPS-tethering complex (Feraru et al.,
2010; Zwiewka et al., 2011; Feng et al., 2017). Perhaps with
the exception of AP2, which operates in clathrin-mediated
endocytosis at the plasmamembrane (Krauss et al., 2006;Di
Rubbo et al., 2013), a function in vacuolar transport appears
to be thenormamongArabidopsisAPcomplexes.AP4was
recently found to localize to a TGN subdomain different
from that of AP1 and for which mutants of four AP4
adaptins showed defects in the vacuolar sorting of the
major storage protein 12S globulin (Fuji et al., 2016).

TGN AND THE CELL WALL:
A PLANT-SPECIFIC CONNECTION

The Golgi apparatus and the TGN fulfill a highly
dynamic and distinguishing function in plant cells: to
sort and assemble plasma membrane cell wall biosyn-
thetic enzymes, structural proteins, and the cross-linking
glycans, pectin, and hemicellulose (Cosgrove, 2005; for
review, seeWorden et al., 2012; KimandBrandizzi, 2016;
van de Meene et al., 2017). Although extensive studies
have led to the identification of the key enzymes in-
volved in the biosynthesis of hemicellulose and pectin
(for review, see Atmodjo et al., 2013; Pauly andKeegstra,
2016), comparatively little is known about their trans-
port, deposition, and integration into the cell wall. Poly-
saccharides originate from distinct locations. Cellulose
and callose are synthesized at the plasma membrane,

while the Golgi apparatus is the synthesis site of non-
cellulosic cell wall polysaccharides, hemicellulose, and
pectin, which are then transported through the secre-
tory pathway to the apoplast (Driouich et al., 2012;
Worden et al., 2012; Kim and Brandizzi, 2016). Our
current knowledge of polysaccharide transport in the
endomembrane system is derived mainly from immu-
nohistochemical electron microscopy studies (Lynch
and Staehelin, 1992; Zhang and Staehelin, 1992).

Golgi and TGN Involvement in the Biosynthesis of
Xyloglucans and Pectins

The use of antibodies that recognize a number of
xyloglucan (XyG) polymer epitopes identified trans-
Golgi cisternae as the exclusive site of synthesis of the
XyG backbone in a study conducted in suspension-
cultured sycamore (Acer pseudoplatanus) cells. Fucosylated
XyG side chains were detected in the trans-cisternae and
the TGN, forming the hypothesis of an ordered mecha-
nism of backbone biosynthesis and subsequent substitu-
tion in Golgi subcompartments (Zhang and Staehelin,
1992). The TGN involvement in XyG biosynthesis was
highlighted further in studies with Arabidopsis roots,
which showed labeling of TGN by a fucosylated XyG
antibody (Kang et al., 2011). Earlier observations in to-
bacco BY-2 cells reported a sequence of events duringXyG
biosynthesis in cis- and medial Golgi cisternae (Chevalier
et al., 2010), suggesting differences between species.

The Golgi apparatus also is the site of pectin bio-
synthesis. Pectins are synthesized and secreted in their
methyl esterified form into the cell wall, where they are
deesterified by pectin methyl esterases (Caffall and
Mohnen, 2009). Studies in sycamore suspension cells
showed that the synthesis of the nonesterified Rham-
nogalacturonan I (RGI)/Homogalacturonan backbone
and the methylesterification of GalUA residues take
place in the cis-medial Golgi with subsequent comple-
tion in the medial cisternae. More complex pectin oli-
gosaccharides, such as RGI-containing arabinose side
chains, are detected only in the TGN (Zhang and
Staehelin, 1992). However, the labeling of pectin epi-
topes differs among cell types of the root tip, suggesting
that Golgi function may be altered/reorganized during
cell differentiation (Lynch and Staehelin, 1992).

Several enzymes involved in both pectin and XyG
biosynthesis have been identified and characterized.
Contrasting the pectin biosynthesis assembly line hy-
pothesis is the observation that several glycosyl trans-
ferases involved in the biosynthesis of pectin are present
in multiprotein complexes at the Golgi. Currently, two
pectin biosynthesis models have been proposed: the
classical model, which predicts the consecutive addition
of sugar residues to the growing polysaccharide; and a
recently developed model, in which a block transfer of
pectin from one domain onto another domain occurs
(Atmodjo et al., 2013). The isolation of TGN SVs that
carry polysaccharide cargo will contribute substantially
to amore comprehensive understanding of the transport
and assembly of cell wall components.
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Cellular Determinants of Cell Wall Component Transport

Post-Golgi routes deployed by the plant cell to
transport Golgi/TGN-synthesized polysaccharides to
the plasma membrane are not fully elucidated. A TGN-
resident complex formed by ECHIDNA (ECH) and two
members of the YIP family of RAB GTPase-interacting
proteins has been implicated in the secretion of pectin
and XyG. Mutant plants of YIP4A and YIP4B are de-
fective in cell elongation and the secretion of XyGandRGI
pectins, a defect also observed in ech mutants (Gendre
et al., 2011, 2013). ECH also seems to be necessary for the
proper TGN localization of the ADP-Ribosylation Factor1
(ARF1)-GTPase and the ARF-guanine-exchange factor
BIG4. This pathway mediates secretion of the auxin car-
rier AUX1 from the TGN to the plasma membrane (PM)
during hook development (Jonsson et al., 2017). In to-
bacco BY-2 cells, immunostaining of pectin showed that
the Secretory Carrier Membrane Protein2 (SCAMP2) ves-
icles are involved in pectin transport (Toyooka et al., 2009).
A potential interplay between the SCAMP2 and ECH
machineries in pectin secretion has not been explored yet.

A pioneering study of plant intracellular vesicle iso-
lation and proteomic analysis revealed that the syn-
taxin SYP61 defines a TGN compartment carrying cell
wall-relevant cargo. Several CSCs were identified in the
SYP61 proteome, and electron microscopy immunos-
taining evidenced the colocalization of CESA6 and
SYP61 in TGN vesicles and in close proximity to the PM
(Drakakaki et al., 2012). The exogenous administration
of CESTRIN, a small molecule that reduces the motility
of CSCs at the plasma membrane, increases the asso-
ciation of CESAs with SYP61 vesicles, further impli-
cating the SYP61 compartment in CESA trafficking
(Worden et al., 2015). Both ECH and YIP proteins are
cargo of SYP61 vesicles, favoring the hypothesis that
SYP61-mediated trafficking is involved in the transport
of cell wall components. Furthermore, antibodies for
fucosylated XyG label a RABA4b TGN compartment,
and colocalization of RABA4b and SYP61 was ob-
served, supporting the role of SYP61 in the trafficking of
cell wall components (Kang et al., 2011).

Despite the essential roles of glycoproteins in cell
wall remodeling, development, and responses to biotic
stress, their secretory routes remain poorly character-
ized. In addition to conventional secretion via TGN,
exemplified by SYP61 and SCAMP2 vesicles, evidence
pointing to the existence of TGN-independent, uncon-
ventional protein secretion pathways is accumulating,
which may be implicated in cell wall protein transport
(for review, see De Marchis et al., 2013; Davis et al.,
2016a; Robinson et al., 2016; van de Meene et al., 2017).

TGNANDTHE CELL PLATE: A TIMELY CONNECTION

The TGN’s key role in organizing and shipping cell
wall material is never more obvious than during cytoki-
nesis, in which an entirely new cell wall is built from in-
side the parent cell. Cytokinesis begins with the delivery
of Golgi/TGN-derived vesicles to the plane of division,

where they immediately start to fuse and tubulate. The
vesicles continue to coalesce into a membrane network
(the cell plate) following the tracks laid down by the ra-
dially expanding phragmoplast (Samuels et al., 1995;
Seguí-Simarro et al., 2004; Smertenko et al., 2017). Depo-
sition of polysaccharides leads to the maturation of the
formed structure, which finally joins to the parental cell
wall (Drakakaki, 2015).

Chemical inhibition of either endocytosis or secretion in
dividing plant cells indicates that both pathways have a
role during cell plate formation via the TGN. It is plausible
that endocytosed proteins merge into the late secretory
pathway and, thus, are delivered to the division plane
instead of being recycled to the PM (Dhonukshe et al.,
2006; Reichardt et al., 2007; Richter et al., 2014;Müller and
Jürgens, 2016).

The TGN is intimately connected to the cell plate, as
evidenced by the various proteins shared and shuttled
between them, of which a few key components are
mentioned below (Fig. 2). Excellent reviews describe in
detail the cytoskeletal and membrane dynamics during
cytokinesis (McMichael and Bednarek, 2013; Boruc and
Van Damme, 2015; Müller and Jürgens, 2016).

A key event in cell plate formation is vesicle fusion
mediated by SNARE complexes (El Kasmi et al., 2013),
with the complex formed by the Q-SNARE KNOLLE
and the R-SNAREs Vesicle-Associated Membrane
Protein721 (VAMP721) or VAMP722 playing a pre-
ponderant role (Lauber et al., 1997; Zhang et al., 2011).
Additional proteins in this complex include the
SEC1/Munc18 protein KEULLE, SNAP33, and
NPSN11 (Assaad et al., 2001; Heese et al., 2001; Zheng
et al., 2002). Interestingly, of the SNAREs involved in cell
plate formation, only KNOLLE is specific to the process.

RABA2 and RABA3 preferentially localize to the lead-
ing edge of the cell plate, suggesting a function in the
delivery and incorporation of new membrane material to
the cell plate (Chow et al., 2008). Because overlapping lo-
calizations and complementary functions are common
among RABAs, a complete roadmap for the multiple
pathways and processes in which each is involved is still
being drawn. RABA2a and RABA1e vesicles display a
different spatiotemporal pattern during cytokinesis,
which is exaggerated by the cytokinesis inhibitor
Endosidin7 (ES7; Davis et al., 2016b). TGN/EE-resident
RABA1d accumulates at early cell plate stages during
cytokinesis, and its association with PM proteins sug-
gests a role in the recycling of material from the PM to
the growing plate (Berson et al., 2014). Given the fact that
the RABA clade is highly elaborated in plants (26 of the
57 total RAB GTPases identified thus far; Woollard and
Moore, 2008), it will be interesting to see how/if they are
functionally connected to meet the myriad trafficking
demands in a plant cell, dividing or otherwise. In addi-
tion to RABAs, RABE1s also localize to the cell plate,
where they interact with the Stomatal Cytokinesis-
Defective (SCD) complex. Inhibition of RABE1 causes
cytokinesis defects, emphasizing its role in trafficking to
the cell plate (Speth et al., 2009; Ahn et al., 2013; Mayers
et al., 2017).
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TRAPP tethering complexes are known to act as
guanine exchange factors (GEFs) and, thus, activate
RABGTPases (Jones et al., 2000;Wang et al., 2000; Pinar
et al., 2015). Colocalization at the TGN and functional
studies suggest that TRAPPII acts as a GEF for RABA1c,
facilitating RABA1c-mediated trafficking of material
from the TGN to the cell plate (Qi et al., 2011). Mutants
of the TRAPPII subunit, AtTRS130, exhibit severe cy-
tokinesis defects and irregular aggregations of RABA1c
around cell plate-like structures (Jaber et al., 2010; Qi
et al., 2011). The expression of constitutively active
RABA1c partially rescues attrs130 (Qi et al., 2011),
supporting the role of AtTRS130 upstream of RABA1c.
During cytokinesis, subunits of the exocyst-tethering
complex interact with TRAPP subunits, suggesting
synergistic activities of the two complexes (Rybak et al.,
2014; for review, see Vukašinovi�c and �Zárský, 2016).
In addition to RAB GTPases and their regulators,

other protein classes with vesicle formation/budding

functions at the TGN participate in cell plate formation.
For example, Clathrin Light Chain, Dynamin-Related
Proteins, Epsin-like adaptors, and the adaptin-like
T-PLATE all have been identified at the cell plate,
providing evidence for clathrin-mediated endocytosis
in the removal and/or recycling of excess membranes
from the cell plate (Fujimoto et al., 2008; Konopka and
Bednarek, 2008; Van Damme et al., 2011; Song et al.,
2012; McMichael and Bednarek, 2013). Additionally,
SCD1 and SCD2 act as a complex to mediate post-Golgi
trafficking to the plasma membrane and the cell plate.
Multiple lines of evidence point to the interaction be-
tween the SCD complex, the exocyst, and RABE1
GTPases in the trafficking of material to the cell plate
(Mayers et al., 2017).

The aforementioned AP1, and specifically the m-sub-
unit (AP1M2), is found in the TGNand is essential for the
trafficking of KNOLLE to the cell plate. In an ap1m2
mutant background, KNOLLE is mislocalized around

Figure 2. Illustration of TGN-cell plate trafficking. The TGN acts as a sorting hub for cell plate formation during cytokinesis.
Representative components of the trafficking routes between the TGN and the cell plate are depicted. During early stages of cell
plate formation, TGN compartments labeled by the GTPases RABA2/RABA3 and RABA1c relocate to the cell plate margins,
where they are involved in vesicle targeting and the delivery of membrane to the expanding plate. The TRAPPII tethering complex
is involved in cell plate biogenesis and expansion. The cytokinesis-specific SNARE protein, KNOLLE, which is found throughout
the entire cell plate, mediates vesicle fusion. Cell plate maturation occurs radially from the interior directed outward toward the
parental cell wall and involves the deposition of cell wall polysaccharides and the removal of excess membrane through clathrin-
mediated recycling (purple hexagons). RE, Recycling endosome.
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the division plane and cell wall stubs are present, indi-
cating a role of AP1M2 in targeting KNOLLE to the cell
plate (Park et al., 2013; Teh et al., 2013).

Exciting discoveries in the nature and composition of
cytokinesis vesicles are awaiting, which will form a
better picture of membrane and polysaccharide deliv-
ery for the buildup of such an essential and dynamic
structure.

TGN AS AN EE: TWO DIRECTIONS BUT HOW
MANY LANES?

The plant TGN is unique in that it acts not only in the
secretory but also in the endocytic pathway as an EE
(Tanchak et al., 1988; Dettmer et al., 2006; Viotti et al.,
2010). This distinct, additional function of plant TGN
has been associated with the absence of the tubulated
endosomes dedicated to recycling, normally found in
animal cells (Paez Valencia et al., 2016). The function of
TGN as an EE has been demonstrated by live imaging
and electron microscopy studies (Dettmer et al., 2006;
Lam et al., 2007; Viotti et al., 2010). Immunogold elec-
tron microscopy showed an accumulation of the
PM-localized brassinosteroid receptor BRI1 to BFA
bodies, not prevented by the protein synthesis inhibitor
cycloheximide, lending evidence to the exclusively
endocytic origin of thematerial accumulated in the BFA
compartment (Viotti et al., 2010).

Recycling of PM proteins through the TGN/EE has
proven crucial for the polar distribution of plasma
membrane proteins, including auxin carriers like PIN1
(Geldner et al., 2003; Kleine-Vehn et al., 2008, 2011;
Luschnig and Vert, 2014). Endosomal recycling in plants
largely depends on the activity of small GTPases of
the ARF family and their associated GTPase-activating
proteins and GEFs (Casanova, 2007; Kleine-Vehn et al.,
2008; Paez Valencia et al., 2016). Twelve ARF genes are
present in the genome of Arabidopsis (Robinson et al.,
2007). The best-characterized ARF1 localizes to endo-
cytic organelles and is implicated in the establishment of
apical-basal polarity in epidermal cells (Xu and Scheres,
2005).

Among Arabidopsis ARF-GEFs, GNOM has been ar-
guably the most studied in its function of restricting PM
protein localization to basal domains (Geldner et al.,
2003). BFA treatments inhibit GNOM, causing the ac-
cumulation of the internalized auxin effluxer PIN1 in
aggregatingGNOM-positive intracellular compartments
(Geldner et al., 2003). However, superresolution/
electron microscopy studies showed its exclusive locali-
zation toGolgi cisternae, thereby challenging its function
solely in protein recycling (Naramoto et al., 2014). In
support, GNOM was recently implicated in the ER-to-
Golgi transport of PIN1 (Doyle et al., 2015). BEN1 is
another, BFA-insensitive ARF-GEF that localizes to early
endocytic compartments distinct from GNOM-positive
endosomes and whose mutants display cell polarity
defects (Tanaka et al., 2009). Finally, a role for the BIG
subfamily in nonbasal trafficking of plasma membrane

proteins was recently supported by pharmacological
evidence (Li et al., 2017). Such functions place BIGs
distinct from GNOM in the scheme of factors regulating
the polarity of PMproteins. Interestingly, and in contrast
with GNOM, BIGs do not seem to affect recycling but
only protein secretion (Richter et al., 2014). Such func-
tional divergence could lie at the core of the observed
stage-dependent, mutually exclusive involvement of
GNOM and BIGs in the regulation of the secretion of
AUX1 influx carrier to the plasma membrane from the
TGN during hook development (Jonsson et al., 2017).

Several lines of evidence support a model for the
maturation of TGN/EE into late endosomes or multi-
vesicular bodies (LE/MVB; Scheuring et al., 2011; Singh
et al., 2014). Endocytosed plasma membrane proteins
that are not recycled back are transferred from EE (TGN)
to LE/MVB, where they are internalized into the intra-
luminal vesicles of the LE. Fusion of the LE with the
lysosome/vacuole releases the vesicle cargoes, leading
to their degradation. Scheuring et al. (2011) showed that
the formation of intraluminal vesicles takes place already
at the TGN/EE, while Singh et al. (2014) suggested that
endosomal maturation in Arabidopsis originates in a
subdomain of the TGN/EE that recruits Rab5-likeARA7
and subsequently transitions into an MVB. The topics of
plant EE and LE are covered extensively by other re-
views in this issue of Plant Physiology.

EXPERIMENTAL TOOLS
The plant TGN comprises an extremely dynamic and diverse vesicle pop-

ulation, which raises many questions for most of which we do not have an
answer; meanwhile, technological advances are helping us on the road. Im-
proved protocols for the immunoisolation of vesicles based on specific, vesicle
membrane markers have been successfully established, an example of which is
the characterization of the SYP61 compartment (Drakakaki et al., 2012; Groen
et al., 2014; Heard et al., 2015). Organelle proteomics is allowing the identifi-
cation of vesicle protein cargoes, and extending glycomic analysis to isolated
vesicles will help us to better characterize the secretory routes of cell wall
polysaccharides (Obel et al., 2009; Pattathil et al., 2010; Drakakaki et al., 2012;
Parsons et al., 2013; Heard et al., 2015; Kra�cun et al., 2017; Wood et al., 2017).
Chemical genomics is enabling the characterization of vesicle-trafficking
pathways, recently evidenced by the use of the small molecules ES7 and ES16
to discern the contributions of two RAB GTPases to cell plate formation and to
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demonstrate the specificity of a trafficking pathway involved in cell polarity,
respectively (Davis et al., 2016b; Li et al., 2017). Spatiotemporal image corre-
lation spectroscopy has proven useful to characterize the dynamics of vesicle
trafficking to the cell plate (Hebert et al., 2005; vanOostende-Triplet et al., 2017).
Finally, lipid profiling, metabolic click labeling, and the use of oligosaccharide-
based probes for high-resolution real-time imaging of glycans have recently
added to the list of promising avenues to dissect the role of TGN in cargo
transport (Anderson et al., 2012; Pattathil et al., 2012; Mravec et al., 2014;
Wattelet-Boyer et al., 2016). Such a panoply of tools promises new exciting
discoveries about the multiple functions of the plant TGN.
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