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Abstract

Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression

activities. We present a novel application of survival analysis to quantify the effects of these

factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events

were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at

the scene) and the size at “being held” (a state when no further increase in size is expected).

We developed a statistical classifier to try to predict cases where there will be a growth in

fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regres-

sion was preferred over two alternative classifiers, with covariates consistent with similar

past analyses. We conducted survival analysis on the group of fires exhibiting a size

increase. A screening process selected three covariates: an index of fire weather at the day

the fire started, the fuel type burning at initial assessment, and a factor for the type and capa-

bilities of the method of initial attack. The Cox proportional hazards model performed better

than three accelerated failure time alternatives. Both fire weather and fuel type were highly

significant, with effects consistent with known fire behaviour. The effects of initial attack

method were not statistically significant, but did suggest a reverse causality that could arise

if fire management agencies were to dispatch resources based on a-priori assessment of

fire growth potentials. We discuss how a more sophisticated analysis of larger data sets

could produce unbiased estimates of fire suppression effect under such circumstances.

Introduction

Forest fires are important events in many terrestrial ecosystems, including the boreal forests of

North America. In many areas where they occur, fire management agencies attempt to control

the growth and limit the size of these fires, to protect human lives, infrastructure, and natural

resources. The impact of these attempts on fire size has never been fully quantified. Some envi-

ronmental factors have been shown to affect fire size. For example, several correlative studies

have established relationships between fuel type and meteorological indices of fuel moisture

content on parameters of fire size distribution [1][2]. Several studies have established correla-

tions between fire management actions and the probabilities of events such as of a fire
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exceeding the size thresholds established as control targets [3][4] or of a large fire escaping

containment [5]. Similar correlations are known for regional indicators such as total annual

area burned [2]. These events and indicators are all related to fire size distribution in some

way, but none of these studies quantify how fire management affects the size of individual

fires. In this study, we present a novel application of survival analysis methods to quantify

these effects.

Survival analysis is a kind of regression analysis where the response variables are times to

events (e.g. the time from diagnosis of disease to morbidity or death or time from purchase of

a device until its first failure). As with survival times, fire sizes are strictly positive random vari-

ables with a generally skewed distribution [6], so that the assumptions of normality of residuals

are violated under simple analytical techniques such as linear regression. Censoring and trun-

cation are other features typical of time-to-event data [7] that are also exhibited by fire size

data. Censoring in this instance arises when a fire is still growing at data collection, here, at the

state of Being Held. Truncation occurs because fires are of positive size at first observation.

Survival analysis methods allow one to account for these features. Survival analysis methods

have recently been applied to fire duration data [8] where the control time, defined as the

elapsed time between Initial Attack (IA) and Under Control (Table 1), was related to size at IA

(Table 1) and to the prevailing conditions of wind speed and fuel moisture. In studies of fire

management and fire ecology, the main interest is in the size of fires, rather than in their dura-

tion. However, mathematically, the analysis of time to event data and fire size data are analo-

gous, because of the shared properties of non-negativity and that sequential observations are

Table 1. Definition of each variable considered for inclusion in models.

Variable Defintion

Being Held (BH) Indicates that with currently committed resources, sufficient suppression action has

been taken that the fire is not likely to spread beyond existent or predetermined

boundaries under prevailing and forecasted conditions.

Buildup Index (BUI)� Measure of fuel availability.

Detection A system for or the act of discovering, locating and reporting wildfires.

Fine Fuel Moisture Code

(FFMC)

A numerical rating of the moisture content of litter and other cured fine fuels. This

code indicates the relative ease of ignition and flammability of fine fuel.

Fire load� Number of assessed fires on the same day within the sampled region.

Fire Weather Index (FWI) A numerical rating of fire intensity that combines ISI and Buildup Index (BUI). It is

suitable as a general index of fire danger throughout the forested areas of Canada.

Fuel type An identifiable association of fuel elements of distinctive species, form, size,

arrangement and continuity that will exhibit characteristic fire behaviour under

defined burning conditions.

Initial Attack (IA) The action taken to halt the spread or potential spread of a fire by the first fire fighting

force to arrive at the fire.

Initial Spread Index (ISI) A numerical rating of the expected rate of fire spread. It combines the effect of wind

and FFMC on rate of spread but excludes the influence of variable quantities of fuel.

Method Personnel trained, equipped and deployed to conduct suppression action to halt the

spread or potential spread of a wildfire within the first burning period.

Month� Month of the year the fire was initially attacked (May, June, July, August and

September).

Period� Period of the day initial action began (AM, PM and night).

Response time The period from receipt of first report of a fire to start of actual fire fighting.

Under Control Having received sufficient suppression action to ensure no further spread of the fire.

Except as indicated by (�) definitions follow the 2002 glossary of forest fire management terms (Canadian

Interagency Forest Fire Centre).

https://doi.org/10.1371/journal.pone.0189860.t001
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non-decreasing. Further, a fire size observed at a given time is the time integral of a non-nega-

tive growth process up to that time, so the quantities of duration and size are closely related.

Survival analysis depends on the survival and hazard functions of the responses which are

defined similarly for both duration and size data. Survival analysis of duration data allows the

estimation e.g. of the effect of medical treatments on life span, controlling for other factors

such as the age of the patient. Similarly, survival analysis of fire size data offers the possibility

of estimating the effect of fire management action on fire size while controlling for factors

such as fuels or weather. In this way, one could assess the relative effectiveness of alternate con-

trol methods, at the level of individual fires, or the aggregate impact of fire management at the

population level i.e. the achieved reduction in total area burned relative to natural conditions.

In this paper, we present what we believe to be the first such analysis. Specifically, we test for

the effect of intervention type (e.g. ground or airborne firefighters, the presence of heavy

equipment such as air tankers) and of other management and environmental factors on fire

size, using data from boreal forests of northern Alberta, Canada.

Materials and methods

Study area and data

We reanalysed a data set of 960 lightning fires, first used by [3]. These were are all such fires

recorded over a seven year period (1996–2002) within a 67,000 km2 study region of boreal for-

est in northeastern Alberta, Canada [3][Fig. 1(a)]. Fire records were selected from the Alberta

government’s Historical Wildfire Database [9], with fire weather attributes added by [3]. We

used the fire weather variables FWI and ISI (Table 1) because of their relation to fire behaviour

[10]. Other variables available at the time of Initial Attack (IA), selected or derived, include

the fire sizes at the events of IA and Being Held (BH) (see definitions in Table 1), the Month,

period-of-day (Period), fuel type, and fire load at IA, the response time and the methods of

intervention (Method) and of initial detection (Detection). We excluded six fires where IA

occurred between the hours of 23h00 and 04h00, following [8]. We also excluded 65 fires with

data coding errors indicated by negative response times, or a size at IA greater than at BH. A

total of 889 fires were retained for analysis. The factor levels for each categorical variable, and

their frequencies, are given for these fires in Table 2. The three most common fuel types were

C1 (Spruce-lichen Woodland), C2 (Boreal spruce) and M-2 (Boreal mixedwood-green) (See

S1, S2, S3 and S4 Figs for distribution of fires among these fuel types). The dominant conifer

species in C1 and C2 fuels is black spruce (Picea marina). M-2 refers to the characteristic

regional mixture of white spruce (P. glauca) and trembling aspen (Populus tremuloides), after

Table 2. Frequencies of factor levels among all 889 fires, for all categorical variables.

Variable Factor level Total

Fuel type C1 C2 M2 Other 889

61 667 92 69

Method Air Air Tanker Ground trained Helitanker Other ground 889

615 99 15 25 135

Month May June July August September 889

108 307 258 201 15

Detection Air Lookout tower Unplanned 889

216 488 185

Period AM PM 889

420 469

https://doi.org/10.1371/journal.pone.0189860.t002
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spring leaf-out. The detailed characteristics of these fuel types and illustrative photographs

are given in [11]. The most common method of initial attack (Air) refers to helicopter-borne

teams of 4 to 7 trained wildland firefighters. “Air tanker” and “Helitanker” refer to fixed wing

and rotary wing aircraft, respectively, that are equipped with water tanks that can be poured

from above to damp burning fuels or to wet unburned fuels so as to reduce their flammability.

“Ground trained” and “Other ground” refer to a variety of predominantly ground-based attack

methods. Actions attributed to forest protection officers were assigned to the former class (See

S5, S6, S7 and S8 Figs for distribution of fires among these methods).

In survival analysis of time-to-event data, event times are strictly larger than the corre-

sponding times of left truncation. By extension, one would expect that sequentially observed

sizes (e.g. size at BH) would be strictly larger than the left truncation sizes (e.g. size at IA). This

is not always true in the current dataset: sometimes the recorded sizes at IA and BH are the

same. There are at least two possible reasons why this may occur for a given fire. Either the fire

was already extinguished or quiescent at IA, or the fire size increased slightly but the difference

in sizes was not measured accurately. To contribute to the estimation of a continuous size dis-

tribution, a fire must register an increase in size [12]. Therefore survival analysis could only

be applied to those 260/889 fires that did register such an increase. This raised the question of

whether the fires that registered such an increase could be distinguished from those that did

not. Accordingly, we conducted a separate classification analysis on the full dataset.

Classification methods

We defined the classification variable Yi as the indicator that the ith fire does not grow, viz,

Yi ¼
0 if growthi > 0

1 if growthi ¼ 0;

(

ð1Þ

where growthi is the difference in size at BH and at IA for the ith fire. We considered three dif-

ferent classification methods to estimate the odds of having an increase in size (growthi > 0)

or not (growthi = 0) (Eq 1). The methods considered are logistic regression as a generalized lin-

ear model (GLM), classification trees, and logistic regression as a generalized additive model

(GAM). All models were fit on a training set that contained 2/3 of the dataset and their predic-

tive accuracy was assessed on a validation set consisting of the remaining 1/3 of the data.

GLMs were fit using the binomial family with logit link, with a backward variable selection

procedure based on significance testing using a variable retention criterion of p = 0.05. Classifi-

cation trees were pruned by using the cross-validation approach described by [13].

All models used the same variable set (see S1 Table), except that the logistic regression mod-

els included some square- or logs-transforms of continuous variables. The use and the func-

tional form of covariate transformations were based on an initial GAM analysis, except when

the logarithmic transformation was used; the latter was applied to variables that had very large

observations that were far from the bulk of the data. We used the area under the Receiver

Operating Characteristic (ROC) curves to evaluate model’s predictive power and to determine

the best classification method. The ROC curves were interpreted following [14], where values

below 0.7 are considered to indicate poor discrimination and values between 0.7 and 0.8 are

considered acceptable. All statistical analyses in this paper were performed in R [15]. We used

the gam package [16] for generalized additive models, the rpart package [17] for classifica-

tion trees and the pROC package [18] to obtain the area under ROC curves.

Survival analysis and classification methods for forest fire size
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Survival analysis

We built survival models for those fires that registered a growth in size. We treated IA size as

the left truncation “time point” and BH size as the “time point” of the event of interest. We

considered two families of models: Cox proportional hazards (PH) and log linear accelerated

failure time (AFT) models [12]. We considered three distributional families for the AFT

model: Weibull, Lognormal and Loglogistic [12]. We built the models starting from four initial

sets of variables, subject to a backward selection procedure. Variables common to each set

included FWI, method, fire load, period, month, response time, detection, fuel type, and an

interaction term between fire load and method. Two of the four variable sets explored alternate

options for including the type of intervention in the model. The other two contrasted alternate

ways of accounting for the size at IA. Type of intervention was either a) treated as any other

covariate in the backward selection procedure, or b) forced into the model. Because size at IA

is already included in the analysis as the left truncation point, it was unclear if we needed to

further consider it as a potential covariate. Therefore IA size was either a) the left truncation

point and a covariate subjected to the backward selection procedure; or b) the left truncation

point only. When treated as a covariate, IA size was log transformed, as above. To variable sets

that included log IA size, we added its interactions with FWI, fuel type and method. The choice

of interaction terms reflect common knowledge that increasing the number of simultaneous

fires limits resource availability, and known relations between management actions and fire

size [2–4]. For each model, the covariates subject to exclusion were selected by the backward

selection procedure, with exclusion p-value set at 0.05. Cox PH models were fitted with the

survival package [19] while AFT models were fitted with the flexsurv package [20].

This process resulted in 16 final models: four Cox PH models and four models for each of

the three families of AFT models considered. These models were used as a variable screening

procedure to identify a small set of common covariates that were significant in more than one

of the Cox or AFT models. The Cox and AFTs models were then re-estimated using only these

identified covariates. The best AFT model was then selected by Akaike criteria (AIC). Valida-

tion of the final Cox PH model was done using Schoenfeld (cox.zph test) [19], martingale [19]

and Cox-Snell residuals [21]. The final choice between the Cox PH model and best AFT model

was guided by plots that overlay the cumulative baseline hazard of each model over a nonpara-

metric estimator thereof, as suggested in [12].

Results

Classification methods

Our dataset contained 889 lightning fires. Of these, 260 (29%) recorded an increase in size

between IA and BH. Median size at IA of these 260 fires was 2.25 ha. The mean size was

643.8ha. The large difference between the mean and median size is due to some large fires, for

example the largest fire was 27,490 ha. Of these 260 fires, 25% had a size greater than or equal

to 3 ha when IA action began, compared to 3% for the 629 fires that didn’t increase in size [3].

Most of the fires that didn’t register a size increase between IA and BH had final sizes below 1

ha, while most of the remaining fires had final sizes larger than 1 ha (Figs 1 and 2).

Based on ROC scores computed on the validation dataset, logistic regression was more

effective than the classification tree in distinguishing the two groups of fires (Table 3). GLM

and GAM logistic regression models performed equally well (Table 3). Based on ROC scores,

regression models using FWI performed very nearly as well as those using ISI. Given the defi-

nitions of these indices, ISI is more dependent on wind speed on the day of the fire, and on the

moisture content of the finest fuels. We therefore considered that FWI would be the least

Survival analysis and classification methods for forest fire size
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temporally variable and hence the better predictor of fire growth conditions over the space of a

few days. Accordingly, we use FWI in this and all subsequent models. We report only the

GLM model, as being the more interpretable (Table 4). This model fitted to the training dataset

(Table 4) shows associations between the probability of growth and the time of day of IA, log

IA size, FWI and response time. No model selected fire load, nor were any interaction terms

selected. As measured by the area under the ROC curve, the classification accuracy was accept-

able (0.75) [14].

Survival analysis

We conducted survival analysis on the 260 fires which increased in size after IA. Size at BH

was the response variable and size at IA was used as left-truncation. None of the responses

were censored. All of our four final Cox PH models had FWI and Fuel type as significant

variables. Among the two models where it was available for selection, log IA size was signifi-

cant in only one, and that model did not include type of intervention. No other variables

Fig 1. Kernel density of extinction size, given that size at BH was equal to, or greater than, size at IA.

https://doi.org/10.1371/journal.pone.0189860.g001
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were retained. However, we added IA method because it was the covariate of greatest interest.

Hence, our final models contain FWI, Fuel type, and IA method, or the type of intervention.

The Weibull distribution was the best of the three parametric models according to the AIC

criterion (Table 5). The cumulative baseline hazard function of the Cox PH model provides a

better fit to the data than its counterpart from the Weibull AFT model (Fig 3). The model vali-

dation based on residuals suggested that the overall fit of the Cox PH model was good. The

hypothesis of proportional hazards could not be rejected (p = 0.079 for the cox.zph test based

on Schoenfeld residuals). The distributions of martingale residuals (Fig 4) and Cox-Snell resid-

uals (Fig 5) also supported the Cox PH model. Accordingly, we adopt this model over the

Fig 2. Kernel density of initial attack size, given that size at BH was equal to, or greater than, size at IA.

https://doi.org/10.1371/journal.pone.0189860.g002

Table 3. Comparative performance of alternate classifiers on the test data. These models all classified fires into two

groups according as at BH was reportedly greater than, or equal to, size at IA.

Classification method Area under ROC curve

FWI ISI

Logistic regression (GLM) 0.75 0.76

Logistic regression (GAM) 0.75 0.76

Classification tree 0.68 0.70

https://doi.org/10.1371/journal.pone.0189860.t003
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parametric alternatives (Table 6). The significant variables were FWI and Fuel type (Table 7).

FWI was highly significant with a negative parameter estimate (Table 6). High values of FWI

are associated with a lowered risk of a fire being held, i.e., increasing FWI is associated with

larger sizes at BH (Table 6). Within Fuel type, only M2 (Boreal mixedwood) was significant

with a positive parameter estimate (Table 6). Relative to the base case (C1), M2 is associated

with a higher risk of a fire being held, i.e., with smaller sizes at BH. The other fuel types did not

differ from the C1 type in this respect (Fig 6). IA Method was not significant overall (Table 7)

or for any contrast level (Table 6). Nevertheless, the method-specific parameter estimates sug-

gest that different attack methods may be associated with different distributions of fire sizes

(Fig 7).

Discussion

Most (629/889) fires in our final data set showed no recorded increase in size after initial

assessment. Survival analysis could not be applied to these fires. To more completely model

the fire size data, we employed a two stage analysis. First we used logistic regression to classify

our sample into groups which did, or did not, exhibit such size growth. We then applied sur-

vival analysis to the former group. We can suggest two possible reasons for membership in the

latter group. A fire that was growing very slowly at IA might have exhibited only very slight

size growth before extinction, in which case recorded non-growth is a form of measurement

error. It’s also possible that some of such fires were already extinguished at the time of IA. This

is supported by our classification model, which shows the probability of the event “no growth

after IA” was decreased with fire size at IA and with FWI, and thus was associated with small

fires under moderate or low burning conditions. In this regard, most of the fires that didn’t

increase in size were extinguished below Arienti et al’s containment size threshold of 3 ha

(�1.1 log ha), as opposed to fires that did increase (Fig 1). Furthermore, our results are

Table 4. Parameter estimates, standard errors (Std. Error) and p-values from the fitted logistic regression (GLM)

model.

Variable Estimate (Beta) Std. Error p-value

(Intercept) 0.72 0.26 0.005 ��

Period: PM 0.46 0.20 0.022 �

log(IA Size) -0.39 0.05 <0.001 ���

FWI -0.04 0.01 0.002 ��

log(Response time) 0.09 0.07 0.179

log(Response time)2 0.05 0.02 0.014 �

� p < 0.05,

�� p < 0.01,

��� p < 0.001

https://doi.org/10.1371/journal.pone.0189860.t004

Table 5. AIC scores of three alternate forms of parametric survival model.

Functional form AIC

Weibull 1713.30

Lognormal 1731.03

Loglogistic 1906.94

https://doi.org/10.1371/journal.pone.0189860.t005
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consistent with their model of containment failure probability [3]. Size of a fire at IA as well as

fire weather have a significant association with fire size growth.

We have demonstrated that survival analysis methods can be applied to fire size data, specif-

ically to study the effects of fire suppression on fire size. Survival analysis had already been

applied to duration [8], but from a management perspective, area burnt is more relevant.

Residual checks and the fact that the Weibull AFT was the best among the parametric models

considered suggest that the proportional hazards assumption is reasonable in our context. The

Cox Proportional Hazards model was better supported than three parametric AFT alternatives,

according to standard model selection criteria and residual checks. It might be the case that

other classes of parametric survival models would better fit the data if different distributional

Fig 3. Comparison of Cox PH baseline cumulative hazard and Weibull cumulative hazard. The Weibull cumulative hazard line is often outside the

nonparametric 95% (red dashed line) confidence bands for this cumulative hazard function, while the Cox PH baseline cumulative hazard stays within

the bands, strongly suggesting that the Cox PH model fits the data better than the Weibull.

https://doi.org/10.1371/journal.pone.0189860.g003
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families of distributions were supported, such as the truncated Pareto [1] or tapered Pareto

[22].

We found an association between Fire Weather Index (FWI) and fire size. The strongly sig-

nificant negative coefficient for the FWI variable shows that under conditions of high flamma-

bility due to low fuel moisture and/or high wind speeds, fires are more likely to become large.

This is consistent with associations between related indices and fire duration [8] and of the

probability of achieving control targets [3]. We also found an association between fire size and

the type of vegetation in which the fire was burning at first action. Fires in M2 fuels tended to

be smaller than fires in the base fuel type (C1), and than in other fuel types according to the

Cox survival curves Fig 6. This finding is consistent with the differences in burn rate amongst

vegetation types in this study region [23].

Fig 4. Martingale residuals of Fire Weather Index variable. Locally Weighted Scatterplot Smoothing (LOWESS) (red line) of the martingale residuals

shows that they are approximately uncorrelated with mean 0, suggesting that FWI linear functional form is indicated.

https://doi.org/10.1371/journal.pone.0189860.g004
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We also found some indication of an association between type of intervention and fire size,

but not in the direction expected. Although the results were not significant at the 0.05 level, the

estimated coefficients suggested that fires attacked with the aid of airborne water tanks, espe-

cially helitankers, grew larger than those attacked by other methods. The raw data also showed

such tendency (S5 Fig), and the difference among group sizes was significant (Kruskal-Wallis

w2
4
¼ 15:22, p = 0.0043). The direction of this possible association is opposite to the expected

causal effect. Attacking a fire with a more aggressive method should not tend to increase fire

growth relative to a less aggressive method. Such an association could arise, though, due to

what is known in the medical literature as “confounding by indication”: When the most radical

treatments are given to the sickest patients [24], the associated mortality is likely to be high,

even if the treatments are effective in prolonging life. We suspect a similar effect may be

Fig 5. Cox-Snell residuals. The estimated cumulative hazard function of the Cox-Snell residuals (black line) is close to the cumulative hazard of a unit

exponential distribution (red dashed line), as expected of a correctly specified model.

https://doi.org/10.1371/journal.pone.0189860.g005
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operating in our study. Fire weather conditions, both present and forecast, and the probable

fuel type, are known to the fire management agencies who dispatch resources to fires. These

decisions are based on many factors such as permanent IA base location, number and type of

resources available at the time, resource deployment between among facilities, etc. Expected

growth rate of a fire is influenced by the human and material resources assigned to the fire and

also the quickness of detection and of response by an IA crew [25]. Air tankers and helitankers

are scarce resources, so one might expect that they are dispatched selectively to the fastest

growing fires or to those that pose the greatest risk. This is consistent with our findings by sur-

vival analysis, and with the distribution of size at IA as a function of the attack method. For

fires that grow after IA, the distribution of the sizes at IA differs significantly among attack

methods (S8 Fig, Kruskal-Wallis test, p = 0.030). Based on these post-hoc findings, we con-

clude that there is some reason to suspect confounding by indication. This suggests that the

analytical methods of causal inference could be applied to uncover the true effects of fire sup-

pression [26]. A sample of fires designed so that various treatments have been applied to fires

of various IA sizes would be required for this. Moreover, including fire weather data as fire-

size or time-varying covariates might better help disentangle the confounding than summariz-

ing the weather as a single time-fixed covariate (e.g., our FWI). Much larger datasets than what

we used here could be assembled from fire management archives, which would make it possi-

ble to apply these more powerful methods. We note that the covariate of fire load, designed to

Table 6. Parameter estimates, standard errors (Std. Error) and p-values from the fitted Cox proportional hazards

model.

Variable Estimate (Beta) Std. Error p-value

FWI -0.03 0.01 <0.001 ���

Method:Air tanker -0.21 0.20 0.283

Method:Ground 0.61 0.60 0.306

Method:Helitanker -0.51 0.31 0.105

Method:Other 0.14 0.18 0.426

Fuel type:C2 -0.13 0.27 0.632

Fuel type:M2 1.05 0.39 0.007 ��

Fuel type:Other -0.09 0.37 0.813

� p < 0.05,

�� p < 0.01,

��� p < 0.001

https://doi.org/10.1371/journal.pone.0189860.t006

Table 7. Likelihood-ratio chi-square, degrees of freedom and p-values from the fitted Cox proportional hazards

model analysis of deviance (Type II tests).

Variable LR Chisq Df p-value

FWI 13.68 1 <0.001 ���

Method 6.15 4 0.188

Fuel type 12.63 3 0.006 ��

� p < 0.05,

�� p < 0.01,

��� p < 0.001

https://doi.org/10.1371/journal.pone.0189860.t007
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measure the level of activity of the fire management system at the time of each fire, was not sig-

nificant. One might expect an interaction between attack method and load, as presumably fire

management resources become scarcer when more fires are being fought at the same time, but

we did not consider our sample size sufficient to explore an interaction with a multi-level fac-

tor. Again, larger sample sizes and more refined covariates might reveal the true effect of daily

fire load. The potential size of the non-significant effects of IA method (Fig 7) appear to us

large enough to warrant further investigation.

We found that survival analysis methods can unambiguously identify factors such as fuels

and fire weather which are not subject to confounding by indication. In health sciences appli-

cations, more data intensive survival analysis methods, such as causal inference, can be used to

estimate the consequences of medical treatments in terms of years of life saved among a popu-

lation [27][28], even in the presence of confounding. As noted above, it may be possible to

Fig 6. Cox proportional hazard model fitted survival curves for all levels of fuel type under air attack and median FWI. Levels of Fuel Type are

represented by C1 (blue line), C2 (black line), M2 (orange line) and Other fuel type (red line).

https://doi.org/10.1371/journal.pone.0189860.g006
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assemble fire size datasets suitable to these methods. With the advent of remote-sensed fire

size data obtainable at daily intervals, more informative longitudinal fire growth analysis may

also become possible. We hope the present work will encourage further work to ultimately

quantify the effectiveness of modern fire management in terms of the area preserved from

burning [4].

Supporting information

S1 Fig. Distribution of being held size among each fuel type for all fires.

(TIF)

S2 Fig. Distribution of being held size among each fuel type given that a fire has grown

between IA and BH.

(TIF)

S3 Fig. Distribution of initial attack size among each fuel type for all fires.

(TIF)

S4 Fig. Distribution of initial attack size among each fuel type given that a fire has grown

between IA and BH.

(TIF)

S5 Fig. Distribution of being held size among each method of intervention for all fires.

(TIF)

S6 Fig. Distribution of being held size among each method of intervention given that a fire

has grown between IA and BH.

(TIF)

S7 Fig. Distribution of initial attack size among each method of intervention for all fires.

(TIF)

Fig 7. Cox proportional hazard model fitted survival curves for all levels of IA method under fuel type C2 and contrasting levels of FWI. Levels of

Method are represented by Air (blue line), Air tanker (black line), Ground trained (purple line), Helitanker (red line) and Other ground crews (orange

line). FWI values are respectively the 5th (a) FWI = 4), 50th (b) FWI = 18) and 95th (c) FWI = 31) percentile.

https://doi.org/10.1371/journal.pone.0189860.g007
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S8 Fig. Distribution of initial attack size among each method of intervention given that a

fire has grown between IA and BH.

(TIF)

S1 Table. List of variables available at the beginning of variable selection for classification

(except interaction terms) procedure and survival analysis.

(TEX)
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