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Abstract

Background—Fast and accurate mapping and localization of the retinal vasculature is critical to 

increasing the effectiveness and clinical utility of robotic-assisted intraocular microsurgery such as 

laser photocoagulation and retinal vessel cannulation.

Methods—The proposed EyeSLAM algorithm delivers 30 Hz real-time simultaneous 

localization and mapping of the human retina and vasculature during intraocular surgery, 

combining fast vessel detection with 2D scan-matching techniques to build and localize a 

probabilistic map of the vasculature.

Results—In the harsh imaging environment of retinal surgery with high magnification, quick 

shaky motions, textureless retina background, variable lighting, and tool occlusion, EyeSLAM can 

map 75% of the vessels within two seconds of initialization and localize the retina in realtime with 

a Root Mean Squared (RMS) error of under 5.0 pixels (translation) and 1.0 degree (rotation).

Conclusions—EyeSLAM robustly provides retinal maps and registration that enable intelligent 

surgical micromanipulators to aid surgeons in simulated retinal vessel tracing and 

photocoagulation tasks.

Introduction

A challenging area of surgery is intraocular microsurgery because high precision is required 

to work with the tiny and fragile retinal tissues, which is made more difficult by 

physiological tremor decreasing surgical performance at such small scales (1, 2). For 

example, surgeons must be able to accurately place laser burns within fractions of a 

millimeter but not accidentally burn retinal vessels (3) and peel retinal membranes under 10 

µm thick (4). Advances in retinal vessel cannulation require the microsurgeon to inject anti-

coagulants into vessels less than 100 µm in diameter (5).
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Micromanipulation aids often depend on robotics and computer assisted surgery and various 

approaches have been built (6–8). Our lab has developed Micron, a fully handheld 

micromanipulator paired with vision-based control to help surgeons performing retinal 

surgery (9). Robotic control for microsurgery has advanced from scaling motion, limiting 

velocity, and regulating force to more sophisticated control methods made possible by 

understanding the tool position relative to the retinal structures in real-time. Merging camera 

imagery of the surgical scene with semi-automatic micromanipulation, vision-based control 

assists procedures and prevents mistakes (10). For instance, if laser burn placement during 

retinal laser photocoagulation is imprecise or errant, as in inadvertent retinal vasculature or 

macular photocoagulation, then excessive retinal ischemia or direct laser-induced retinal 

damage may impair visual function (11). During retinal vessel cannulation, robot aid can 

help guide the cannula to enable a surgeon to more easily inject drugs into a vessel only 

100–200 µm across (12).

Although many algorithms increase the effectiveness of robotic aid for retinal surgery, this 

paper focuses on localization and mapping of retinal vessels. We roughly categorize the 

related work into vessel detection, retinal registration, and the more general robotic approach 

of simultaneous localization and mapping (SLAM). Highlights of each are provided in Table 

1. Most methods are slow and high performance, which limits their usefulness for real-time 

microsurgery applications. Becker and Riviere introduced a formulation of simultaneous 

localization and mapping for retinal vasculature that ran in real-time using fast vessel 

detection and smoothing noisy observations over time while building and localizing to a map 

(13). We extend this work and introduce a new algorithm, called EyeSLAM. It exhibits 

robustness to variable illumination conditions, high magnification, quick shaky motion, 

textureless retina, and transient occlusions. Specifically, this paper introduces two new 

components of the EyeSLAM algorithm: (a) a scan-based localization algorithm with a 

dynamic map for higher convergence accuracy and increased tolerance of quick motion; and 

(b) more robust vessel detection with better rejection of spurious detections. The paper 

includes more quantitative results showing the effectiveness of EyeSLAM on simulated and 

recorded surgical video imagery, along with qualitative demonstrations of its usefulness in 

simulated surgical scenarios.

Vessel Detection

Given a single image of the retina, vessel detection extracts information such as location, 

width, and orientation of the visible vasculature. Per-pixel approaches classify each location 

in the image as vessel or non-vessel (14), identifying vasculature using popular approaches 

such as matched filters (15, 16) or Gabor filters (17, 18). Focusing on high performance 

using static, high-resolution fundus images at low magnification, many of these approaches’ 

runtimes exceed 1 second, which is too slow for incorporation into a high-speed robotic 

feedback loop. Some approaches decrease runtime requirements via faster algorithms (16, 

18) or hardware optimizations (19). Can et al. (16) is interesting in that it balances speed 

against performance by finding sparse sets of points on vessels and then tracing each vessel 

with a set of matched filters, dynamically estimating the direction and size of the vessel at 

each step. The entire vasculature is then obtained without having to touch pixels in large 
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expanses of the retina where there are no vessels. While very fast, the results of (16) are 

usually less complete and accurate than competing methods mentioned.

Retinal Image Registration

Retinal image registration takes in a set of images of the same retina and registers them by 

calculating the relative motion. Sparse keypoint descriptors like SIFT (20) matched between 

images are a popular approach in panorama stitching and have been extended to creating 

retinal mosaics (21, 22). Some method use custom descriptors or match uniquely identifiable 

vessel locations like bifurcations (23–25). Other methods match the shape of the entire 

vasculature tree between images (26, 27). More recently, hybrid methods combine sparse 

keypoints with tracking on the pixel level to create a mosaic from a video in real-time (28). 

Adapting many of these algorithms for the challenges of operating during intraocular 

surgeries in real-time would be difficult. Local keypoint methods (21, 22) struggle to find 

uniquely identifiable points at high magnification because of the low texture of the retina 

and contrast in surgical imaging. Likewise (23, 25) run on high-resolution fundus images 

and find few, if any, uniquely identifiable vessel locations at the high magnifications 

required for intraocular procedures. Furthermore, most approaches are not designed to cope 

with occlusion from instruments, harsh illumination, or variable lensing. Most importantly, 

these algorithms only perform localization and do not build a map of the vasculature, which 

is critical for robotic aid that depends on using the vasculature structure to improve 

micromanipulation.

Comparing to up-to-date technology, Richa et al. (28) performs registration of high-

definition imagery to provide a full mosaic view of the retina along with on-the-fly 

registration of a pre-operatively selected location from a fundus image. It is very fast (15 ms 

per frame) and robust to full frame occlusion. While similar to the proposed EyeSLAM 

algorithm, there are important differences. First, the output of Richa et al. is a registered 

image built from microscope frames stitched together over time with emphasis on 

photorealism designed to aid tutoring eye exams; our output is a full, probabilistic map of all 

the vessels seen from each frame designed to enhance robotic aid during intra-ocular 

procedures. Second, there is the difference of evaluation being limited on the single 

application of slit-lamp videos from eye exams (28), EyeSLAM works across a diverse set 

of videos at various magnifications collected in our lab and gathered online, spanning 

several different procedures: photocoagulation, membrane peeling, and cannulation. Finally, 

Richa et al. do not address issues critical to providing robotic aid during intraocular 

procedures: they do not model occlusion by the surgeon’s instrument or provide any 

vasculature information. Our approach is robust to transient tool occlusion and EyeSLAM 

paired with a robotic micromanipulator can actively aid the operator avoid or target the 

retinal vessels in experiments of several different simulated retinal surgeries.

Our approach incorporates an adaptation of the real-time correlative scan-matching method 

proposed by Olson et al. (29), using vasculature trees to build maps and register motion. We 

do not include (29) in Table 1 because it is not originally designed for retinal application, but 

instead more traditional SLAM applications. While EyeSLAM may not have as high 

accuracy as some algorithms listed in Table 1, it is unique because it operates in real time 
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and provides both vasculature maps and retinal registration, making it suitable for tight 

control loops in robotic surgical assistance.

Simultaneous Localization and Mapping (SLAM)

A related problem in robotics is that of simultaneous localization and mapping (SLAM) 

where a robot with noisy sensors traverses the world and wants to both incrementally build a 

global map of everything it has seen and determine its own location in that map (30). SLAM 

attempts to take the joint probability over all the observations and optimize both the global 

map and robot location at the same time. Original attempts performed poorly at scale and 

could not disambiguate between landmarks with similar features. Modern particle filter 

methods improved both speed and robustness, yielding methods like FastSLAM, which can 

represent maps as 2D images of dense probabilities of each point in space being occupied 

(31).

The problem of creating a global map of all the retinal vessels and localizing the current 

vessels seen in the image to the map is similar to that of SLAM. The most significant 

differences are that most SLAM methods assume space-carving sensors like laser range-

finders instead of overhead cameras and depend on a reasonably good model of the robot 

motion, which is lacking in retinal localization. As a result, most SLAM algorithms are not 

immediately suitable for solving the problem of mapping and localizing retinal vessels. 

However, EyeSLAM uses and extends the core ideas of both SLAM and other retinal 

algorithms to achieve mapping of vasculature and real-time localization, all operating in a 

surgical environment to provide manipulation aid via a robotic platform.

Materials and Methods

Our goal was to develop an approach that maps and localizes vasculature in the eye by 

fusing temporal observations from retinal vessel detection approaches in a probabilistic 

framework similar to existing SLAM algorithms. Currently, there is not a good solution to 

this problem that works with the constraints of intraocular surgery. Out of the box SLAM 

algorithms do not work with the harsh intraocular environment. Previous work in 

registration fuses temporal information well to build a mosaic of the entire retina but do not 

focus on extracting the vasculature (26, 27) while fast vessel detection algorithms are low 

quality and do not cope well with occlusions or temporal viewpoint changes (16). An 

important constraint is the algorithm must run real-time to be suitable for integration into a 

robotic aid system. We introduce a new approach named EyeSLAM, an extension of a 

previous approach (13) that merges concepts introduced by (16, 29–31) to rapidly detect 

vessels, build a probabilistic map over time, and localize using scan matching in an 

intraocular environment. It is robust to harsh lighting conditions and transient occlusions.

2D vs. 3D Models of the Retina

When considering a model of a retina, a 3D sphere seems the most suitable representation 

for building a map of the inside of the eye. However, a full 3D representation is problematic 

because 3D estimation in the eye is challenging. Microscope calibration can be difficult (32) 

and modeling the lens of the eye to achieve intraocular localization is an area of active 
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research (33), especially in conjunction with the nonlinear vitrectomy lenses often used 

during intraocular surgery. Further complicating matters is the deformation caused by the 

tool inserted through the sclera (or white of the eye). In practice, most approaches to retinal 

mapping choose a simpler 2D representation, assuming a roughly planar structure for the 

retina with an X translation, Y translation, and an in-plane rotation. Scaling can be added, 

but often has local minima that cause poor tracking (28), so we use the 3DOF representation 

without scaling. We have found the planar assumption has sufficient power to compactly 

represent the retina, which is especially true at high magnification where only a small subset 

of the retina is seen and can be treated as a plane. However, to compensate for small shifting 

vessel locations caused by 3D rotation, we do add a dynamic aspect to the map.

Problem Definition

The algorithm takes in a series of images of the retina from a temporally consistent video 

with no underlying assumptions about camera or eye motion except that it is roughly planar 

and there is no change in magnification. At each time t, EyeSLAM takes an input image It 

and produces two outputs: (1) a dynamically expanding 2D grayscale image representing the 

global occupancy map Ot of all the vasculature seen so far, with each pixel encoding the 

probability of a vessel at that location and (2) camera location viewpoint Lt into that map 

which is the result of the registration of the current image to the global map that changes as 

either the camera or eyeball moves. A 3-DOF (x translation, y translation, planar theta 

rotation) represents the possible camera registration to the map and our experiments show it 

approximates eyeball motion well, even for low magnification.

Feature Extraction via Vessel Detection

Sparse keypoints or vessel landmarks (crossovers or bifurcations) are difficult to track 

during intraocular surgery because of a lack of texture at high magnification and harsh 

illumination. We instead focus on semi-sparse points extracted along vessels with the idea 

that instead of trying to match points based on local texture, we can match the overall visible 

structure of vessels frame to frame. EyeSLAM uses the low quality but very fast algorithm 

of Can et al. (16) to extract approximate vessel locations that enable frame to frame 

matching (see Fig. 1b). To reduce false positives and improve quality, points detected as 

vessels are first filtered. Locations that are too dark, too bright, insufficiently red, or in the 

microscope fringing region are rejected, which improves performance in the presence of 

glare, low contrast, or distortion. These detections form the set of 2D points we want to 

match, denoted as the current observation Zt. In addition to better filtering, we have 

improved (13) by allowing the orientation of the vessel to change more quickly and then 

smoothing the vessels after tracing to provide higher quality vessel detections. False positive 

vessels are occasionally produced but do not usually gain enough evidence in the map to 

appear as high probability vessels.

Mapping via Occupancy Grids

EyeSLAM incorporates all observations over time by calculating the probabilistic 

occupancy map Ot as a 2D grayscale image where each location is represented by the log 

probability of a vessel occupying the pixel (see Fig. 1(c)). With each new image and 

associated detected vessel observation points Zt, the map is updated using the estimated 

Braun et al. Page 5

Int J Med Robot. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



camera location viewpoint Lt (described in the next section). Each newly detected vessel 

point is transformed into the map with  and the log probability at that map location is 

increased; all other visible map locations that did not have any detected vessels have their 

associated log probabilities decreased. This allows vessels that have not been seen for a 

while to be removed from the map, which allows the algorithm to more gracefully handle 

false positives, out of plane rotation, imaging distortions, or tissue deformations. In practice, 

the viewport into the map is calculated (depicted by the yellow oriented rectangle in Figure 

1(c)), and all the log probabilities in that area is first decayed by a fixed amount Udecay. 

Vessel points detected in the current viewpoint are added to the map as a 3×3 Gaussian filter 

with an initial value of Uinitial to represent the uncertainty of each detected vessel point. Log 

probabilities in the occupancy map are capped at Umax to keep a cell from becoming too 

certain and being unable to respond to changes. See Fig. 3 for an example of the 

probabilistic map of vessels at two resolutions. Tuning these parameters allow us to better 

model uncertainty of the vessel detection quality on real-world observations; our 

implementation uses Udecay = 0.01, Uinitial = 0.25, and Umax = 5.0 as those values tended to 

work well across different types of intraocular environments.

Unlike (13), the EyeSLAM algorithm uses a dynamically sized map that can automatically 

expand to accommodate newly detected vessels that were located outside the previous map 

boundaries as described on Fig. 2 on the “Dynamic Map Expansion” and “Map Updating” 

steps. The map update calculates the camera viewpoint on the map to not decay the 

probability of the grid cells located outside the currently observable field of view. By not 

decaying unseen areas of the map, we assume the vasculature is nominally stationary, and 

the map of the vessels does not change when out of sight. The formulation of the occupancy 

map reasons about uncertainty over time, smoothing noise while handling transient 

occlusions and deformation. Our previous work required finding the centerlines of the 

vessels as a necessary part of the registration step, which required an expensive image 

skeletonization and subsequent Iterative Closest Point (ICP) process. The new registration 

method avoids this time-consuming procedure and operates directly on the occupancy grid 

map. The final map is now generated using all the vessel points with a high probability value 

in the occupancy grid map. It is possible to calculate the centerlines if necessary for robotic 

control, but it is no longer integral to the internal workings of the algorithm, which is faster 

than (13).

Localization via Scan Matching

To localize eyeball motion (which is mathematically equivalent to localizing camera 

motion), a 3-DOF planar motion model is chosen. The problem of localization is then to 

estimate the 2D translation and rotation of the camera Ct between the current observations Zt 

and the occupancy grid map Ot. The original formulation (13) used Iterative Closest Point 

(ICP) algorithm for registration between a skeletonized version of the occupancy map and 

the current vessel observations, similar to (34). While this worked well for smooth motions, 

it was slow and had a tendency to fail with large, jerky motions, which caused divergence 

and would reset the tracker.
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The biggest improvement compared to (13) is the replacing of ICP with the fast correlative 

scan-matching method proposed by Olson et al. (29). It is used to scan the whole 3D search 

window of solutions Wl, parametrized by xl, yl, and θl, and to find the best match Bt 

between the map Mt and the current observations Pt transformed to the map with . The 

solution associated with the best match is considered as the best solution for camera 

registration Lt. The challenge is to minimize the processing time while maximizing the 

quality and the robustness of the solution.

A brute-force method that scans every solution is too slow. As detailed in (29), we adopt a 

multi-resolution approach consisting in scanning the 3-DOF search window (two 

translations and a rotation) with two different map resolutions (Fig. 3). A first scan quickly 

identifies the approximate best solution in the low-resolution map. Afterwards, a second 

scan on the high-resolution map initialized around the low-resolution transformation more 

precisely finds the best approximation of Lt. At 1/4th map size, we see about a 16X speed 

up.

Incomplete vessel detections at each frame can be noisy, so the final scan-matching 

estimation of the localization is smoothed using a constant-velocity Kalman filter, yielding 

the localization of the camera Lt. At most 500 vessel points are selected for scan matching 

(at random) to improve runtime. If too few observations are found, they are discarded and 

the current localization is kept. Once scan matching completes, the occupancy map is then 

updated with the newly registered vessel points Zt to close the feedback loop on the 

algorithm.

Video Sequences

For ease of robotic testing in our lab, color video recorded with a surgical microscope is 

captured at 30 Hz with a resolution of 800x608 at a variety of high magnifications (10–

25X). We also tested with human retinas in vivo from videos taken of real human eye 

surgeries (available publicly via YouTube). Those videos have variable resolution at different 

magnification, which are specified if relevant in the results. Fig. 4 shows the proposed 

algorithm output on a human retina during surgery in vivo.

Results

We have evaluated EyeSLAM both quantitatively and qualitatively on a variety of videos of 

paper slides, porcine retina ex vivo, and human procedures in vivo.

Retina Localization Results

Fig. 4 shows translation and rotation transformation with error between EyeSLAM estimates 

and human-labeled ground truth for a video sequence of human retina during an epiretinal 

peeling procedure in vivo. Quantitatively in Table 2, EyeSLAM with scan matching 

outperforms the previous ICP method for experiments on three video sequences. Error is 

measured relative to a transformation calculated from tracked fiducials for the paper slide or 

human labeled fiducials as ground truth. As seen in Fig. 4, significant translations in excess 

of 100 pixels are evident on these video sequences. The global nature of the low-resolution 
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scan-matching step helps prevent jumps due to poor vessel registration. In the planar 

phantom experiment, where the vessels are well defined, the lighting uniform, and the 

motion smooth, the two results are close, although EyeSLAM localizes 50% better. On the 

porcine and human retina, earlier versions of the algorithm have very large Root Mean 

Squared (RMS) errors because of lost tracking and jumps that were not recoverable with the 

older ICP registration. The new EyeSLAM algorithm provides superior localization, which 

is important during critical microsurgical operations.

Vasculature Mapping Results

Figure 5 shows a visual, qualitative evaluation of the quality of maps EyeSLAM builds in a 

variety of simulated and real retinal surgical applications. While there are some incomplete 

detections and false positives in the map, EyeSLAM is able to largely map and localize in a 

diverse and challenging set of lighting conditions and environments.

To measure map quality quantitatively, Fig. 6 evaluates vessel coverage and false positives 

on a typical human video sequence in vivo. Calculations are made using hand-labeled 

vasculature (including very thin vessels) in nine frames in the first five seconds. Initialization 

is fast, requiring less than 15 frames (0.5 sec) to start building the map and only a few 

seconds to fully build the map, depending on the image quality and the ability of the vessel 

detection algorithm. On this sequence, EyeSLAM maps 50% of the hand-labeled vessels 

within 30 frames (one second) and achieves 75% coverage within 60 frames (two seconds). 

It does not achieve 100% coverage because it misses some very thin, faint vessels, and the 

ones located very close together. The false positive rate is under 10% after five seconds. 

Overall, EyeSLAM converges quickly with good coverage of the well-defined vasculature 

structures of the retina.

Timing Performance

For speed, images are resized in half, yielding resolutions in the range of 400×304 to 

380×360, depending on video sequence source. On an Intel i5-3570K computer, EyeSLAM 

implemented in C++ runs at 50–100 Hz with a mean runtime of 15 ms on the three videos 

listed in Table 2. This time includes all vessel feature detection, correlative scan-matching 

localization, and dynamic occupancy-grid mapping running in a single thread. This is about 

2X faster than the previous work (13), and is sufficient to run simultaneous EyeSLAM 

algorithms on stereo microscope views in real-time (>30 Hz).

Surgically-Applied Results with Micron

To test the usefulness of the EyeSLAM algorithm combined with robotic aid in intraocular 

surgical environments, we performed surgically-applied tests with the robot Micron 

developed in our lab (9). Micron is a 6-DOF handheld micromanipulator with motors in the 

handle to control the tip of the instrument semi-independently of hand motion within a small 

volume of area (several mm^3). The Micron setup has custom-built optical trackers on the 

instrument to provide 1 kHz 3D positioning information with µm-level precision and 30 Hz 

stereo cameras applying computer vision and stereo algorithms to the left and right 

microscope view. Calibration between the microscope stereo view and custom 3D optical 

trackers that measure the position of Micron is more fully described in (35). Micron’s 
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control system uses EyeSLAM running on the stereo camera stream to identify where the 

vessels are and enforce virtual fixtures that constrain and scale motion of the tip about those 

vessels. These control system sets the goal position of the instrument tip based on a 

combination of the user hand movement and the virtual fixtures in effect (for instance, 

allowing the user to slide the tip along the vessel direction but not orthogonal to it). In the 

case of Micron outfitted with laser, EyeSLAM’s tracking of the vasculature helps guide the 

laser beam finder (also tracked in the microscope stereo cameras) and controls the firing of 

the full-power laser so as to not accidentally burn the vessels.

In the first surgically-applied experiment using the Micron and EyeSLAM robotic aid 

system, we simulated the eye and retina in a rubber eyeball phantom filled with saline and 

fitted with a vitrectomy lens. A surgeon performed a vessel-tracing task under a board-

approved protocol. Fig. 7(a) shows unaided human performance and Fig. 7(b) shows 

performance aided with the Micron robot enforcing virtual fixtures (35) derived from 

EyeSLAM. In (a) the tracing is imprecise because of normal physiological hand tremor at 

sub-millimeter scales, whereas in (b) the tracing is smoother because the Micron robot 

knows the vasculature map from EyeSLAM and can enforce virtual fixtures in the control 

loop to help keep the tip of the instrument on the vessel.

Finally, we tested efficacy of pairing EyeSLAM localization and mapping with robotic aid in 

a simulated retinal surgery. Research performed in our lab has used the EyeSLAM algorithm 

with the Micron manipulator during simulated photocoagulation surgeries performed with 

vitreoretinal surgeons on synthetic paper slides of retina (36). In laser photocoagulation, the 

goal is to accurately place burns on the retina while avoiding the vasculature. EyeSLAM 

provides the map of the vessels from which the system automatically plans the pattern of 

laser burns as well as the localization necessary to register that pattern to the retina as it 

moves during the procedure. The robotic aid aims the laser at the proper location on the 

retina, compensating for motion measured by EyeSLAM, and activates the laser. The 

surgeons using the Micron micromanipulator reduced burn placement error by over 50% 

while providing regular burn sizes with the robotic aid. Fig. 8 shows the automated 

avoidance of vessels using EyeSLAM during automated laser photocoagulation.

Discussion

We have presented a new algorithm, EyeSLAM, for retinal mapping and localization that 

operates in real time at >30 Hz. Designed to handle the dynamic environment of high 

magnification, variable illumination, and rapid motion inherent in retinal surgery, our 

approach converges quickly and is robust to occlusion. Fusing ideas from vessel detection, 

retinal registration, and SLAM, it has proven to be an effective method to temporally smooth 

vessel detections and build a comprehensive map of the vasculature. EyeSLAM localization 

is accurate within five pixels in translation and one degree in rotation on representative video 

sequences and initializes quickly, covering 80% of the vasculature within two seconds. 

Compared to (13), the new EyeSLAM approach addresses a lot of the earlier shortcomings, 

especially lag and loss of tracking. EyeSLAM has greatly improved localization, especially 

being robust to rapid motions common in retinal surgeries, along with additions to make the 

algorithm faster with more comprehensive vessel detections and an enhanced dynamic map 
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that expands as needed. EyeSLAM is least 50% better than our earlier formulation with 

significantly more consistent tracking in more difficult video sequences. EyeSLAM operates 

in real time in challenging intraocular environments, providing both mapping and 

localization of the retinal vasculature to the Micron robot, improving operator performance 

in synthetic vessel tracing and photocoagulation experiments.

Future improvements should include more robust vessel detection. Another focus is reducing 

false positives and better modeling occlusion with more sophisticated tool tracking such as 

(37). More advanced 3D models could be beneficial and accomplished with stereo vision. 

More sophisticated closing the loop SLAM algorithms could be studied and applied to 

reduce the map from drifting as the FOV changes. Finally, optimization to run in real-time 

on high-definition video may increase localization accuracy and map quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Sources of Support

National Institutes of Health (grant no. R01 EB000526), the National Science Foundation (Graduate Research 
Fellowship), and the ARCS Foundation.

References

1. Holtz, F., Spaide, RF. Medical Retina. Krieglstein, GK., Weinreb, RN., editors. Berlin: Springer; 
2007. 

2. Singh, SPN., Riviere, CN. Physiological tremor amplitude during retinal microsurgery; Proc. IEEE 
Northeast Bioeng. Conf; 2002. p. 171-172.

3. Frank RN. Retinal laser photocoagulation: Benefits and risks. Vision Res. 1980; 20(12):1073–1081. 
[PubMed: 7196642] 

4. Brooks HL. Macular hole surgery with and without internal limiting membrane peeling. 
Ophthalmology. 2000; 107(10):1939–1948. [PubMed: 11013203] 

5. Weiss JN, Bynoe LA. Injection of tissue plasminogen activator into a branch retinal vein in eyes 
with central retinal vein occlusion. Ophthalmology. 2001; 108(12):2249–2257. [PubMed: 
11733266] 

6. Ueta T, Yamaguchi Y, Shirakawa Y, et al. Robot-assisted vitreoretinal surgery: Development of a 
prototype and feasibility studies in an animal model. Ophthalmology. 2009; 116(8):1538–1543. 
[PubMed: 19545902] 

7. Uneri A, Balicki Ma, Handa J, Gehlbach P, Taylor RH, Iordachita I. New Steady-Hand Eye Robot 
with Micro-Force Sensing for Vitreoretinal Surgery. Proc IEEE RAS EMBS Int Conf Biomed Robot 
Biomechatron. 2010; 2010(26–29):814–819. [PubMed: 21461178] 

8. Hubschman JP, Bourges JL, Choi W, et al. The Microhand: A new concept of micro-forceps for 
ocular robotic surgery. Eye. 2009; 24(2):364–367. [PubMed: 19300461] 

9. Yang S, MacLachlan RA, Riviere CN. Manipulator design and operation for a six-degree-of-
freedom handheld tremor-cancelling microsurgical instrument. IEEE/ASME Trans Mechatron. 
2015; 20(2):761–772.

10. Bettini A, Marayong P, Lang S, Okamura AM, Hager GD. Vision-assisted control for manipulation 
using virtual fixtures. IEEE Trans Robot. 2004; 20(6):953–966.

11. Infeld DA, O’Shea JG. Diabetic retinopathy. Postgrad Med J. 1998; 74(869):129–133. [PubMed: 
9640436] 

Braun et al. Page 10

Int J Med Robot. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Lin, HC., Mills, K., Kazanzides, P., et al. Portability and applicability of virtual fixtures across 
medical and manufacturing tasks. Proc. IEEE Int. Conf. Robot. Autom; Citeseer; 2006. p. 
225-231.

13. Becker, BC., Riviere, CN. Real-time retinal vessel mapping and localization for intraocular 
surgery; IEEE International Conference on Robotics and Automation (ICRA2013); 2013. p. 
5360-5365.

14. Chanwimaluang, T. An efficient blood vessel detection algorithm for retinal images using local 
entropy thresholding. International Symposium on Circuits and Systems; IEEE; 2003. p. 21-24.

15. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M. Detection of blood vessels in retinal 
images using two-dimensional matched filters. IEEE Trans Med Imag. 1989; 8(3):263–269.

16. Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B. Rapid automated tracing and feature 
extraction from retinal fundus images using direct exploratory algorithms. IEEE Trans Inform 
Technol Biomed. 1999; 3(2):125–138.

17. Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 
2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag. 2006; 25(9):1214–1222.

18. Bankhead, P., Scholfield, CN., McGeown, JG., Curtis, TM. Fast retinal vessel detection and 
measurement using wavelets and edge location refinement. In: Serrano-Gotarredona, T., editor. 
PLoS One. Vol. 7. 2012. 

19. Koukounis D, Ttofis C, Papadopoulos A, Theocharides T. A high performance hardware 
architecture for portable, low-power retinal vessel segmentation. Integr VLSI J. 2014; 47(3):377–
386.

20. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004; 
60(2):91–110.

21. Cattin, P., Bay, H., Van Gool, L., Székely, G. Retina mosaicing using local features. In: Larsen, 
R.Nielsen, M., Sporring, J., editors. Medical Image Computing and Computer-Assisted 
Intervention. Vol. 4191. Lecture Notes in Computer Science; Springer Berlin / Heidelberg: 2006. 
p. 185-192.

22. Wang Y, Shen J, Liao W, Zhou L. Automatic fundus images mosaic based on SIFT feature. J Image 
Graph. 2011; 6(4):533–537.

23. Becker DE, Can A, Turner JN, Tanenbaum HL, Roysam B. Image processing algorithms for retinal 
montage synthesis, mapping, and real-time location determination. IEEE Trans Biomed Eng. 1998; 
45(1):105–118. [PubMed: 9444845] 

24. Can A, Stewart CV, Roysam B, Tanenbaum HL. A feature-based, robust, hierarchical algorithm for 
registering pairs of images of the curved human retina. IEEE Trans Pattern Anal Mach Intell. 
2002; 24(3):347–364.

25. Broehan AM, Rudolph T, Amstutz CA, Kowal JH. Real-time multimodal retinal image registration 
for a computer-assisted laser photocoagulation system. IEEE Trans Biomed Eng. 2011; 58(10):
2816–2824. [PubMed: 21689999] 

26. Stewart CV, Tsai C-L, Roysam B. The dual-bootstrap iterative closest point algorithm with 
application to retinal image registration. IEEE Trans Med Imag. 2003; 22(11):1379–1394.

27. Chanwimaluang T, Fan G, Fransen SR. Hybrid retinal image registration. IEEE Trans Inform 
Technol Biomed. 2006; 10(1):129–142.

28. Richa R, Linhares R, Comunello E, et al. Fundus Image Mosaicking for Information Augmentation 
in Computer-Assisted Slit-Lamp Imaging. Med Imaging, IEEE Trans. 2014; 33(6):1304–1312.

29. Olson, EB. Real-Time Correlative Scan Matching; Proc. IEEE Int. Conf. Robot. Autom; 2009. p. 
4387-4393.

30. Thrun, S. Simultaneous Localization and Mapping. In: Jefferies, M., Yeap, W-K., editors. Robotics 
and Cognitive Approaches to Spatial Mapping. Vol. 38. Springer Tracts in Advanced Robotics; 
Springer Berlin / Heidelberg: 2008. p. 13-41.

31. Hahnel D, Burgard W, Fox D, Thrun S. An efficient FastSLAM algorithm for generating maps of 
large-scale cyclic environments from raw laser range measurements. Proc. IEEE Intl. Conf. Intell. 
Robot. Syst. 2003; 1:206–211.

32. Zhou Y, Nelson BJ. Calibration of a parametric model of an optical microscope. Opt Eng. 1999; 
38(12):1989–1995.

Braun et al. Page 11

Int J Med Robot. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Bergeles C, Shamaei K, Abbott JJ, Nelson BJ. Single-camera focus-based localization of 
intraocular devices. IEEE Trans Biomed Eng. 2010; 57(8):2064–2074. [PubMed: 20442042] 

34. Stewart CV, Tsai C-L, Roysam B. The dual-bootstrap iterative closest point algorithm with 
application to retinal image registration. IEEE Trans Med Imaging. 2003; 22(11):1379–1394. 
[PubMed: 14606672] 

35. Becker BC, MacLachlan RA, Lobes LA Jr, Hager G, Riviere C. Vision-based control of a handheld 
surgical micromanipulator with virtual fixtures. IEEE Trans Robot. 2013; 29(3):674–683. 
[PubMed: 24639624] 

36. Yang S, Lobes LA Jr, Martel JN, Riviere CN. Handheld Automated Microsurgical Instrumentation 
for Intraocular Laser Surgery. Lasers Surg Med. 2015; 47(8):658–668. [PubMed: 26287813] 

37. Sznitman R, Richa R, Taylor RH, Jedynak B, Hager GD. Unified detection and tracking of 
instruments during retinal microsurgery. Pattern Anal Mach Intell IEEE Trans. 2013; 35(5):1263–
1273.

38. Chen L, Huang X, Tian J. Retinal image registration using topological vascular tree segmentation 
and bifurcation structures. Biomed Signal Process Control. 2015; 16:22–31.

Braun et al. Page 12

Int J Med Robot. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Summary of the EyeSLAM algorithm running on ex vivo porcine retina under surgical 

microscope. (a) Raw input video of retina during surgery via high-magnification microscope 

is run through (b) fast vessel detection, forming noisy observations which is used to build 

and localize (c) a 2D occupancy map representing probabilities of vasculature at each point 

(with yellow box showing the localized camera view), yielding (d) EyeSLAM output of the 

full vessel map localized to the current frame.
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Fig. 2. 
Block diagram showing the steps of EyeSLAM algorithm that maps and localizes retinal 

vessels during intraocular surgery. Vessels are detected and registered to the map, building 

an occupancy grid. The map is initialized with the raw vessel detections on the first frame 

and resized dynamically as needed. The registration allows the map to be transformed back 

into the current frame, providing full vasculature map along with localization.
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Fig. 3. 
Multi-resolution maps used by the scan-matching registration algorithm. (a) High resolution 

map. (b) Low resolution map.
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Fig. 4. 
Localization accuracy and error compared to labeled video of human retina in vivo of a 

patient with retinopathy. (a) Translation component representing the L2 norm of X and Y (b) 

Rotation component (c) Sample output of raw video, vessel detection, map, and localized 

EyeSLAM output from frame 643. This system was able to perform vessel detection and 

localization in diseased eyes with retinal hemorrhages. Notice the accumulated evidence of 

seeing a vessel over many frames adds persistence of the mapped vessel structure through 

transient false negatives (no observed vessels because of tool occlusion). One failure mode is 

persistent occlusions will yield a repeated lack of vessel observations and remove vessels 

from the map once the probability decays too low. Loop closure global optimization would 

help with the small amount of angular drift seen in the latter part of the sequence.
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Fig. 5. 
Visual evaluation of EyeSLAM operating in diverse environments. (a) Printed retinal image 

on paper: note that EyeSLAM can maintain vasculature structure even during tool occlusion. 

(b) Porcine retina ex vivo at high magnification during rapid movement where some of the 

vessels have moved outside of the view of the microscope; note that EyeSLAM is able to 

remember where the vessels are, even outside of the microscope FOV. (c) Porcine retina ex 
vivo during retinal vessel cannulation experiment; notice very good performance in a 

challenging light environment despite a few false positives on the edge of the tool where the 

color filter is failing. (d) Human retina in vivo during panretinal photocoagulation surgery; 

there are a few false positives on the red laser dot where the color filter is failing. (e) Chick 

chorioallantoic membrane (CAM) in vivo, a model for retinal vessels that is considerably 

more elastic than the retina; EyeSLAM does not easily correct for deformations induced by 

the tool, and has some false positive responses on the edge of the membrane. (f) Human 

retina in vivo during epiretinal membrane peeling; note the good mapping and localization.
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Fig. 6. 
Vasculature map initialization statistics including coverage and false positives for the first 

five seconds of a video sequence of human retina in vivo being prepared to receive 

photocoagulation treatment. (a) Vessel coverage and false positives of the thresholded 

probabilistic map evaluated at frame 0, 7, 15, 30, 60, 90, 120, and 150 compared to hand-

labeled vasculature at each frame. Coverage is the percentage of hand-labeled vasculature 

that EyeSLAM correctly built. False positives are the places in the EyeSLAM maps that do 

not correspond to true vessels. The spike in false positives at frame 15 is due to slight mis-

registration during initialization. (b) Raw video of frame 150 after five seconds. (c) Color-

coded map at frame 150 with green representing true positives (correctly matched vessels), 

red representing false positives (spurious vessels), and blue representing false negatives 

(missed vessels). Best viewed in color.
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Fig. 7. 
Tracing a retinal vessel in an eyeball phantom. (a) Unaided attempt to trace the vessel and 

(b) Aided attempt with a robotic micromanipulator enforcing virtual fixtures based off 

EyeSLAM mapping and localization. The blue line indicates the path of the tip of the 

instrument registered to each frame of the video using EyeSLAM. Note in both cases, the 

entire phantom eyeball is moving due to movement of the tool through the sclera port.
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Fig. 8. 
EyeSLAM can be used in the robotic micromanipulator Micron control system to provide 

accurate targeting information on a paper phantom during a simulated retinal 

photocoagulation experiment. EyeSLAM provides the necessary localization information to 

compensate for motion of the retina in real time and register the burn pattern to the pre-

operatively specified placement. The EyeSLAM map is used to automatically plan burn 

patterns that do not overlap or touch the vasculature structure, thus protecting the vessels 

while applying the needed treatment to the retina. (a) Target placement before laser 

photocoagulation. Empty black circles represent targets to be avoided within 100 µm of a 

vessel while white circles show valid targets (b) After the completion of the automated laser 

photocoagulation.
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