Skip to main content
. 2018 Jan 10;13:8. doi: 10.1186/s11671-017-2419-8

Table 4.

The state variable equations presented in an improved form

Model Original state variable dynamics (f2) Modified using concepts from Wang and Roychowdhury100
Linear ion drift [3] f2 = μv × Ron × f1(vpn, s) DC hysteresis not present.
Clipping technique is used to set bounds for s, so that 0 ≤ s ≤ 1
Non-linear ion drift [46, 68] f2 = a × vpnm DC hysteresis not present.
Clipping technique is used to set bounds for s, so that 0 ≤ s ≤ 1
Simmons tunneling barrier [7072] f2=coff×sinhiioff×expexpsaoffwcibswc,ifi0con×sinhiion×expexpaonswc+ibswc,otherwise
where i = f1 (vpn, s)
No DC hysteresis present. Consists of fast growing functions.
sinh is changed to safesinh(), exp to safeexp().
Smoothing is performed and bounds for s, so that 0 ≤ s ≤ 1
TEAM/VTEAM [7577] f2=koff×vpnvoff1aoff,ifvpn>voffkon×vpnvon1aon,ifvpn<von0,otherwise The equation is redesigned as:
f2=koff×vpnvvoffaoff,ifvpn>voffkon×vpnvvonaon,otherwise
where
v = (1 − s) × voff + s × von,
Such that when s = 1 and s = 0, it is equivalent to the VTEAM equation in the vpn > voff and vpn < von regions, respectively.
The functions are also smoothened by:
f2p=koff.vpnv/voffαoff,
f2n=kon.vpnv/vonαon,
f2 = smoothswitch(f2n, f2p, vpn − v, smoothing)
The bounds for s are set using clipping techniques.
Yakpocic [73, 74] f2 = g(vpn) × f(s),
where
gvpn=Ap×expvpnexpVp,ifvpn>VpAn×expvpnexpVn,ifvpn<Vn0,otherwise,
and
fs=expαp×sxp,ifsxpexpαn×s1+xn,ifs1xn1,otherwise
The equations are designed to get proper DC hysteresis:
gvpn=Ap×expvpnexpv,ifvpn>vAn×expvpnexpVn,otherwise
where
v =  − Vn × s + Vp × (1 − s)
Also exponential function is changed to safeexp(). The whole function is made smooth. Clipping is used to set bounds for s.
ASU/Stanford [7881] f2=v0×expq×Eak×T×sinhvpn×γ×a0×qk×T×tox
where
γ = γ0 − β0 × Gap3
The d/dt Gap is converted to d/dt s:
f2=maxGapminGap×v0×expq×Eak×T×sinhvpn×γ×a0×qk×T×tox
Also exp is changed to safeexp() and sinh tosafesinh (). Clipping is used to set bounds for s.