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Abstract
For millennia, people have cut and joined different plant tissues together through a process known as grafting. By creating 
a chimeric organism, desirable properties from two plants combine to enhance disease resistance, abiotic stress tolerance, 
vigour or facilitate the asexual propagation of plants. In addition, grafting has been extremely informative in science for 
studying and identifying the long-distance movement of molecules. Despite its increasing use in horticulture and science, 
how plants undertake the process of grafting remains elusive. Here, we discuss specifically the role of eight major plant 
hormones during the wound healing and vascular formation process, two phenomena involved in grafting. We furthermore 
present the roles of these hormones during graft formation and highlight knowledge gaps and future areas of interest for the 
field of grafting biology.
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Introduction

The plant vascular tissue is crucial for transporting water, 
nutrients, photosynthetic products and signalling mole-
cules throughout the plant. It provides mechanical support, 
thereby allowing an increase in plant stature and adapta-
tion to various environments. As such, plants have efficient 
mechanisms to generate vasculature in newly formed organs, 
to increase vasculature in existing organs, and to heal the 
vasculature upon wounding or stress. There are two main 
types of vascular tissues: xylem, made up of tracheary ele-
ments, parenchyma cells and fibres; and phloem, made up of 
sieve elements and parenchyma cells, including companion 
cells (reviewed by De Rybel et al. 2016; Miyashima et al. 
2013; Nieminen et al. 2015). Xylem transports water, min-
erals and nutrients from roots to shoots, whereas phloem 
transports photoassimilates from source to sink tissues. Sig-
nalling molecules, such as phytohormones, are also trans-
ported by these tissues. Vascular tissues come in various 
patterns depending on plant species, age and organ type. 

However, in dicotyledonous plants xylem and phloem tis-
sues are always separated by cambium cells and xylem tissue 
is found towards the central region, whereas phloem tissue 
develops towards the outer region. The cambium acts as a 
vascular meristem and during secondary growth divides to 
produce more xylem and phloem cells, thereby permitting 
plant stems to increase in diameter (discussed in Spicer and 
Groover 2010). In the case of monocotyledonous plants, the 
vascular tissue does not include cambium and these plants 
rarely undergo secondary growth.

Grafting, consisting of cutting and joining two plants so 
that they grow together as one, is widely used in horticul-
ture as a method to improve disease resistance, tolerance to 
abiotic stress, fruit quality and plant size (summarized by 
Mudge et al. 2009). More recently, researchers have used 
grafting as a tool to demonstrate the long-distance move-
ment of molecules including phytohormones, proteins and 
RNAs (summarized by Goldschmidt 2014; Turnbull et al. 
2002; Turnbull 2010). Successful grafting requires tissue 
reunion including forming vascular connections between 
the two plants. Grafting initially triggers the secretion of 
pectins from cells at the cut site to adhere the rootstock 
and scion together. Dedifferentiated stem-cell like tissue, 
termed callus, then forms at both junctions until the grafted 
tissues join and plasmodesmata can bridge the connection 
site. Cambium, cortex and pith cells surrounding the phloem 
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and xylem divide and, together with callus cells, differentiate 
into vascular tissues and connect the two junctions (Jeffree 
and Yeoman 1983; Lindsay et al. 1974; Melnyk et al. 2015; 
Moore 1983; Moore and Walker 1981; Ribeiro et al. 2015). 
Phloem connections typically precede xylem connections at 
the graft junction (Melnyk et al. 2015).

Phytohormones regulate every aspect of plant develop-
ment and responses to biotic and abiotic stresses. Here, we 
investigate the role of eight major plant hormones during the 
process of plant grafting. Where insufficient information on 
their role in grafting is present, we also look to the role of 
these hormones in wound healing and vascular formation 
in plants, since it is thought that graft formation includes 
elements of these processes (Melnyk 2017). The role of sali-
cylic acid was not addressed as it has not yet been implicated 
in either vascular development or grafting. Through this 
review, we aim to provide an index of the role of each hor-
mone during vascular formation, wound healing, and graft-
ing, thereby underlining knowledge gaps for future studies.

Abscisic acid

The phytohormone abscisic acid (ABA) is important 
for biotic and abiotic stress responses, including drought 
response, but also plays a role during plant development 
such as seed maturation, seed germination and the regulation 
of stomatal aperture (reviewed in Cutler et al. 2010; Finkel-
stein 2013; Vishwakarma et al. 2017). A few studies have 
indirectly linked ABA to vascular formation. For instance, 
secondary growth in Arabidopsis induces the expression of 
several genes containing ABA-inducible cis-elements in 
their promoter region, suggesting they are under the con-
trol of ABA signalling (Oh et al. 2003). Moreover, vascular 
formation and ABA signalling appear to converge on the 
homeodomain-leucine zipper-type transcription factor (TF), 
ARABIDOPSIS THALIANA HOMEOBOX 7 (ATHB7), since 
this gene is specifically expressed in differentiating xylem 
and is also induced by drought stress and ABA treatment 
(Hjellström et al. 2003; Söderman et al. 1994; Wenzel et al. 
2008). However, more work is needed to fully understand 
the role of ABA during vascular formation.

Abiotic stresses, including wounding, trigger ABA accu-
mulation (Peña-Cortés et al. 1989). ABA application induces 
the expression of wound-activated genes in the absence 
of wounding whereas when ABA-deficient mutants are 
wounded, wound-activated genes show reduced induction 
(Peña-Cortés et al. 1989, 1995), suggesting a direct role for 
ABA in the wound response. Alternatively, ABA accumu-
lation near the wound may be due to desiccation of dam-
aged tissues rather than a direct response to wounding itself 
(Birkenmeier and Ryan 1998). Further studies are needed 
to distinguish these two hypotheses. Interestingly, a recent 

study demonstrated that mutants with reduced ABA syn-
thesis or signalling were more efficient at forming wound-
induced callus, suggesting that ABA might have inhibitory 
aspects towards wound-healing (Ikeuchi et al. 2017). To our 
knowledge, the role of ABA during grafting has yet to be 
addressed.

Auxin

Auxin is the most studied phytohormone and is involved 
in nearly every developmental process including apical 
dominance, organ formation and gravitropism (reviewed in 
Enders and Strader 2015; Teale et al. 2006; Vanneste and 
Friml 2009; Zhao 2010). Auxin also plays a central role 
in vascular formation. When applied exogenously to undif-
ferentiated tissues, it promotes the formation of vascular 
strands (Aloni 1980; Sachs 1981; Wetmore and Rier 1963), 
whereas when auxin signalling is perturbed, leaf vascular 
patterns are dramatically altered (Mattsson et al. 1999; Sie-
burth 1999). Multiple organs, including developing leaves, 
produce auxin where it is transported by proteins, such as 
the PIN-FORMED (PIN) proteins, towards the base of the 
plant (Aloni 2001; Mattsson 2003; Mattsson et al. 1999; 
Scarpella et al. 2006; Sieburth 1999). The channelling and 
accumulation of auxin is considered one of the earliest 
events of vascular differentiation (Donner et al. 2009; Wen-
zel et al. 2007), most likely through its induction of the auxin 
response TF MONOPTEROS (MP). MP directly activates 
the transcription of a homeodomain-leucine zipper III gene, 
ATHB8, necessary for preprocambial cell specification and 
the coordination of procambial cell identity. Modulation of 
auxin levels in specific tissues and cells regulates vascular 
cell fate. For instance, high auxin levels increase the number 
of secondary xylem and phloem cells in petunia (Klee et al. 
1987), whereas low auxin levels reduce the number of xylem 
cells in tobacco (Romano et al. 1991). Application of a low 
amount of auxin differentiates phloem in callus of several 
plant species, while a high amount induces both phloem and 
xylem (Aloni 1980).

Auxin is also involved in the wound response, with PIN 
proteins transporting auxin to the wound site, where it 
triggers vascular tissue regeneration in Arabidopsis stems 
and pea epicotyl (Mazur et al. 2016; Sauer et al. 2006). 
For instance, auxin transported basipetally from leaves 
and buds promotes xylem regeneration following wound-
ing, as removal of these tissues above, but not below, the 
cut site decreased xylem regeneration of wounded Coleus 
blumei internodes (Jacobs 1952). Likewise, incised Arabi-
dopsis stems show an asymmetric auxin accumulation 
due to a block in basipetal auxin transportation (Asahina 
et al. 2011). This asymmetry plays an important signalling 
role during tissue reunion since the AUXIN RESPONSE 
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FACTOR (ARF) 6 and 8 promote the expression of the 
NAM, ATAF, and CUC (NAC) TF ANAC071 above the 
cut, while inhibiting expression of RELATED TO AP2 
6L (RAP2.6L) (Asahina et al. 2011; Pitaksaringkarn et al. 
2014a). In contrast, lower auxin levels below the cut leads 
to a decrease in ARF6 and 8 expression, thereby releasing 
RAP2.6L inhibition. ANAC071 and RAP2.6L promote pith 
cell division and their expression in the top and lower part 
of the cut site, respectively, is important for successful tis-
sue reunion of incised stems (Asahina et al. 2011). Moreo-
ver, ANAC071 both promotes the expression of and directly 
binds to the promoters of auxin-inducible XYLOGLUCAN 
ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) 19 
and 20, important for pith cell proliferation during tissue 
reunion (Pitaksaringkarn et al. 2014b). However, the down-
stream targets of RAP2.6L remain unknown. Ethylene and 
jasmonic acid also regulate ANAC071 and RAP2.6L expres-
sion, respectively, and are likely also important for wound 
healing.

Consistent with auxin’s pivotal role in vascular formation 
and wound healing, it is perhaps unsurprising that auxin 
also plays an important role in graft formation. Grafting 
induces the expression of auxin biosynthesis and signalling 
genes and exogenous auxin application is often necessary 
for in vitro grafting (Asahina et al. 2011; Chen et al. 2017; 
Matsuoka et al. 2016; Melnyk et al. 2015; Parkinson and 
Yeoman 1982; Wang et al. 2014; Yin et al. 2012). Similarly, 
hypocotyl graft reunion in Arabidopsis is inhibited when 
cotyledons are removed or when cotyledons are treated 
with an inhibitor of auxin transport (Matsuoka et al. 2016). 
Cotyledons are an important source of auxin in developing 
plants (Bhalerao et al. 2002; Katsumi et al. 1969; Procko 
et al. 2014), and it is likely that cotyledon-derived auxin 
promotes graft formation in young plants. Interestingly, 
many Arabidopsis mutants perturbed in auxin biosynthesis 
or transport reconnect their phloem with similar dynamics 
as wild-type plants (Melnyk et al. 2015). These plants likely 
successfully graft since auxin levels and auxin transport are 
not completely abolished. However, some mutants affected 
in auxin perception or auxin response experience delayed 
phloem reconnection during hypocotyl grafting (Melnyk 
et al. 2015), suggesting that how auxin is perceived rather 
than absolute auxin levels or efficiency of auxin transport 
may be a determining factor in grafting success. One of the 
genes important for graft formation, ABERRANT LATERAL 
ROOT FORMATION 4 (ALF4), acts downstream of auxin 
and regulates xylem pole pericycle cell division and lateral 
root formation (Celenza et al. 1995; DiDonato et al. 2004). 
Xylem pole pericycle cells are important for lateral root for-
mation and in vitro callus formation (Atta et al. 2009; Sugi-
moto et al. 2010) and this cell type, or other meristematic 
cells in the vascular tissue, might be a key driver of vascular 
connection during grafting.

Brassinosteroids

Brassinosteroids (BRs) are steroid hormones involved 
in cell growth and plant morphogenesis (reviewed in 
Belkhadir and Jaillais 2015; Saini et al. 2015; Zhu et al. 
2013). BRs also promote xylem formation. For instance, 
inhibition of BR biosynthesis represses tracheary ele-
ment differentiation in Zinnia elegans cells (Iwasaki and 
Shibaoka 1991) and represses the formation of secondary 
xylem in cress plants, affecting the phloem to xylem ratio 
in favour of more phloem (Nagata et al. 2001). Moreover, 
BR accumulation peaks prior to tracheary element dif-
ferentiation (Yamamoto et al. 2001). Several Arabidop-
sis mutants affected in BR biosynthesis (cpd: constitu-
tive photomorphogenesis and dwarfism; dwf7/ste1: dwarf 
7/sterol 1) or response (bri1: brassinosteroids insensitive 
1) repress xylem formation (Szekeres et al. 1996; Choe 
et al. 1999; Caño-Delgado et al. 2004). While BRI1 is 
expressed ubiquitously in the plant, its homologues BRL1, 
2 and 3 are specifically expressed in the vascular tissues of 
Arabidopsis (Caño-Delgado et al. 2004), further support-
ing a direct role for BRs in promoting xylem formation.

To our knowledge, a role for BRs during wounding 
or grafting has not been investigated. However, studies 
using grafting as a tool to investigate BR transport in pea 
plants showed that the BR biosynthesis mutant lkb (named 
after the internode length locus Lk) grafts successfully 
(Reid and Ross 1989; Symons 2004). Therefore, BRs are 
unlikely to be crucial for grafting. BRs interact with dif-
ferent phytohormones in a very wide range of biological 
processes (reviewed by Saini et al. 2015). For example, 
during Arabidopsis root growth, BR, auxin and cytokinin 
signalling pathways interact through BRAVIS RADIX 
(BRX), a regulator of protophloem differentiation, which 
is both induced by auxin and slightly repressed by BRs 
(Mouchel et al. 2006; Scacchi et al. 2010). Considering 
the potential role of BRs in xylem formation and its inter-
action with other phytohormones important for grafting, 
such as auxin, it would be interesting to further investigate 
the role, if any, of BRs during grafting.

Cytokinins

Cytokinins (CKs) are adenine-derived phytohormones 
involved in various aspects of plant development includ-
ing cell division, lateral root formation and meristem 
maintenance. Their effects often occur through inter-
action with the auxin signalling pathway (reviewed in 
Kieber and Schaller 2014; Osugi and Sakakibara 2015; 
Schaller et al. 2015). CKs also regulate cambium activity 
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in a dosage-dependent manner (Matsumoto-Kitano et al. 
2008). Reducing CK levels inhibits cambial cell divisions 
and produces thinner stems in Arabidopsis and poplar 
(Matsumoto-Kitano et al. 2008; Nieminen et al. 2008), 
while increasing CK biosynthesis increases CK signalling 
and cambium cell division activity in poplar (Immanen 
et al. 2016). Moreover, loss of function of the Arabidopsis 
CK receptor CK RESPONSE 1 (CRE1)/WOODEN LEG 
(WOL)/ARABIDOPSIS HISTIDINE KINASE 4 (AHK4) 
alone, or in combination with AHK2 and AHK3, results in 
reduced cell file number in root vascular bundles, due to 
reduced cambial activity (Mähönen et al. 2000; Nishimura 
et al. 2004). In Arabidopsis, CKs mediate auxin transport 
during vascular formation by regulating the distribution 
of PIN proteins in developing vascular tissues (Bishopp 
et al. 2011). In turn, auxin promotes xylem differentia-
tion through the induction of HISTIDINE PHOSPHO-
TRANSFER PROTEIN 6 (AHP6), a CK signalling inhibi-
tor. Several CK signalling mutants produce extra xylem, 
while exogenous CK treatments reduce xylem formation 
(Mähönen et  al. 2006; Yokoyama et  al. 2006). These 
results suggest that CKs interact antagonistically with 
auxin and negatively regulate xylogenesis.

During wounding in Arabidopsis, CK biosynthesis 
genes are upregulated, CK levels increase and CK response 
is enhanced (Ikeuchi et al. 2017; Iwase et al. 2011). These 
responses are thought to produce wound-induced callus at 
the cut surface since WOUND INDUCED DEDIFFERENTI-
ATION 1 (WIND1), a wound-inducible TF, upregulates and 
promotes callus formation through the activation of CK sig-
nalling (Iwase et al. 2011). In addition, CK-deficient mutants 
produce less callus (Ikeuchi et al. 2017). These results dem-
onstrate the importance of the CK signalling pathway for 
callus formation in response to wounding.

However, CKs do not appear to be as important for graft-
ing, since several CK biosynthesis and signalling mutants of 
Arabidopsis and poplar graft successfully (Nieminen et al. 
2008; Melnyk et al. 2015). Moreover, exogenous applica-
tion of CKs to explant internodes of several plant species 
stimulates the formation of vascular strands at the graft 
union site, but requires the presence of auxin to promote 
vascular reconnection (Parkinson and Yeoman 1982). Thus, 
it appears that CKs enhance vascular reconnection during 
grafting.

Ethylene

Ethylene is a gaseous hormone that regulates a wide 
range of processes, including root initiation, fruit ripen-
ing, senescence and response to biotic and abiotic stress 
(reviewed in Lin et al. 2009; Wang et al. 2002). Its mode 
of action occurs in part through a family of APETALA2/

ETHYLENE RESPONSIVE FACTOR (AP2/ERF) TFs 
that act downstream of the ethylene signalling pathway. 
These TFs exist in all plant species and are activated in 
response to multiple stresses or developmental pathways 
(reviewed in Gu et al. 2017; Licausi et al. 2013).

Ethylene promotes secondary growth in several plant 
species (Brown and Leopold 1973; Love et al. 2009). In 
Arabidopsis, the receptor kinase PHLOEM INTERCA-
LATED WITH XYLEM (PXY)/TRACHEARY ELEMENT 
DIFFERENTIATION INHIBITOR FACTOR (TDIF) 
RECEPTOR (TDR) promotes vascular cell divisions, and 
loss of this receptor has mild effects due to a compensation 
mechanism dependent on ethylene (Etchells et al. 2012; 
Fisher and Turner 2007; Hirakawa et al. 2008). Ethylene 
regulates the same downstream AP2/ERF TFs as PXY/
TDR to promote vascular cell divisions, and mutants 
over-producing ethylene undergo increased vascular cell 
divisions. TFs regulated by both ethylene and PXY/TDR 
are also regulated by WUSCHEL-RELATED HOMEODO-
MAIN 4 (WOX4), an auxin-inducible TF that interacts with 
the PXY/TDR signalling pathway (Etchells et al. 2012; 
Suer et al. 2011). Therefore, ethylene likely interacts with 
auxin to promote vascular cell divisions.

Ethylene is associated with abiotic stresses, for instance, 
wounding triggers ethylene biosynthesis around the site of 
the wound (Asahina et al. 2011; Watanabe et al. 2001). 
Incision of Arabidopsis stems activates ANAC071 above 
the cut, and this activation is partially dependent on ethyl-
ene signalling. Suppressing ANAC071 function inhibited 
cell division, but not cell elongation, making them inca-
pable of tissue reunion (Asahina et al. 2011). Moreover, 
wounded ethylene insensitive 2 (ein2) mutants (Alonso 
et al. 1999) display cell division in the cortex close to the 
cut, but not in the pith of the stem, resulting in incom-
plete healing. Interestingly, ANAC071 expression is also 
induced by auxin (Matsuoka et al. 2016), suggesting that 
both hormones interact to promote ANAC071 expression 
during tissue reunion.

Transcriptomic analyses of grafted Arabidopsis hypoc-
otyls reveal that ethylene biosynthesis genes activate at 
the graft junction (Yin et al. 2012). However, hypocotyl 
grafting of mutants enhanced in ethylene signalling (ctr1: 
constitutive triple response 1) or blocked in ethylene 
response (ein2, etr1: ethylene receptor 1) successfully 
graft (Melnyk et al. 2015). However, mutating ANAC071 
reduced the formation of vascular tissues at the graft junc-
tion (Matsuoka et al. 2016). The fact that ethylene signal-
ling is important for tissue reunion in wounded stems but 
does not appear important in grafted hypocotyls suggests 
these differences might arise from tissue type, age, or from 
mechanistic differences between sealing a gap compared 
to reconnecting the vasculature.
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Gibberellins

Gibberellins (GAs) are diterpene phytohormones with an 
important role in plant development, particularly in regu-
lating plant growth, as GAs promote cell expansion, cell 
differentiation and cell proliferation (reviewed in Claeys 
et al. 2014; Davière and Achard 2013; Yamaguchi 2008). 
GAs also stimulate xylogenesis in cambium tissue. For 
instance, GAs accumulate in developing xylem tissue of 
poplar (Immanen et al. 2016; Israelsson et al. 2005), while 
expression of three orthologues of the GA receptor GIB-
BERELLIN INSENSITIVE DWARF 1 (GID1) is highest 
in the xylem of hybrid aspen (Mauriat and Moritz 2009). 
Moreover, GA treatment or GA accumulation increases 
the number and size of xylem fibres of several tree spe-
cies and tobacco (Biemelt et al. 2004; Dayan et al. 2010; 
Eriksson et al. 2000), whereas the opposite occurs when 
GA biosynthesis is inhibited in Eucalyptus globulus (Rid-
outt et al. 1996).

The role of GAs in wounding is becoming clearer. 
Cotyledon-derived GAs promote cambium cell division 
and differentiation in cut cucumber and tomato hypocotyls 
(Asahina et al. 2002). In grafted Arabidopsis hypocotyls, 
inhibition of GA biosynthesis or signalling suppressed 
the expansion of cortex cells that seal the graft junction, 
but did not inhibit cell proliferation in the vascular tis-
sue (Matsuoka et al. 2016). Previous studies have dem-
onstrated that endogenous GA levels decrease following 
decapitation of pea and tobacco and can be recovered by 
apical auxin treatments (Ross et al. 2000, 2003; Wolbang 
and Ross 2001), suggesting that auxin triggers GA bio-
synthesis or accumulation. In turn, GAs promote auxin 
transport by modulating the turnover of PIN proteins 
(Björklund et  al. 2007; Willige et  al. 2011). Thus, it 
appears that GAs are important for cell expansion to seal 
the wound, whereas auxin is important for vascular tissue 
proliferation and reconnection across the graft junction 
(Melnyk et al. 2015; Matsuoka et al. 2016).

Jasmonic acid

Jasmonic acid (JA) and its derivatives are lipid-derived 
plant hormones primarily known for their activation dur-
ing biotic and abiotic stress including wounding, but are 
also involved in plant development such as root develop-
ment and trichome formation (reviewed in Koo and Howe 
2009; León et al. 2001; Santino et al. 2013; Wasternack 
and Hause 2013). Cambium formation in Arabidopsis 
stems induces JA signalling, suggesting that JAs are impli-
cated in vascular formation (Sehr et al. 2010). Moreover, 

a recent study demonstrated that JA treatments induce the 
formation of extra xylem in Arabidopsis wild-type roots, 
but not in mutants affected in JA signalling. It appears 
that JAs suppress the CK response, allowing more xylem 
to form (Jang et al. 2017). Further studies are needed to 
fully understand the role of JA in vascular formation and 
its interaction with CKs.

JAs accumulate in response to wounding. Incised Arabi-
dopsis stems show asymmetric expression of JA signal-
ling genes, with higher expression below the cut compared 
to above the cut (Asahina et al. 2011). The expression of 
RAP2.6L activates below the cut after incision and methyl 
jasmonate application, suggesting that it is activated by JA 
signalling. However, JA signalling also interacts with auxin, 
as the auxin response factors ARF6 and ARF8 suppress the 
expression of a JA biosynthesis enzyme, DEFECTIVE IN 
ANTHER DEHISCENCE 1 (DAD1) (Pitaksaringkarn et al. 
2014a). In stems, auxin levels are low below a cut due to 
a block in basipetal auxin transport (Asahina et al. 2011). 
This reduction could release ARF6 and ARF8-mediated inhi-
bition of DAD1 expression and result in JA accumulation, 
thereby inducing RAP2.6L expression. These data point to 
a cross-talk between JA and auxin signalling pathways in 
the regulation of cell division during tissue reunion. This 
notion is consistent with other studies demonstrating that 
JA signalling interacts with auxin biosynthesis and signal-
ling pathways during root development, root stem cell niche 
maintenance and auxin transport (Chen et al. 2011; Sun et al. 
2009, 2011). However, mutants defective in JA signalling or 
biosynthesis are slightly enhanced in wound-induced callus 
formation (Ikeuchi et al. 2017), suggesting JAs may inhibit 
certain aspects of the wound healing response.

Little is known about the role of JAs during grafting. JA-
deficient Arabidopsis mutants graft successfully (Gasperini 
et al. 2015), suggesting that JAs are not essential for graft 
formation. However, Arabidopsis hypocotyl grafting induces 
the expression of JA biosynthesis and signalling genes (Liu 
et al. 2016; Yin et al. 2012), but whether this represents a 
broad wound response or instead represents a role for JAs in 
tissue fusion and vascular formation during grafting remains 
unknown.

Strigolactones

Strigolactones (SLs) are carotenoid-derived signalling 
molecules that regulate plant development and architecture 
(reviewed in Brewer et al. 2013; Waldie et al. 2014; Waters 
et al. 2017). SLs also affect cambium cell division since 
SL-deficient mutants in Arabidopsis, pea and Eucalyptus 
globulus have decreased cambium activity whereas SL 
application increases cambium activity (Agusti et al. 2011). 
SLs repress PIN expression and PIN protein accumulation 
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in Arabidopsis (Crawford et al. 2010), so the enhanced cam-
bium activity mediated by SLs might occur through dampen-
ing of auxin transport. However, since pin1 and pin3 auxin 
transport mutants display decreased cambium activity, it has 
been suggested that SLs can regulate cambium activity in an 
auxin-independent manner (Agusti et al. 2011).

The role of SLs during the wound response has, to our 
knowledge, not been addressed. Nevertheless, the role of 
SLs in cambium activity together with their role in the regu-
lation of auxin transport suggests that SLs might be involved 
in grafting. However, SL-deficient mutants in various plant 
species graft successfully (Beveridge et al. 1994, 1996; 
Drummond et al. 2012; Koltai et al. 2010; Turnbull et al. 
2002), emphasizing that SLs are not crucial for grafting 
success.

Conclusion

The development and differentiation of vascular tissues dur-
ing plant growth is finely regulated by almost every known 
phytohormone. Nevertheless, auxin appears to be the pri-
mary regulator of vascular cell differentiation and patterning 

with other hormones interacting with the auxin biosynthesis, 
transport and/or signalling pathways to fine-tune this process 
(Fig. 1). Since successful grafting depends on reconnection 
of the vascular tissues during tissue reunion, it should be 
unsurprising that the same hormones and genes that regu-
late vascular formation in developing organs would also 
regulate vascular tissue regeneration at the graft junction. 
However, whether vascular reconnection is regulated in 
an identical manner as vascular formation is unlikely. The 
cutting process activates wound-responsive hormones and 
signalling pathways that will likely affect the mechanisms 
and dynamics of vascular tissue formation and tissue adhe-
sion. Although the role for many phytohormones remains 
unknown (ABA, salicylic acid) or seems to have little effect 
(ethylene, JA, SLs, BRs, CKs) on graft formation, it is 
important to note that many of these conclusions are from 
qualitative observations that look for short-term success in 
herbaceous species such as Arabidopsis where grafting is 
robust. Many of these hormones might have more subtle 
effects on enhancing or suppressing graft formation, and 
their effects may not be obvious until grafts are more mature. 
Further in-depth studies are required to fully understand the 
role of these phytohormones and their contribution to graft 

Fig. 1   Schematic diagram of the putative grafting process in Arabi-
dopsis hypocotyls over time. Following cutting, WIND1 enhances 
cytokinin response at the graft junctions which induces callus forma-
tion. At the same time, auxin, transported basipetally, accumulates 
above the graft junction and is depleted in the bottom junction since 
its flow is impaired. Auxin accumulation, in conjunction with ethyl-
ene signalling, triggers ANAC071 expression above the graft junction, 
while inhibiting jasmonic acid biosynthesis and RAP2.6L expression. 
Below the graft, the decrease in auxin levels releases the suppression 

of jasmonic acid biosynthesis and RAP2.6L expression. ANAC071 
and RAP2.6L induced cell division of the vascular tissue both above 
and below the graft junction, respectively. Auxin, in interaction with 
gibberellins and cytokinins, promotes cell differentiation, leading to 
vascular formation and reconnection between both junctions, thereby 
restoring auxin symmetry. Gibberellins, in interaction with auxin, 
promote tissue fusion through cell expansion. CKs: cytokinins; IAA: 
auxin; JAs: jasmonic acids; GAs: gibberellins
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formation and to the long-term compatibility and success of 
the graft in both herbaceous and woody species.
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