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Abstract

Hippocampal place cells represent the cellular substrate of episodic memory. Place cell ensembles 

reorganize to support learning but must also maintain stable representations to facilitate memory 

recall. Despite extensive research, the learning-related role of place cell dynamics in health and 

disease remains elusive. Using chronic two-photon Ca2+ imaging in hippocampal area CA1 of 

wild-type and Df(16)A+/− mice, an animal model of 22q11.2 deletion syndrome, one of the most 

common genetic risk factors for cognitive dysfunction and schizophrenia, we found that goal-

oriented learning in wild-type mice was supported by stable spatial maps and robust remapping of 

place fields toward the goal location. Df(16)A+/− mice showed a significant learning deficit 

accompanied by reduced spatial map stability and the absence of goal-directed place cell 

reorganization. These results expand our understanding of the hippocampal ensemble dynamics 

supporting cognitive flexibility and demonstrate their importance in a model of 22q11.2-associated 

cognitive dysfunction.

Episodic memory, the encoding of personal experience organized in space and time, is a 

fundamental aspect of cognition1. Episodic memory dysfunctions are highly debilitating 

symptoms of various neurological, cognitive and psychiatric disorders, including 

schizophrenia (SCZ)2. Cognitive deficits in general appear to be the strongest predictor of 
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SCZ patients’ functional outcomes3; however, neural circuit dynamics supporting episodic 

memory and the manner in which they fail in SCZ remains poorly understood. To this end, 

we studied a well characterized animal model of cognitive dysfunction and SCZ, the 

Df(16)A+/− mouse model of the 22q11.2 deletion syndrome (22q11.2DS)4.

The well documented role of the hippocampus in episodic and spatial memory1,5–7, 

combined with morphological and functional alterations of the hippocampus in SCZ 

patients8,9, collectively points to a central role of this brain area in the pathophysiology of 

cognitive memory deficits in SCZ10. In particular, physiological and morphological 

alterations have been reported specifically in area CA1—the hippocampal output node—in 

SCZ patients11, suggesting a potentially primary role for this area in disease 

pathophysiology.

Principal cells throughout the hippocampus are selectively active in specific locations within 

an environment (place cells)12. Place cells collectively form cognitive maps representing 

spatial components of episodic memories6,13, the long-term stability of which is a widely 

posited prerequisite for reliable learning14–18. Place cell map stability is affected by 

attentional and task demands, and place cell maps also incorporate goal-related information 

during learning15,19–25. In particular, reorganizing place cell maps to enrich goal locations 

was found to predict memory performance26. Therefore, monitoring place cell ensemble 

dynamics during goal-directed learning may provide a tractable entry point for 

understanding how episodic memory deficits arise from genetic mutations associated with 

SCZ.

Two-photon Ca2+ imaging in awake mice during head-fixed behaviors allows for the chronic 

recording of physiological activity from individual place cells, as well as their ensemble 

activity as a whole. By tracking the activity of place cell populations in Df(16)A+/− mice and 

wild-type (WT) littermates through each phase of a goal-oriented learning task, we 

identified specific aspects of place cell map stability that evolved with learning, as well as 

alterations in the stability and plasticity of these cognitive maps in the mutant mice. Our 

findings highlight reduced stability and impaired goal-directed reorganization of 

hippocampal place cells as fundamental components of 22q11.2-deletion-linked cognitive 

dysfunction.

RESULTS

Df(16)A+/− mice are impaired in a head-fixed goal-oriented learning task upon changes in 
both context and reward location

To facilitate chronic recording from hippocampal CA1 place cells during learning, we 

designed a head-fixed variation of goal-oriented learning (GOL; Fig. 1a,b and Online 

Methods) tasks that have been previously used in freely moving rodents26, allowing for 

chronic two-photon functional Ca2+ imaging. Our task consisted of three sessions per day, 

with 3 days (d) for each of three conditions (27 total sessions per mouse). In Condition I, 

mice learned a single fixed reward location, then remembered that location while the 

environmental context and local cues were altered (Online Methods) in Condition II, and the 

reward was moved in Condition III.

Zaremba et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2018 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our overall analysis of behavior during the GOL task revealed general differences among 

genotypes, which developed in a condition-dependent manner (linear mixed-effects model, 

fixed effects for genotype and condition, day nested under condition as covariate, mouse as 

random effect; significant effect of: genotype: F1,83.049 = 5.675, P = 0.019; genotype × 

Condition interaction: F2,82.988 = 5.450, P = 0.006; Condition: F2,82.988 = 23.554, P < 

0.0001). Specifically, the initial analysis revealed significant differences for Conditions II (P 
= 0.028) and III (P = 0.0008) among the two genotypes (for formulas, see Online Methods). 

We found that both Df(16)A+/− mice and WT littermates had a similar ability to learn the 

initial location of the hidden reward, as assessed by the suppression of unrewarded licks 

outside of the reward zone and an increase in the fraction of licks within the reward zone 

(post hoc tests for Condition I with Benjamini-Hochberg correction: two-way mixed-design 

repeated-measures (RM) ANOVA, main effect of day: F2,20 = 28.235, P < 0.0001; genotype 

× day interaction, P = 0.608 and main effect of genotype, P = 0.319: nonsignificant (n.s.); 

Fig. 1b,c and Supplementary Fig. 1). During this initial learning period, both WT and 

Df(16)A+/− mice explored the task at similar levels (Supplementary Fig. 2).

A change in the environmental context (Condition II) had no detectable effect on WT 

animals, as their learning of the reward location in the new context continued to improve 

until their performance plateaued. However, in the Df(16)A+/− mice, task performance 

dropped on the first day and was overall worse than WT mice during Condition II (post hoc 
tests with Benjamini-Hochberg correction: two-way mixed-design RM ANOVA, main effect 

of genotype: F1,10 = 6.297, P = 0.031; main effect of day: F2,20 = 4.076, P = 0.033; day 1: P 
= 0.015; day × genotype interaction: P = 0.239, n.s.; Fig. 1b,c). Although not significant, the 

drop in performance and increase in variability on the third day of Condition II for WT and 

Df(16)A+/− mice might have arisen from differences in attention or motivation. By this point 

mice had been training in the task for 6 consecutive days and were performing relatively 

well, so the task had become familiar and it is possible that they were less water-deprived 

and thus overall less motivated.

Finally, changing the reward location while maintaining a familiar context (Condition III) 

challenged Df(16)A+/− mice to a greater degree than WT animals, as they were significantly 

impaired in acquiring the new reward location (post hoc tests with Benjamini-Hochberg 

correction, Condition III, two-way mixed-design RM ANOVA, main effects of day: F2,20 = 

15.762, P < 0.0001; main effect of genotype: F1,10 = 7.768, P = 0.019; day × genotype 

interaction: P = 0.932, n.s.; day 3: P = 0.022; Fig. 1b,c). Thus, although Df(16)A+/− mice 

were initially able to perform a spatially guided reward task, learning deficits were revealed 

by manipulation of task parameters, specifically the environmental context or the reward 

location. Assessment of learning by anticipatory licking, although a much less sensitive 

behavioral readout, revealed the same pattern of learning performance and differences 

among the two genotypes (Supplementary Fig. 3).

We noticed during the task that Df(16)A+/− mice appeared to be relatively more impaired at 

the start of each day, so to identify differences in the overnight consolidation of the task 

memory, we compared task performance at the beginning and the end of the day during each 

condition (Fig. 1d). Overall, there was a strong effect of the first versus last session of the 

day and a significant genotype–condition interaction, as previously detected (linear mixed-
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effects model, fixed effects for condition, session and genotype, session as covariate, random 

effect for mouse; genotype effect: F1,90.473 = 7.638, P = 0.007; session effect: F1,159.244 = 

22.612, P < 0.0001; genotype × condition interaction: F2,90.347 = 3.732, P = 0.028). During 

Condition I, in which we observed no learning deficit in the Df(16)A+/− mice, both WT and 

Df(16)A+/− mice performed at comparable levels throughout the day, and both performed 

better at the end of the day than at the beginning (Condition I, post hoc tests with Benjamini-

Hochberg correction: two-way mixed-design RM ANOVA, main effect of session: F1,10 = 

6.901, P = 0.025; main effect of genotype, P = 0.437 and genotype × session interaction, P = 

0.975, n.s.). During Condition II, in which we observed an overall decrease in task 

performance in the Df(16)A+/− mice, we found that the Df(16)A+/− animals performed more 

poorly on the first session of each day, before reaching WT performance levels by the end of 

the day (Condition II, post hoc tests with Benjamini-Hochberg correction: two-way mixed-

design RM ANOVA, main effect of session: F1,10 = 40.506, P < 0.0001; F1,10 = 6.404, 

genotype × session interaction: P = 0.030; main effect of genotype: P = 0.213, n.s.). Finally, 

during Condition III, in which we observed the most robust learning deficit in the 

Df(16)A+/− mice, we found that Df(16)A+/− mice performed significantly worse throughout 

the entire day (Condition III, post hoc tests with Benjamini-Hochberg correction: two-way 

mixed-design RM ANOVA, main effect of genotype: F1,10 = 6.433, P = 0.030; main effect of 

session: F1,10 = 53.237, P < 0.0001, genotype × session interaction: P = 0.085, n.s.). 

Collectively, these results indicate that deficits in overnight consolidation likely contributed 

to the differences we observed between genotypes.

Differences in place cell properties at the neuronal population levels in the Df(16)A+/− mice

We used two-photon Ca2+ imaging of large neuronal populations in the CA1 pyramidal layer 

during the GOL task to assess the basic coding properties of place cells (Fig. 2a,b). Spatially 

tuned Ca2+ transients (Fig. 2c) were detected in both WT and Df(16)A+/− mice, but we 

found that the fraction of identified neurons that exhibited place cell properties was about 

25% smaller in Df(16)A+/− mice compared to WT mice across all sessions (place cell 

fraction: averaged by mouse, independent samples t test, t = 1.620, P = 0.140; linear mixed-

effects model with mouse as random factor F1,10.917 = 3.086, P = 0.107; Fig. 2d). This effect 

was not driven by a silent fraction of cells in the Df(16)A+/− mice or by differences in our 

sampling of the pyramidal cells between the genotypes, as the available place cell population 

was similar cumulatively over all imaging sessions (lifetime place coding: P = 0.244; 

Supplementary Fig. 4a), but individual cells were identified as place cells in fewer sessions 

(fraction of sessions a place cell: P < 0.0001; Supplementary Fig. 4b). Furthermore, the 

spatial tuning of individual place cells in Df(16)A+/− mice was less diffuse, as indicated by 

differences in the number of place fields per place cell (place fields per place cell: WT, 1.180 

± 0.004, n = 12,571, place cells × sessions; Df(16)A+/−, 1.110 ± 0.004, n = 7,683, place cells 

× sessions; linear mixed-effects model with number of place fields and genotype as fixed 

factors and mouse ID as random factor: number of place fields × genotype interaction: 

F3,38.000 = 5.054, P = 0.005; genotype effect for: single place field; P = 0.0037, two fields 

per place cell; P = 0.010, three fields per place cell; P = 0.755, see formula in Online 

Methods; Fig. 2e), slightly narrower place fields (place field width: linear mixed-effects 

model with mouse as random factor: F1,11.164 = 4.371, P = 0.060; Fig. 2f and Supplementary 

Fig. 4e), less variability in Ca2+ transient firing locations (circular variance; inset averaged 
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by mouse, Welch’s t test, t = 2.327, P = 0.0491; linear mixed-effects model with mouse as 

random factor: F1,11.006 = 5.695, P = 0.036; Fig. 2g) and less out-of-field firing (transient 

specificity: P < 0.0001; Supplementary Fig. 4d).

Spatial map is less stable in Df(16)A+/− compared to WT mice

To examine the evolution of spatial maps throughout the GOL task, we repeatedly imaged 

the same populations of individually identified neurons throughout the 27 sessions of the 

GOL task (cells per mouse, mean ± s.d.; WT: 463 ± 37, n = 6 mice; Df(16)A+/−: 479 ± 84, n 
= 5 mice) and looked at two aspects of stability: place cell population stability (recurrence 

probability: probability of a cell being identified as a place cell in paired sessions) and 

individual pyramidal cell firing stability (centroid shift: distance between centroid of firing 

in paired sessions). Combining all conditions and sessions, we found that individual place 

cells recurred from day to day significantly above chance levels in WT and Df(16)A+/− mice 

(recurrence probability: WT versus shuffle: P = <0.0001; Df(16)A+/− versus shuffle: P < 

0.0001; Fig. 3a), but a significantly smaller fraction of place cells re-occurred from day to 

day in Df(16)A+/− than WT mice (WT versus Df(16)A+/−: independent samples t test, t = 

5.72, P < 0.0001; aggregated by mouse, independent samples t test, t = 2.611 P = 0.028; Fig. 

3a). This decreased overlap in place cell population in the Df(16)A+/− mice was primarily 

driven by decreased stability overnight, as this difference was not observed within a day 

from session to session (linear mixed-effects model with genotype and elapsed time as fixed 

effects and mouse as random effect; genotype × elapsed time interaction: F1,145.754 = 5.858, 

P = 0.017; post hoc analysis, WT versus Df(16)A+/−, session-to-session: F1,10.659 = 0.664, P 
= 0.433; day-to-day: F1,10.086 = 20.534, P = 0.001, significant after Benjamini-Hochberg 

correction; Fig. 3b), again suggesting a disruption in overnight consolidation, as seen with 

the Df(16)A+/− behavioral performance (Fig. 1d).

We next looked at the shift in firing locations in both WT and Df(16)A+/− mice to assess the 

similarity of spatial tuning from day to day. We found that while preferred firing locations of 

all cells were more stable than chance in both genotypes (centroid shift: WT versus shuffle: 

independent sample t test, t = −9.42, P < 0.0001; Df(16)A+/− versus shuffle: independent 

samples t test, t = −4.25, P < 0.0001; Fig. 3d; place field correlation: WT versus shuffle: P < 

0.0001; Df(16)A+/− versus shuffle: P < 0.0001; Supplementary Fig. 5a), the spatial tuning in 

Df(16)A+/− mice was significantly less stable from day to day compared to WT mice 

(centroid shift: WT versus Df(16)A+/−: independent samples t test, t = −4.71, P < 0.0001) 

and aggregated by mouse (independent samples t test, t = 2.58, P = 0.0295; Fig. 3d; place 

field correlation: WT versus Df(16)A+/−: P < 0.0001; Supplementary Fig. 5a). Also, just as 

the active place cell population overlap was similar within day between WT and Df(16)A+/− 

mice, spatial tuning was also not different between WT and Df(16)A+/− mice from session to 

session within the same day (centroid shift: linear mixed-effects model with genotype and 

elapsed time as fixed effects and mouse as random effect, genotype × elapsed time 

interaction: F1, 38,078.993 = 15.042, P < 0.0001; post hoc analysis, WT versus Df(16)A+/−, 

session-to-session: F1,11.137 = 0.303, P = 0.593; day-to-day, F1,10.577 = 8.724, P = 0.014, 

significant after Benjamini-Hochberg correction; Fig. 3e; place field correlation: genotype × 

elapsed time interaction: P = 0.0051; post hoc analysis, WT versus Df(16)A+/−, session-to-

session: P = 0.613; day-to-day, P < 0.0001; Supplementary Fig. 5b). Taken together, spatial 
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maps were less stable in Df(16)A+/− compared to WT mice from day to day (but not from 

session to session), as seen by lower recurrence of place cells and a larger shift in spatial 

tuning centroids, reflecting disrupted spatial maps in the mutant mice.

Task performance correlates with spatial map stability

If the stability of place fields over time provides the basis for spatial and episodic 

learning15–18, we would expect that the relative stability of place cell maps would reflect 

task performance. Indeed, on a per-session basis the overlap in the identity of place cells 

from day to day correlated with learning performance across all conditions of the GOL task 

for both groups (recurrence probability versus fraction of licks in reward zone: Pearson’s 

correlation coefficient, WT: 0.288, P = 0.013; Df(16)A+/−: 0.416, P = 0.001; WT correlation 

versus Df(16)A+/− correlation, Fisher z transformation of correlations, general linear model, 

univariate ANOVA: genotype × z-recurrence probability interaction: F1,132 = 0.599, P = 

0.440; alternatively: linear mixed effects model with genotype as fixed effect, recurrence 

probability as covariate and mouse as random effect: genotype × recurrence probability 

interaction: F1,129 = 1.083, P = 0.300; recurrence effect: F1,129.000 = 18.197, P < 0.0001; Fig. 

3c). This finding suggests that this coding strategy is implemented by both WT and 

Df(16)A+/− mice, though the overall decreased population stability in the Df(16)A+/− mice 

contributes to the impaired task performance—the Df(16)A+/− mice are shifted lower on the 

recurrence–performance curve. In a similar manner to recurrence probability, place cell 

firing location stability also correlated with task performance for the WT mice and trended 

similarly in the Df(16)A+/− mice (centroid shift versus fraction of licks in reward zone: 

Pearson’s correlation coefficient, WT: −0.306, P = 0.008; Df(16)A+/−: −0.218, P = 0.097; 

WT correlation versus Df(16)A+/− correlation, Fisher z-transformation of correlations, 

general linear model, univariate ANOVA: genotype × z stability interaction: F1,132 = 0.268, 

P = 0.605; linear mixed effects model with genotype as fixed effect, centroid shift as 

covariate and mouse as random effect: genotype × centroid shift: F1,133.000 = 0.001, P = 

0.982; centroid shift F1,133.000 = 8.804, P = 0.004; Fig. 3f; place field correlation; 

Spearman’s correlation coefficient, WT: 0.335, P = 0.004; Pearson’s correlation coefficient, 

Df(16)A+/−: 0.224, P = 0.088; Supplementary Fig. 5c).

In addition, as suggested by the overall correlation of task performance with stability, the 

trajectory of these metrics across conditions mirrors the trajectory of the behavioral deficit in 

the task. Namely, just as we did not see a difference in behavior during Condition I (Figs. 1c 

and 3g), stability was also similar between WT and Df(16)A+/− mice during Condition I, but 

while the WT place cell population continued to stabilize in Condition II and III, the 

Df(16)A+/− population stability dropped off as the task demands change (recurrence 

probability: linear mixed-effects model with condition and genotype as fixed effects and 

mouse as random effect, genotype effect: F1,11.084 = 7.293, P = 0.021; condition × genotype 

interaction, ns; Fig. 3h; centroid shift: linear mixed-effects model as before, genotype effect: 

F1,10.107 = 6.771, P = 0.026; Fig. 3i). Thus, the learning strategy employed by both 

genotypes did involve the formation and maintenance of stable hippocampal spatial maps, 

but the stability of these maps was impaired in Df(16)A+/− mice, particularly from day to 

day and when the task demands changed, as reflected in their decreased performance on the 

GOL task.
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Goal-oriented learning requires dorsal hippocampal area CA1 and relies on allocentric 
navigation

To confirm the necessity of the hippocampus to our GOL task, we pharmacologically 

silenced bilateral dorsal hippocampus area CA1 using the GABAA-receptor agonist 

muscimol during initial learning of a fixed reward location (Online Methods). Mice in which 

the hippocampus was silenced during initial learning of the reward location performed 

significantly worse than mice with an active hippocampus (Mann-Whitney U test, Days 1–3, 

muscimol to saline versus saline to muscimol: U = 126.5, P < 0.0001; Supplementary Fig. 7) 

and mice that successfully learned the task with an active hippocampus showed a significant 

drop in task performance following dorsal hippocampus inactivation (saline to muscimol, 

Mann-Whitney U test, Days 1–3 versus Day 4: U = 111, P = 0.0235), now performing 

similar to the initially silenced training group (Day 4, independent samples t test, saline to 

muscimol versus muscimol to saline: t = 0.633, P = 0.535).

Local cues and fabric segments of the treadmill belt are aimed to primarily provide an 

allocentric reference frame for spatial maps during the GOL task, but mice could in principle 

also use egocentric, path-integration strategies5,21,27 to find the reward location. To elucidate 

the relative contribution of allocentric navigation and path integration in the learning task, 

we imaged WT mice in the absence of local cues on the treadmill belt, where we found that 

place cells were practically absent (place cell fraction, cue-rich versus cue-free: independent 

samples t test, t = 3.006, P = 0.004; Supplementary Fig. 8a,b), and the tuning of all cells was 

significantly more diffuse (circular variance, cue-rich versus cue-free: Mann-Whitney U test, 

U = 499,131, P < 0.0001; Supplementary Fig. 8c). Furthermore, in the case of path 

integration, we would expect that during the transition from Condition I to II, when fabric 

sequence is the only belt feature remaining constant, place cells near the fabric transitions 

would be more stable than place cells farther from the fabric transitions, as errors in path 

integration would accumulate with distance21,27. Instead, we found no difference in stability 

that could have been due to the distance from the initial preferred tuning to the nearest fabric 

transition (two-way ANOVA, main effect of binned distance: F2,24 = 0.024, P = 0.977; 

Supplementary Fig. 8d). These results together suggest that egocentric navigation alone 

would be insufficient to maintain place cell firing, and thus mice primarily employ 

allocentric navigational strategies for learning in the GOL task.

Disrupted sharp wave-ripple activity in Df(16)A+/− mice

Decreased task performance following long delays (i.e., overnight), coupled with the 

decreased recurrence and similarity of neuronal ensemble activity from day to day, suggests 

a consolidation deficit in the Df(16)A+/− mice. Reactivation and consolidation of memories 

of previous experiences are thought to occur during sharp wave-ripples (SWRs), large-

amplitude and high-frequency events detected in the local field potential during quiet 

wakefulness and sleep28. To assess SWR activity in WT and Df(16)A+/− mice, in a separate 

cohort of mice we implanted electrodes in hippocampal area CA1 to record the local field 

potential and detect SWRs (Supplementary Fig. 9ab , and Online Methods). During periods 

of immobility, we found that Df(16)A+/− mice had significantly more SWRs (Wilcoxon 

rank-sum test, h = 3,777.5, P < 0.001; Supplementary Fig. 9c,f), though the SWRs were 

irregular, as reflected by a higher mean ripple-band power (Wilcoxon rank-sum test, h = 
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98,423, P < 0.001; Supplementary Fig. 9d,g) and a higher peak frequency in the ripple-band 

(Wilcoxon rank-sum test, h = 94,798, P < 0.001; Supplementary Fig. 9e,h). This 

dysregulation of hippocampal excitability during periods of rest in Df(16)A+/− mice 

provides a possible mechanism behind their failure to efficiently retain a memory of the 

reward location.

Change in context induces disrupted place cell stability in Df(16)A+/− mice

In addition to deficits following the overnight period, Df(16)A+/− mice showed significantly 

impaired performance after a change in context during Condition II in the GOL task 

(Condition II, Day 1; Fig. 1b,c), which comprised a change in both the nonspatial (tone, 

light and odor) and proximal spatial cues (shuffled local cues on belt, constant fabric 

sequence). When we compared the day-to-day stability of place fields in WT and 

Df(16)A+/− mice across this transition (Condition I–Day 3 to Condition II–Day 1), we found 

that place fields in WT mice were significantly more stable than in Df(16)A+/− mice (WT: 

0.195 ± 0.008, n = 6; Df(16)A+/−: 0.227 ± 0.002, n = 5; independent samples t test: t = 

−3.626, P = 0.0055; Fig. 4a). Since this change of local cues from Condition I to Condition 

II dissociated position relative to the sequence of fabrics and position relative to the cues, we 

looked at coding of space relative to these two distinct reference frames in the WT and 

Df(16)A+/− mice. We looked at all the place cells that were active near a cue on the last day 

of Condition I and asked whether on the first day in Condition II it fired closer to that same 

cue (‘cue-preferring’) or to the position relative to the fabric sequence where the cue was 

previously (‘position-preferring’; Online Methods). We found a significantly different 

distribution of cue-preferring and position-referring cells between WT and Df(16)A+/− mice 

(Pearson chi-square test: χ2 = 85.7776, P < 0.0001; Fig. 4b), with notably fewer position-

preferring cells in the Df(16)A+/− mice and a significantly lower ratio of cue- to position-

preferring cells per mouse (independent samples t test: t = −3.172, P = 0.0131; Fig. 4c). 

Thus, changes to the nonspatial context and the shuffling of local cues induced remapping 

and disrupted the stability of spatial maps in Df(16)A+/− mice significantly more than in WT 

mice, and in particular, fewer cells remained anchored to the task-relevant belt reference 

space.

Task-dependent stabilization of place cell populations is impaired in Df(16)A+/− mice

To better understand the conditions in which place cell stability is affected in the Df(16)A+/− 

mice, we used a separate random foraging (RF; Fig. 4d and Online Methods) task that did 

not require spatial learning. From day to day, preferred firing locations were more stable 

than expected by chance in both WT and Df(16)A+/− mice (WT: 0.222 ± 0.004, n = 30 

session pairs; Df(16)A+/−: 0.220 ± 0.004, n = 42 session pairs; shuffle: 0.244 ± 0.002, n = 

72; WT versus shuffle: P < 0.0001; Df(16)A+/− versus shuffle: P < 0.0001), but in contrast to 

during the GOL task, they were not significantly different from each other (WT versus 

Df(16)A+/−: independent samples t test: t = 0.451, P = 0.653; and aggregated by mouse: 

independent samples t test: t = 0.799, P = 0.448; Fig. 4e). More specifically, the WT spatial 

tuning was significantly stabilized in the GOL task while the Df(16)A+/− spatial tuning was 

not (linear mixed-effects model, genotype × task interaction: F1,19.471 = 4.316, P = 0.051, 

effect of task: F1,19.471 = 4.924, P = 0.039, post hoc analysis WT, GOL versus RF: F1,11.285 

= 10.472, P = 0.008, significant after Benjamini-Hochberg correction; Df(16)A+/−, GOL 
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versus RF: F1,8.562 = 0.006, P = 0.940; Fig. 4f). This finding suggests that the presence of a 

salient reward location selectively stabilizes hippocampal spatial maps in WT mice, a 

phenomenon absent from Df(16)A+/− mice.

Enrichment of goal location by place cells in WT but not Df(16)A+/− mice

Place maps incorporate goal-related information19,20,22–24,26, particularly as an over-

representation of goal locations by place cells23, which has been shown to correlate with 

learning performance26. While we did not observe place cell enrichment during initial goal 

learning in a novel context (Condition I) or the subsequent change of context (Condition II), 

upon learning the new reward location in an already familiar context (Condition III), we 

found robust and organized remapping of place cells toward the new reward location in WT 

mice, though this goal-directed reorganization was strikingly absent in Df(16)A+/− mice 

(linear mixed-effects model, condition and genotype as fixed effects and day nested under 

condition as covariate, with mouse as random factor: genotype × condition × interaction: 

F2,174.406 = 4.257, P = 0.016; genotype × day (nested under condition) interaction: F3,112.789 

= 3.257, P = 0.024; post hoc analysis with Benjamini-Hochberg correction for multiple 

comparisons, Conditions I and II: no significant effect of genotype; Condition III genotype 

effect: F1,71.243 = 8.776, P = 0.004; genotype × day interaction: F1,64.041 = 12.307, P = 

0.001; Day 3: P < 0.0001; Fig. 5a,b). Additionally, we found that the magnitude of place cell 

enrichment at the goal location correlated with learning performance in WT mice (Pearson 

correlation, z = 0.362, P = 0.023; Fig. 5c) but not in Df(16)A+/− mice (Pearson correlation, z 
= −0.068, P = 0.791; Fig. 5c). Alternatively, use of a linear mixed-effects model with 

genotype as factor and fraction of place cells near the reward location as covariate in fixed 

effects and mouse as random factor showed no overall effect of the covariate on the fraction 

of licks in the reward zone (F1,72.829 = 0.229, P = 0.634; genotype × fraction of place cells 

near the reward location interaction, P = 0.143, n.s). However, post hoc analysis revealed a 

significant effect of the number of place cells near the reward location on the mouse 

performance for WT mice (linear mixed-effects model with fraction of place cells near the 

reward location as covariate in fixed effects and mouse ID as random factor, significant 

effect of the covariate: F1,31.460 = 11.436, P = 0.002, significant after Benjamini-Hochberg 

correction). Thus, place cell enrichment supports learning of new reward locations in a 

familiar context in WT animals, while in Df(16)A+/− mice, the lack of place cell enrichment 

is associated with significantly worse performance during this phase of the GOL task.

Modeling of place cell dynamics suggests that place field shift is the primary factor 
leading to reward enrichment

Several aspects of place cell population dynamics may explain the enrichment of firing 

fields at the goal location in the familiar context. For example, place cells within the reward 

zone may be more likely to recur; existing place fields may shift toward the reward29; or 

place fields at the reward location may be selectively stabilized (Supplementary Fig. 10). To 

distinguish between these possibilities, we calculated the mean position-dependent 

recurrence probability and centroid shift (Fig. 6). We found a slight increase in the 

recurrence probability of place cells that were active immediately preceding the reward (Fig. 

6b), and, on average, place fields drifted toward a location on the belt just after the reward 

zone, such that fields preceding it tended to shift forward and fields following it tended to 
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shift backwards (Fig. 6c,d). In addition, place fields just after the reward location shifted 

more consistently, as evidenced by a relatively lower place field shift variance (Fig. 6c,e). 

We next modeled day-to-day shifts in the population of spatially active cells and their 

preferred spatial tuning based on these parameters (Fig. 7a, Supplementary Fig. 11 and 

Online Methods).

Simulating the same number of session transitions as in our experimental scheme, our model 

shows gradual enrichment of the goal location similar to the observed enrichment we saw in 

the WT mice during Condition III (Fig. 7b,c). In contrast, when we run the model with data 

taken from Condition I or II, we do not see enrichment of the reward location, as expected 

(Fig. 7b,c and Supplementary Fig. 12). We next swapped parameters one by one between 

our WT model and flat model (flattened parameter fits; see “Modeling goal-directed 

remapping” section in Online Methods) and reran the simulation to see the effect of each 

parameter individually on the final goal enrichment. The only parameter with a significant 

effect on the final place field enrichment is the place field shift offset (Fig. 7d,e and 

Supplementary Fig. 13). We conclude that place field enrichment of goal locations is driven 

by an active recruitment of place fields shifting coherently toward the reward location: place 

fields before the reward shift forward, and place fields after the reward shift backwards.

Absence of enrichment in the Df(16)A+/− mice is through lack of place field shift toward 
reward

While we saw robust place field enrichment of the reward location in WT mice following a 

change in the reward location, population enrichment was completely absent in Df(16)A+/− 

mice. We calculated the position-dependent recurrence probability and centroid shift (as in 

Fig. 6) during Condition III with the Df(16)A+/− data and saw no dependence on position for 

any of these properties (Fig. 8a–d). Consistent with previous studies30, across the entire belt, 

on average, place fields shifted slightly backwards (Fig. 8c), and when we simulate session-

to-session place field shifts with our model we do not see any enrichment of the goal 

location (Fig. 8e,f). So, while WT place fields shift toward the reward location, leading to an 

over-representation of this location, this effect is disrupted in Df(16)A+/− mice.

DISCUSSION

Our study provides a comparative characterization of learning-related neural population 

dynamics in hippocampal area CA1 in WT mice and mutant mice carrying a SCZ-

predisposing genetic lesion. We found that mice carrying the 22q11.2 deletion, one of the 

strongest genetic risk factors for cognitive dysfunction and SCZ, exhibit compromised 

stability and plasticity of hippocampal place cell maps during spatially guided reward 

learning. By tracking place cell dynamics over different phases of a multiday learning task, 

our study extends previous findings14–18 by showing a positive correlation between place 

cell map stability and learning performance in both WT and Df(16)A+/− mice. Indeed, task 

performances and spatial map stabilities for each genotype followed a similar trajectory as 

task demands changed; task performance and stability were most similar during Condition I, 

Df(16)A+/− mice were slightly impaired in Condition II and the largest difference was 

observed in Condition III (Supplementary Fig. 4). These findings suggest that the neural 
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coding strategy employed during all phases of a spatial reward learning task relies on the 

formation and maintenance of stable hippocampal representations. Our results also show 

task-dependent stabilization of spatial maps in WT mice, an effect possibly mediated by the 

attentional demands of GOL15,24,25,31. In contrast, place field stability between GOL and RF 

tasks was indistinguishable in Df(16)A+/− mice, indicative of a failure to conditionally 

stabilize spatial maps. However, Df(16)A+/− mice were comparable to WT littermates in 

their ability to initially learn a reward location, as well as in baseline place cell stability, 

which suggests that the Df(16)A+/− learning deficit was related to the stabilization and 

rearrangement of spatial maps in response to changing task demands (Condition I; Fig. 1c,d 

and Supplementary Fig. 4).

Our results also suggest that the memory deficit throughout the GOL task may result from 

impaired consolidation processes. Df(16)A+/− mice were capable of solving this task, but 

they were significantly impaired at the beginning of each day (Fig. 1d), and their spatial 

maps were less stable overnight than those of the WT mice (Fig. 3b,e). In that respect, the 

altered SWR activity we observed in the Df(16)A+/− mice may underlie the decreased 

stability of spatial maps. Although we did not directly assess SWR-related place cell 

reactivation28, the increased rate and power of SWRs we observe in the Df(16)A+/− mice 

(Supplementary Fig. 9), similarly to the effect seen in other SCZ mouse models32,33, could 

reflect either a failure to selectively reactivate task-related representations or a compensatory 

mechanism, as aberrant SWRs are not efficiently consolidating task memories.

As an alternative explanation, it is possible that compromised forgetting mechanisms drive 

the behavioral deficits of the Df(16)A+/− mice. Place cell remapping has been proposed as a 

population-based coding mechanism that supports storage of similar memories with minimal 

interference34–36. Therefore, compromised forgetting mechanisms in terms of in place cell 

remapping toward the reward location in the Df(16)A+/− mice might reflect enhanced 

interference in forming new memories or recalling earlier memories. Another possibility is 

that an inability to suppress licking due to impaired impulsivity control could also contribute 

to the lagging performance in the Df(16)A+/− mice.

While the effect of time cannot be completely excluded over the course of our multiday 

learning model, our results are more consistent with an interpretation in which distinct 

hippocampal coding strategies are employed as learning demands change in our task. 

Specifically, learning of a reward location in a novel environment is primarily supported by 

the stability of spatial maps, while learning of a change in reward location in an otherwise 

familiar environment is additionally dependent on the plasticity of these maps, as place cells 

shift toward the new reward location in WT mice (Figs. 5–8). Prior studies of goal-directed 

learning were mostly performed in familiar environments19,20,22–24,26, and our results here 

are in line with previous observations showing that prominent changes in place cell firing in 

response to a goal were elicited when the pattern of the reinforcement was changed in the 

same environment19,20,24,25, following several trials in the same maze26, translocation of a 

reward location19,24 or during the probe trial in an annular water maze23. Previous literature 

has also demonstrated that CA1 place fields undergo experience-dependent stabilization 

during the transition from a novel to familiar context37–39, including experience-dependent 

changes in place fields shift and directionality30,40. Therefore, one potential explanation for 
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the lack of reward-related enrichment during Conditions I and II is that goal-directed place 

cell dynamics were obscured by conflicting demands related to the formation of a stable 

contextual representations. Additional changes within a stabilized (or well-encoded) context, 

such as the incorporation of reward-related information, could occur through goal-directed 

reorganization of place fields, resulting in over-representation of place fields near the reward 

in WT mice.

We find that WT place fields before the reward tended to shift forward, while place fields 

after the reward shifted backwards during learning of a new reward location in a familiar 

environment (Fig. 6c,d). This finding is consistent with the prior observation of gradual 

shifts place fields toward goal locations29. Df(16)A+/− mice failed to employ a goal-location 

enrichment-coding strategy and were significantly delayed in learning the new reward 

location. The fact that the Df(16)A+/− mice still improved their behavioral performance 

despite their lack of goal-related remapping implies that Df(16)A+/− mice rely on other 

alternative, albeit less-efficient, strategies to find the reward location. Although we find that 

self-motion-generated information alone is not sufficient for the maintenance of stable firing 

fields, local cues and fabric segments of the belt could, in principle, also serve as anchors to 

reduce error accumulation in path integration21,27. Df(16)A+/− mice did not track position as 

accurately as WT mice when local cues were shuffled (Condition II, Day 1; Figs. 1c and 4a), 

indicating that Df(16)A+/− mice overly rely on local cues (but not the fabric segments; 

Supplementary Fig. 6d) and potentially egocentric navigational strategies. Nonetheless, this 

topic deserves further exploration.

The observed decrease in the fraction of spatially tuned cells and altered firing field 

properties at the neuronal population level, although only partially corroborated in the level 

of mouse population, could be an additional contributor to the disruption in the processing of 

spatial information in the Df(16)A+/− mice. The tendency toward unimodal and narrower 

place fields we observed in the Df(16)A+/− mice may be sufficient to support accurate 

spatial coding by combining independent location estimates from individual cells under 

basal conditions. In contrast, during modification of task contingencies41, place cells with 

multiple fields and high rate of spatial information could increasingly contribute to 

population coding in WT but not in Df(16)A+/− mice.

Bidirectional interactions between the hippocampus and the pre-frontal cortex play a critical 

role in normal memory processing42. In this respect, we note that learning deficits were 

revealed in the mutant mice by manipulations of the environmental context and the reward 

location, conditions requiring cognitive flexibility, and that the decreased fraction of cells 

tracking the place reference frame following a shuffling of the local cues during the GOL 

task (Fig. 4b,c) suggests a misattribution of salience to irrelevant cues. These behavioral and 

neuronal abnormalities together point to impaired interactions between the prefrontal cortex 

and the hippocampus, a feature of both SCZ patients and animal models of SCZ43,44.

Disrupted spatial map stability and plastic reorganization in the Df(16)A+/− mice could 

result from deficits in local circuit dynamics, long-range communication or 

neuromodulation, all of which would presumably be attributable to the deficiency of one or 

more genes in the 22q11.2 locus4,43,45. While the precise mechanisms remain to be 
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determined, our findings indicate that impaired stability and the inability of hippocampal 

place fields to reorganize in response to salient information together represent important 

neuronal correlates of memory deficits in Df(16)A+/− mice. Given that the memory deficit 

revealed by the GOL task is reminiscent of episodic memory deficits and learning 

impairments in 22q11.2-deletion carriers46,47, impaired hippocampal ensemble dynamics 

may be a central component of cognitive memory dysfunctions emerging from the 

22q11.2DS and SCZ in general48. In SCZ patients with and without the 22q11.2 deletion, 

cognitive dysfunction is a key manifestation of SCZ, is highly correlated with functional 

outcome and is a robust indicator of the risk of developing a psychotic illness49,50. 

Investigations of 22q11.2DS as a genetic model could thus aid in elucidating neurobiological 

mechanisms underlying the development of cognitive dysfunction under the assumption that 

the diversity of dysfunction that occurs at the molecular, cellular and synaptic levels could 

be functionally convergent at the level of altered neuronal ensembles45.

ONLINE METHODS

All experiments were conducted in accordance with the US National Institutes of Health 

guidelines and with the approval of the Columbia University Institutional Animal Care and 

Use Committee.

No statistical methods were used to predetermine sample sizes but our sample sizes are 

similar to those reported in previous publications51–53.

Mice and viruses

For all experiments we used adult (8–12 weeks) male and female Df(16)A+/− and wild-type 

(WT) littermates that had been backcrossed into C57BL/6J background for over ten 

generations. Hemizygous Df(16)A+/− mice carry a 1.3-Mb deficiency on chromosome 16, in 

a region syntenic to the human 22q11.2 region and encompassing 27 genes, from Dgcr2 to 

Hira51,54. Mice were housed in the Columbia University vivarium (1–5 mice per cage) and 

were maintained on a 12-h light/dark cycle. Experiments were performed during the second 

half of the light portion of the cycle. GCaMP6f expression in neurons located in the 

hippocampal CA1 pyramidal layer was induced with a recombinant adeno-associated virus 

(rAAV) expressing GCaMP6f55 under a Synapsin promoter (rAAV1/2(Synapsin-
GCaMP6f)). Viral delivery to dorsal CA1 was performed by stereotactically injecting 50 nL 

(10-nL pulses) of rAAV at three dorsoventral locations using a Nanoject syringe (−2.3 mm 

AP; −1.5 mm ML; −0.9, −1.05 and −1.2mm DV relative to bregma). Optimal levels of viral 

expression of GCaMP6f occur 3–4 weeks postinjection. A subset of Df(16)A+/− mice were 

crossed with mice expressing Cre-recombinase under interneuron promoters (Som, Pvalb, 

VIP)52 to identify interneurons located in the CA1 pyramidal layer to exclude them from 

further analysis. However, none of these crosses completely label the interneuron population 

in the pyramidal layer (data not shown), and therefore putative interneurons were identified 

and excluded from image analysis based on morphological criteria (see the “Data processing 

for Ca2+ imaging” section, below). In total, 6 WT mice (5 males and 1 female) and 6 

Df(16)A+/− mice (4 males and 2 females) were used for behavioral analysis. One of the male 

Df(16)A+/− mice was excluded from the imaging analysis due to poor quality of the imaging 
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window. Experimenters were blind to mouse genotype throughout the experiment and initial 

data preprocessing steps. Littermate mutant and wild-type mice from at least five different 

litters were used and randomly assigned to each experiment (GOL and RF). For the 

hippocampus inactivation experiment, wild-type C57Bl6j mice were used and were 

randomly assigned to the two experimental groups.

Imaging window implant

Mice were surgically implanted with an imaging window over the left dorsal hippocampus, 

along with a steel head-post for head-fixation during the experiments as described 

previously52,53. Imaging cannulas were constructed by gluing (Norland optical adhesive) a 

3-mm glass coverslip (64-0720, Warner) to a cylindrical steel cannula (3.0-mm diameter, 

1.5-mm height). The surgical protocol was performed as described previously52,56. 

Analgesia was continued for 3 d postoperatively.

Behavioral training

After recovery from surgery but before the beginning of the behavioral experiments, mice 

were water deprived (>85% predeprivation weight) and habituated to handling and to the 

experimental setup including imaging equipment (shutter sounds, laser, objective). Next, 

water-deprived mice were head-fixed and trained to operantly lick to receive water rewards 

(water delivered in response to tongue contact with a capacitive sensor) at random hidden 

locations while running on a single-fabric, cue-free treadmill for 10 d (one 15-min trial/d). 

Mice initially received 40 randomly placed rewards per lap, and the reward frequency was 

decreased until the mice ran reliably for 3 randomly placed rewards per lap at a rate of at 

least 1 lap per min. Upon entering the reward zone, a drop of water was delivered in 

response to every other lick from the mouse. Water delivery stopped either when the mouse 

traveled 10 cm past the beginning of the reward zone or 3 s had elapsed. Randomization of 

reward zones during training encouraged mice to continuously run and lick simultaneously.

Goal-oriented learning—For GOL, the reward location was fixed to a 20-cm reward 

zone within the ~2-m long treadmill belt (180–200 cm) during context presentation as 

described below (see “Contexts” section). Under this set up, each mouse was trained to learn 

the initial reward position for 3 × 10-min trials/d, separated by ~1 h for three consecutive 

days (Days 1–3, Context A, Condition I, 9 sessions total). We then changed the treadmill 

belt and nonspatial context, and mice were given 3 × 10-min trials/d for three consecutive 

days (Days 4–6, Context A′, Condition II) under this changed context. In Condition III, the 

reward zone was moved to a new location, while the other features of the belt and context 

were kept the same as in Condition II. Mice were given 3 × 10-min trials/d for three 

consecutive days to learn the new reward position (Days 7–9, Context A′, Condition III). As 

a point of clarity, we use the term ‘context’ to refer to the entire environment and set of 

features present during the experiment, including the fabric belts, local cues, nonspatial 

odor, tone and light, as well as the head-fix apparatus and the microscope itself, but, notably, 

not the uncued reward location. We always use ‘position’ in reference to the sequence of 

three distinct belt fabrics, which were always in the same order throughout all conditions of 

the experiment.

Zaremba et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2018 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Random foraging—For RF, water-deprived mice were trained to run for water rewards 

that were randomly administered nonoperantly throughout cue-rich belts. When the 

experiment started, mice received, on average, 3 water rewards per lap, but positions of the 

rewards from lap to lap remained random. This task involved no learning of a particular 

reward position, as the reward schedule was changed such that water was presented to the 

mice probabilistically as they ran, independent of both position on the belt and whether or 

not they licked. Mice ran 2 sessions per d, either in the same context or in paired contexts as 

described below (see “Contexts”).

Behavioral readout—We used the location and quantity of licks to measure performance 

on the goal-directed task. As a measure of learning, we computed the fraction of licks in the 

goal window, where the goal window was spatiotemporally defined as the time when the 

animal was eligible for rewards (within both the 20-cm spatial zone and the 3-s temporal 

window).

Comparison of GOL task to freely moving goal-directed learning task in 
Dupret et al—The GOL task used in this study was motivated by the cheeseboard maze 

task used by Dupret and colleagues26. The hidden reward cheeseboard maze used by Dupret 

et al. requires rats to learn the location of hidden food rewards over successive trials. In their 

primary task, these locations were uncued, and following learning, rats would travel directly 

to each baited location to retrieve the food reward. To facilitate chronic two-photon 

functional imaging from hippocampal CA1 place cells throughout learning, we designed this 

head-fixed paradigm for mice on a linear treadmill instead of a freely moving maze. Our 

head-fixed goal-oriented learning task required mice to learn the unmarked (‘hidden’) 

location (a single location instead of three as in Dupret et al.26) of water rewards (instead of 

food) over successive laps (instead of discrete trials). Mice searched for these rewards by 

sampling the lick port, which only dispensed water in the correct location, while traversing a 

circular treadmill. In Dupret et al.26, rats moved around the cheeseboard maze and sampled 

each well to find the baited reward locations. Both tasks use measures of behavioral 

efficiency to determine the degree of learning; Dupret et al.26 looked at the length of the path 

taken by the rats to collect all of the rewards, and in our task we (in effect) looked for the 

suppression of wasted/unrewarded licks. In essence, both of these tasks require animals to 

remember a location in space where a reward had previously been received and effectively 

return to that reward location to receive another reward. Both of these tasks depend on 

normal activity in hippocampal area CA1 to complete this task (Supplementary Fig. 5).

Stimulus presentation

Visual, auditory and olfactory stimuli were presented and all behavior signals digitized as 

described previously52,53,56. To track the linear position of the treadmill, we established 

three registration anchors at known positions along the belts and interpolated between them 

using a quadrature-encoded movement signal tied to the rotation of the treadmill wheels. 

Registration anchors were marked by radio-frequency identification (RFID) buttons (16 mm, 

125 kHz; SparkFun Electronics) at evenly spaced positions along the belt and were detected 

when they passed over a fixed RFID reader (ID-12LA, SparkFun). The rotational quadrature 

signal was produced by marking treadmill wheels with offset tick marks, and this signal was 

Zaremba et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2018 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encoded by a pair of photodiodes (SEN-0024, SparkFun) aligned to the wheels (<0.5 cm 

resolution).

Contexts—Distinct multisensory contexts were created using the system described in our 

previous work52. This included presentation of a constant odor (carvone or isopentyl 

acetate), blinking red LED (100-ms duration at 1 Hz or off) and either a pure tone (10 kHz) 

or continuous beeps (2 kHz, 100-ms duration at 1 Hz). All spatial information was presented 

to the mice via the treadmill belts. The 2-m long imaging belts used in these experiments 

were constructed by stitching together 3 fabrics and then adhering six local tactile cues. 

Paired contexts (A–A′) consisted of two belts with an identical sequence of three fabrics and 

the same local cues, but the order of the cues was randomized between the two belts. 

Preservation of the fabric order allowed for comparison of spatial representations between 

contexts. In addition, each belt was paired with a unique multisensory context, such that 

when a mouse experienced context A′ after A, the belt was the same fabric sequences as in 

A but paired with a new local cue order and with a change in the background odor, light and 

tone. The composition of the first context (A) was randomized between mice.

Hippocampal inactivation

To selectively silence dorsal hippocampus during the GOL task, we infused the GABAA-

agonist muscimol (Sigma) through chronically implanted cannulae. Guide cannulae (24-

gauge stainless steel) were implanted in wild-type C57BL/6J mice bilaterally over dorsal 

area CA1 (anteroposterior, −1.7 mm; mediolateral, ±1.5 mm; dorsoventral, −1.0 mm) and 

plugged with dummy cannulae (31-gauge stainless steel wire) matching the inner dimension 

of the guide cannula. The injection cannulae (31-gauge stainless steel) extended 0.5 mm past 

the end of the guide cannulae, targeting CA1. Surgical procedures were similar to those for 

imaging window implantation, except that a modified head post was used to accommodate 

the bilateral guide cannulae. Following implantation, mice were given 3 d to recover before 

head-fixation habituation, followed by 2 weeks of GOL task training (see the “Behavior 

training” section above.).

To test for effects of dorsal hippocampus silencing on GOL, we used a modified GOL task 

model that consisted of a single condition (all days used the same belt, context and reward 

location). On the first day, mice were randomly divided into two groups (saline, n = 4 and 

muscimol, n = 3). The saline group was infused with 0.9% saline (0.15 μL at 0.25 μL/min) 

for the first 3 d (3 sessions per d, 30 min between sessions) and then switched to muscimol 

(0.15 μL of 1 μg/μL at 0.25 μL/min) on the fourth day as a reversal trial. The muscimol 

group received the opposite drug schedule: muscimol on the first 3 d and saline on the fourth 

day. To allow for drug diffusion, injection cannulae were left in place for 2 min following 

infusion. Mice were briefly head-restrained on a separate training treadmill during drug 

infusion. Infusions were performed sequentially (one hemisphere at a time) with a 5-μL 

Hamilton syringe and microinfusion pump (World Precision Instruments). Following 

infusions, the dummy cannulae were replaced and mice returned to the homecage for 30 min 

before behavior training/testing.
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In vivo two-photon imaging

All imaging was conducted using a two-photon 8-kHz resonant scanner (Bruker). We 

acquired 300-μm × 300-μm images (512 × 512 pixels) at 7–30 Hz using a 920-nm laser (50–

100 mW, Coherent) through the approximate midline of the CA1 pyramidal cell body layer. 

To align the CA1 pyramidal layer with the horizontal two-photon imaging plane, we 

adjusted the angle of the mouse’s head using two goniometers (±10° range, Edmund Optics). 

All images were acquired with a Nikon 40× NIR water-immersion objective (0.8 NA, 3.5 

mm WD) in distilled water. Green (GCaMP6f) fluorescence was detected with a GaAsP 

PMT (Hamamatsu Model 7422P-40). A custom dual stage preamp was used for optimal 

signal amplification before digitization (Bruker).

Data processing for Ca2+imaging—All imaging data were analyzed using the SIMA 

software package written in Python (https://github.com/losonczylab/sima)5. Motion-artifact 

correction was achieved by implementing a plane-wise version of the 2D hidden Markov 

model56–58. Segmentation was performed on each field of view (FOV) by manually drawing 

polygons around GCaMP6f-labeled somata for the first imaged session of each FOV. 

Polygons were drawn along the inner edge of the cytosolic border to minimize neuropil 

contamination. Putative interneurons in the pyramidal layers, predominantly GABAergic 

basket cells59–61, were identified and excluded from further analysis based on their 

multipolar and morphologically larger soma diameter compared to CA1 pyramidal cells62–64 

and on their higher baseline and nuclear fluorescence, consistent with their higher baseline 

tonic firing rate in vivo61,65–67. Regions of interest were imported to the SIMA project’s 

ROI Buddy graphical user interface58 and were transformed to the other imaging sessions of 

the same FOV using a piecewise-affine transformation. This tool also allowed for 

registration of the regions of interest (ROIs) across experiments, allowing us to track 

identified cells across imaging sessions.

GCaMP6f fluorescence time-series were extracted from the ROIs using SIMA as previously 

described58. We computed the relative fluorescence changes (ΔF/F) as previously 

described68, with a uniform smoothing window t1 = 3 s and baseline size t2 = 60 s.

To identify significant calcium events, we modified a method first implemented by Dombeck 

et al. in 200769 and since used by both our lab52,53,70 and others57,71. The general idea is 

that for a ΔF/F calcium trace, positive and negative deflections from 0 should occur with 

equal probability for any noise associated with the photon counting/image acquisition and 

also for uncorrectable motion along the dorsoventral axis (z axis) of the mouse. This 

assumption allows us to empirically calculate the false-positive rate for each putative event 

and thus identify a duration and amplitude threshold above which an event has a fixed (5%) 

maximum false-positive rate, the level at which there are 20 times more positive events than 

negative events. To implement this approach, we identified putative events by finding 

consecutive imaging frames that started 2 s.d. above or below the mean, ended when the 

signal fell down to 0.5 s.d. above/below the mean and lasted for at least 250 ms. These 

events were classified by their duration and amplitude (in sigma, s.d.) and binned into 0.5-

sigma amplitude and 250-ms duration bins. For each bin, we then calculated the associated 
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false-positive rate as the ratio of negative to positive events. We only included positive 

events from amplitude–duration bins with a false-positive rate less than or equal to 0.05.

Data analysis

Selection of spatially tuned cells—When evaluating the spatial tuning of pyramidal 

cells, we restricted our analysis to running-related epochs, defined as consecutive frames of 

forward locomotion (an imaging frame in which at least one forward pair of beam breaks 

occurred) at least 1 s in duration and with a minimum peak speed of 5 cm/sec. Consecutive 

epochs separated by < 0.5 s were merged. Running-related transients were defined as those 

that were initiated during a running-related epoch.

To identify cells with significant spatial tuning, we calculated the spatial information relative 

to an empirically calculated shuffle distribution. For each cell we first computed the spatial 

information72 content as

where λi and pi are the transient rate and fraction of time spent in the ith bin, λ is the overall 

firing rate, and N is the number of bins. We computed IN for multiple values of N = 

{2,4,5,10,20,25,50,100}. We then created 1,000 random reassignments of the transient onset 

times within the running-related epochs and recomputed the values of , where s is the 

index of the shuffle. To roughly correct for biases in the calculation of mutual information, 

we then subtracted the mean of this null distribution from all estimates to obtain values

Finally, we computed a single estimate of the information content for the true transient onset 

times, , and for the shuffles, . The spatial tuning P value was taken as 

the fraction of values of s for which Î exceeded Îs. Cells falling in the top 5% of their 

respective shuffle distributions were classified as place cells on the basis of their spatial 

information content.

For all cells, rate maps were formed by dividing the number of transients initiated in each 

spatial bin by the occupancy of that bin. We calculated rate maps with 100 position bins and 

smoothed with a Gaussian kernel (σ = 3 bins). To define place fields for cells that were 

identified as containing significant spatial information, we fit each local maximum in the 

rate map with a Gaussian, merged overlapping putative fields and then discarded any with an 

area less than 50% of the largest.

Place cell properties—For each cell, we calculated a spatial tuning vector as
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where θj is the position of the mouse at the onset time of the jth running transient, and o(θj) 

is the fraction of running frames acquired at position θj. The circular variance is defined as 1 

minus the magnitude of this mean resultant vector (smaller values convey sharper tuning 

specificity). Transient sensitivity is defined for a place cell as the fraction of laps in which a 

significant Ca2+ transient occurred in a place field. Transient specificity is defined as the 

fraction of significant Ca2+ transients that occurred within a place field. Single-cell sparsity 

is defined as described previously73 as

where ri is the transient rate in in spatial bin i of n total bins. Lifetime place coding is the 

fraction of all cells that were ever previously identified as a place cell by the nth session they 

were imaged.

Remapping analysis—Recurrence probability was defined for a given pair of 

experiments as the fraction of place cells in the first experiment that were also identified as a 

place cell in the second experiment. The centroid shift for each cell was defined as the 

distance between the spatial tuning vectors calculated for a pair of experiments. As noted 

above (see “Goal-oriented learning” section), the actual treadmill belts used for the 

experiments ranged from 180 to 200 cm, so we normalized the values to the length of the 

belt to directly compare centroid shift values. These values range on the interval [−0.5, 0.5), 

and the units have been labeled ‘fraction of belt’. In Figures 3 and 4 we plot the absolute 

value of this shift. A cell was required to have fired at least one transient in both experiments 

for inclusion. In our analysis of cell firing location following the shifting of local cues, we 

define a ‘cueness’ metric for all cells that fired within ±5% (belt units) of the cue before cue 

shift as

where dp is the distance from the activity centroid after cue shift to the position of the 

preferred cue on the fabric sequence before the cue shift, so a dp value of 0 means that cell 

maintained its firing at the location where the cue had been. We defined dc similarly, as the 

distance from activity centroid after cue shift to the new position of the cue after the cue 

shift, so that a dc value of 0 means that a cell’s activity followed the movement of the cue 

exactly (and a value of 0.5 means it is now at the opposite side of the belt). So the cueness 

metric, c, has a value of 1 for a cell that followed the cue and a value of 0 for a cell that 

Zaremba et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2018 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stayed at the original cue position. All cells with cueness >0.67 were classified as ‘cue-

preferring’ and all cells with cueness < 0.33 were classified as ‘place-preferring’. Cueness 

shuffle distributions were calculated by randomizing the cell identities before and after the 

cue shift. The fraction of place fields near the reward was defined as the fraction of place 

cells with a spatial tuning vector within 1/16 of a belt length of the reward zone.

Shuffle distributions—For recurrence probability shuffle distributions, we selected every 

pair of experiments and calculated the fraction of place cells in the first experiment that were 

still place cells in the second experiment (recurrence probability), as well as the fraction of 

all cells in the second experiment that were identified as place cells (recurrence probability 

chance level). We pooled this chance-level calculation across all pairs of experiments in both 

genotypes to create the shuffle CDF and inset bar. Centroid shift and place/cue-preferring 

shuffle distributions were calculated by randomly choosing 10,000 pairs of activity centroids 

(taken from correctly paired experiments but ignoring cell identity) and calculating the 

difference in centroid position or the distance to the cue/position.

Recurrence and stability by position—Recurrence and stability as a function of 

position were calculated from all data during Condition III, the only condition during which 

we detected remapping toward the reward location. For every session, we first identified the 

significantly spatially tuned cells, and then for these place cells we calculated the activity 

centroid position relative to the reward location (positions after the reward are positive; those 

before the reward are negative). To get a continuous estimate of recurrence as a function of 

position, we used nonparametric logistic regression to fit a cyclic cubic spline to whether a 

place cell recurred (1) or not (0) for all place cell pairs of sessions. Overfitting was 

controlled for by leave-one-out cross-validation, which determined an appropriate 

smoothness penalty on the spline. Confidence intervals were calculated by generating 1,000 

new datasets of the same size as the original, by resampling with replacement. Splines were 

fit to each new dataset, and the confidence interval was defined as the 5th and 95th 

percentiles of the fit values74,75.

Session-to-session place field shift by position was modeled as a continuous series of von 

Mises distributions, defined as

where x is the distance from the reward, I0 is the modified Bessel function of order 0, μis the 

offset (mean of the distribution) and κ is the concentration (1/κ is analogous to variance). 

Both the offset and concentration parameters are assumed to change smoothly across the 

belt. We first fit the mean shift (offset) of place fields as a function of their initial position as 

a cyclic cubic spline, minimizing mean squared error between the predicted and actual 

second session shift. Using this fit as the offset for the von Mises distributions, we fit the 

concentration factor again as a cyclic cubic spline, minimizing the negative log-likelihood of 

the actual data. Similarly, overfitting was controlled by leave-one-out cross-validation to 
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determine the penalty on the second derivative of the splines. Confidence intervals were 

calculated by resampling the original dataset as described above.

LFP acquisition and SWR analysis—Wideband signals were acquired at 25 kHz using 

a digital acquisition system (Intan Technologies, Los Angeles) from n = 2 WT and 2 

Df(16)A+/− mice. For each mouse, LFP signals from a four-channel silicon probe 

(NeuroNexus, Ann Arbor) centered around the stratum pyrami-dale layer of CA1 were 

recorded for 20 min while the mouse was head-fixed on a cue-free treadmill belt, with 

randomly distributed water rewards. LFP signals were subsequently derived by bandpass 

filtering wideband signals between 0.1 and 625 Hz and downsampling to 1,250 Hz. For each 

animal, a pyramidal-layer recording site was chosen based on the amplitude of LFP ripple-

events and on its location dorsal to the sites showing prominent negative sharp-waves, which 

are visible in the stratum radiatum. LFP signals originating in the pyramidal layer during 

epochs that did not show evidence of muscle-related electrical artifacts and in which the 

animal was immobile (velocity < 3 cm/s) were included in the analysis. Gabor wavelet 

spectrograms were computed between 1 and 250 Hz; power within each frequency band was 

subsequently z-scored within each session. To detect sharp-wave/ripple events, the 

pyramidal layer LFPs were bandpass filtered at the ripple-band frequency (125 to 250 Hz), 

rectified, smoothed with a 25-ms STD Gaussian kernel and z-scored. For the main analysis, 

ripples were detected as ‘trigger’ peaks at least 6 s.d. above the mean, with the ripple ‘edges’ 

set at 2 s.d. above the mean. The trigger thresholds also varied between 2 and 9 s.d. above 

the mean. Across all conditions, candidate ripple events occurring within 30 ms of each 

other were concatenated, and only ripples lasting at least 30 ms were included. Ripple 

incidence rates were calculated by binning immobility epochs into non-overlapping 30-s 

bins and calculating the ripple incidence within these bins.

Modeling goal-directed remapping

All parameters in our model of session-to-session recurrence and remapping were fit from 

our WT and Df(16)A+/− place cell data, separately for each condition. To determine how the 

reward affected stability of place cells, we used WT mouse data from sessions during 

Condition III, the sessions in which we saw robust remapping toward the reward location, to 

calculate the session-to-session place cell recurrence probability as well as the mean and 

variance of the place field centroid shift, as a function of the original place field’s distance 

from the reward location (Fig. 6 and see the “Recurrence and stability by position” section). 

For the flat model, recurrence, shift offset and shift variance were all set to the mean across 

all positions from the WT fits.

Our model assumes that every cell has a preferred spatial tuning each day and that the tuning 

is either latent (non-place cell) or expressed as significant spatial activity (place cell). This 

assumption is supported by the observation that even when a cell is not identified as a place 

cell, it retains a ‘memory’ of the last time it was spatially active, firing more closely to the 

old place field than expected by chance. Specifically, for all place cells from pairs of 

experiments separated by one session, the mean place field centroid shift variance between 

those two sessions was independent of the spatial information in the middle session 

(Supplementary Fig. 11). At each iteration (similar to one elapsed session) of the model 
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(Fig. 7a) a fixed fraction of non-place cells become spatially active, which we denote as Pon 

(WT: 24.83%; Df(16)A+/−: 20.58%). Place cells remain spatially active as place cells with a 

position-dependent recurrence probability, which we denote as Precur(xi). Finally, all cells 

shift their place field location, with the new position being drawn from a von Mises 

distribution with position-dependent offset μ(xi) and concentration κ(xi) as described 

previously: P(xi +1|xi) = VMS(xi + μ(xi), κ(xi))

For all simulations, we ran eight iterations, similar to the eight transitions between the nine 

sessions within each condition of our experiment. We calculated the mean enrichment as the 

mean absolute centroid distance to the reward across all place cells minus the expected mean 

distance from the reward (0.25).

For all model simulations, initial spatial tuning and place cell identity were chosen 

pseudorandomly; initial place cell identities and masks were randomized until the mean 

distance to the reward was less than 0.00001 but then held constant across 100 simulations 

of eight iterations each. For enrichment by iteration curves (Figs. 7b and 8e and 

Supplementary Figs. 10a,b and 11), the mean and 90% confidence intervals are calculated 

from the 100 simulations. Final distribution histograms (Figs. 7c,e and 8f and 

Supplementary Figs. 10c,d and 11) are aggregated across all simulations.

To compare the influence of each set of parameters to the final enrichment, we reran the 

simulation with each of the parameters swapped between WT and flat-model fits (Fig. 7d,e 

and Supplementary Fig. 13). For example, the WT enrichment for swap Precur is the 

simulation run with all WT-fit parameters, except with Precur kept the same for all positions 

and equal to the mean, effectively removing the dependence on the distance to reward by 

flattening out the fits.

Statistics

Behavioral results were analyzed with a linear mixed-effect model or mixed-design 

repeated-measures two-way ANOVA. Differences in conditions were revealed by use of 

single linear combinations of parameters with the following formulae

Z was then transformed to P value. All data was tested for equal variance (Levene’s test) and 

for normal distribution (Kolmogorov-Smirnov normality test). Means were compared by 

two-sample unpaired t tests, unless the variances were significantly different or the data was 

not normally distributed, in which cases we used Welch’s t test or Mann-Whitney U test, 

respectively. Wilcoxon rank-sum tests were used to compare genotypes in SWR data. Chi-

squared tests, Cox regression or two-way mixed-effects ANOVA were used for all other 

individual parameter comparisons. The Benjamini-Hochberg procedure was used for 

multiple comparisons post hoc analyses with FDR = 0.1. Linear regression analyses with 

Pearson’s correlation coefficient were calculated for correlations of behavioral performance 
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and place cell stability and enrichment (Figs. 3 and 5). Comparisons of significant 

correlations between groups were made with GLM after z-score transformation with z-

transformed variables on the x axis as covariates. Cox regression was used to compare 

lifetime place coding between genotypes (Supplementary Fig. 4a). All analyses were 

performed with SPSS software. Unless otherwise noted, values are plotted as mean ± s.e.m. 

A life Sciences Reporting Summary is available online.

Plotting

For all box and whisker plots (Figs. 1d, 3b,e and 4f, and Supplementary Fig. 5b), the center 

line is the median, the top and bottom of the box denote the 1st and 3rd quartile of the data, 

respectively, and the whiskers mark the full range of the data.

Data availability and code availability

The datasets generated and analyzed during the current study are available in the Dryad 

Digital Repository at https://dx.doi.org/10.5061/dryad.rq560. Data analysis and simulation 

code are available on GitHub at https://github.com/losonczylab/

Zaremba_NatNeurosci_2017.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Differences in learning performance between Df(16)A+/− and WT mice in GOL task. (a) 

The three conditions of the GOL task. Mice spend 3 d in each condition. Contexts A and A′ 
are composed of different auditory, visual, olfactory and tactile cues (Online Methods), 

varied between Condition I and Condition II. The location of the hidden reward (blue 

circles, Rew 1 and Rew 2) is switched between Condition II and Condition III. Water-

deprived mice trained to run on a linear treadmill were introduced to a novel environmental 

context (Context A) consisting of a feature-rich fabric belt and specific background with 

nonspatial odor, tones and blinking light patterns (Context A) on the first day of the 

experiment. Operant water rewards were available at a single unmarked location on the belt 

(Rew 1 in Conditions I and II; Rew 2 in Condition III); if the mouse licked in the correct 

location they received a water reward, but no water was administered if they did not lick in 

the reward location or if they licked outside the reward location (Condition I, 3 d and 3 

sessions per d). The time of each lick as well as the position of the mouse on the treadmill 

were recorded both to determine when to deliver water rewards and to provide a readout of 

learning. To test the ability of mice to adjust to changes in the task conditions, mice were 

exposed to an altered context (Context A′: same sequence of belt materials, shuffled local 

cues, different nonspatial odor, tone and light; Online Methods), while maintaining the same 

reward location relative to the belt fabric sequence (Condition II, 3 d and 3 sessions per d). 

During the last part of the task, the location of the hidden reward was changed while 

maintaining the familiar context from Condition II (Condition III, 3 d and 3 sessions per d). 

(b) Example histograms of lick counts by position for a WT mouse (blue) and a Df(16)A+/− 

mouse (red) on the first and last days of each condition. Green bars, reward locations. As the 

mice learned the reward location they switched from exploratory licking along the entire belt 
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to focused licking only at the reward location, suppressing licking at other locations. Hence 

licking became increasingly specific for the reward location. (c) Learning performance of 

WT and Df(16)A+/− mice based on fraction of licks in the reward zone (n = 6 mice per 

genotype, main effects described in Results section, post hoc tests with Benjamini-Hochberg 

correction, Condition I, two-way mixed-design RM ANOVA, main effect of day: F2,20 = 

28.235, P < 0.0001; Condition II, two-way mixed-design RM ANOVA, main effect of 

genotype: F1,10 = 6.297, P = 0.031; main effect of day: F2,20 = 4.076, P = 0.033; Day 1: P = 

0.015 ; Condition III, two-way mixed-design RM ANOVA, main effects of day: F2,20 = 

15.762, P < 0.0001; main effect of genotype: F1,10 = 7.768, P = 0.019; day × genotype 

interaction P = 0.932: n.s.; Day 3: P = 0.022). Error bars represent s.e.m. (d) Learning 

performance for WT and Df(16)A+/− mice on the first and last session of each day by 

Condition. Across all conditions, both genotypes performed better at the end of the day. 

During Condition I, WT and Df(16)A+/− mice performed similarly throughout the day (main 

effects described in Results section), while in Condition II, Df(16)A+/− mice were more 

impaired at the start of the day (post hoc tests with Benjamini-Hochberg correction: two-

way mixed-design RM ANOVA, main effect of session: F1,10 = 40.506, P < 0.0001; 

genotype × session interaction: F1,10 = 6.404, P = 0.030; main effect of genotype, P = 0.213: 

n.s.), and in Condition III they additionally never reached WT levels (post hoc tests with 

Benjamini-Hochberg correction: two-way mixed-design RM ANOVA, main effect of 

genotype: F1,10 = 6.433, P = 0.030; main effect of session: F1,10 = 53.237, P < 0.0001; 

genotype × session interaction P = 0.085: n.s.). Center line in box plot is the median, the top 

and bottom of the box denote the 1st and 3rd quartile of the data, respectively, and the 

whiskers mark the full range of the data. *P < 0.05.
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Figure 2. 
Altered place cell properties in Df(16)A+/− mice. (a) Schematic of head-fixed behavioral 

setup. Two-photon objective, 2-p obj. (b) Mice were injected with AAV1/2(Synapsin-
GCaMP6f) (rAAV(GCaPM6f)) in dorsal hippocampal area CA1 to express the genetically 

encoded Ca2+ indicator GCaMP6f in neurons located in the CA1 pyramidal layer. Mice were 

then implanted with a head-post and imaging window to provide long-term optical access to 

the CA1 pyramidal layer. Left: schematic of two-photon Ca2+ imaging in the CA1 pyramidal 

layer. Right: representative two-photon fields of view across the pyramidal layer showing 

cross-sections of GCaMP6f-expressing cell bodies from a WT mouse (middle) and a mouse 

Df(16)A+/− (right). We chronically imaged 179–621 regions of interest (ROIs; Online 

Methods) corresponding to cell bodies in each field of view. (c) Left: GCaMP6f Ca2+ 

fluorescence (ΔF/F) traces from two example spatially tuned CA1 place cells in WT and 

Df(16)A+/− mice during 10-min sessions. Significant Ca2+ transients are highlighted in blue 

or red, and treadmill position is shown below the traces. Middle: polar trajectory plots 
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showing significant running-related transients for the same example cells. Animals’ position 

(angle) over time (radius), gray; onset times of significant running-related calcium 

transients, colored circles. Shaded slices denote place fields. Right: transient vector plots 

showing the position (angle) and occupancy-normalized weight of each running-related 

transient (radius), as used to calculate occupancy-normalized transient rate histograms and 

transient circular variance. Green lines, transient resultant vector (magnitude = 1 – circular 

variance). (d–g) Compared to WT, Df(16)A+/− mice had (d) a smaller fraction of cells per 

experiment with significant spatial information (place cell fraction: WT: 0.2553 ± 0.0109, n 
= 124 sessions; Df(16)A+/−: 0.1924 ± 0.0079, n = 98 sessions; P < 0.0001; inset: averaged 

by mouse, independent samples t test, t = 1.620, P = 0.140; linear mixed-effects model with 

mouse as random factor: F1,10.917 = 3.086, P = 0.107), (e) fewer multipeaked place cells 

(place fields per place cell; WT: 1.180 ± 0.004, n = 12,571 PC × sessions; Df(16)A+/−: 1.110 

± 0.004, n = 7,683 PC × sessions; linear mixed-effects model with number of place fields 

and genotype as fixed factors and mouse as random factor: number of place fields × 

genotype interaction: F3,38.000 = 5.054, P = 0.005 ; genotype effect for single place field, P = 

0.0037; for two fields per PC, P = 0.010; for three fields per PC, P = 0.755), (f) narrower 

place fields (place field width; WT: 32.531 ± 0.135, n = 12,571 PC × sessions; Df(16)A+/−: 

29.532 ± 0.144, n = 7,683 PC × sessions; linear mixed-effects model with mouse as random 

factor: F1,11.164 = 4.371, P = 0.060; dashed vertical lines indicate means) and (g) lower 

circular variance (WT: 0.310 ± 0.0013, n = 43,068 cells × sessions; Df(16)A+/−: 0.189 

± 0.0014, n = 27,397 cells × sessions, linear mixed-effects model with mouse as random 

factor: F1,11.006 = 5.695, P = 0.036; inset: averaged by mouse, Welch’s t test, t = 2.327, P = 

0.0491). *P < 0.05, **P < 0.01.
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Figure 3. 
Disrupted stability of place cell population in Df(16)A+/− compared to WT mice. (a) Top: 

example of place cell recurrence. In a given field of view, a subset of all cells has significant 

spatial tuning each day (place cells, green). The overlap in this population is the recurrence 

probability (40% in this example). Bottom: distribution of recurrence fractions from day to 

day for WT and Df(16)A+/− mice for all sessions (dotted line is cell-identity shuffle 

distribution: WT: 0.456 ± 0.015, n = 74 sessions, Df(16)A+/−: 0.327 ± 0.017, n = 59 

sessions, shuffle: 0.229 ± 0.009, n = 133 sessions; WT vs. shuffle: Welch’s t test, t = 12.64, 

P < 0.0001; Df(16)A+/− vs. shuffle: Welch’s t test, t = 5.124, P < 0.0001; WT vs. 

Df(16)A+/−: independent samples t test, t = 5.72, P < 0.0001) and aggregated by mouse 

(inset; horizontal dotted line is cell-identity shuffle: WT vs. Df(16)A+/−: independent 

samples t test, t = 2.611, P = 0.028). (b) Mean fraction of cells that reoccur as place cells 

from session to session (S-S) or day to day (D-D) for WT and Df(16)A+/− mice (dotted line 

is mean place cell fraction; linear mixed-effects model with genotype and elapsed time as 

fixed effects and mouse ID as random effect; genotype × elapsed time interaction: F1,145.754 

= 5.858, P = 0.017; post hoc analysis, WT vs. Df(16)A+/−, S-S: F1,10.659 = 0.664, P = 0.433; 

D-D: F1,10.086 = 20.534, P = 0.001, significant after Benjamini-Hochberg correction). (c) 

Correlation of place cell recurrence with performance throughout the task. Solid lines, linear 

regression fit; shaded regions, 95% confidence intervals calculated from bootstrap 

resampling (Pearson’s correlation coefficient, WT: 0.288, P = 0.013; Df(16)A+/−: 0.416, P = 

0.001; WT correlation vs. Df(16)A+/− correlation, Fisher z-transformation of correlations, 

general linear model (GLM), univariate ANOVA: genotype × z recurrence probability 

interaction: F1,132 = 0.599, P = 0.440; alternatively: linear mixed effects model with 

genotype as fixed effect, recurrence probability as covariate and mouse ID as random effect: 

genotype × recurrence probability interaction: F1,129 = 1.083, P = 0.300; recurrence effect: 

F1,129.000 = 18.197, P < 0.0001). (d) Top: preferred spatial tuning is represented as vectors 

where the angle is the position on the treadmill of maximal activity. Across three sessions 
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(green, blue and orange lines), spatial preference is generally stable (green to blue sessions), 

though salient events or changes to the environment can induce remapping (blue to orange 

sessions). The centroid shift is the angle between these vectors, represented as the fraction of 

the belt. Bottom: distribution of mean centroid shift from day to day per session (dotted line 

is cell-identity shuffled distribution: WT: 0.204 ± 0.003, n = 74 sessions, Df(16)A+/−: 0.224 

± 0.003, n = 59 sessions, shuffle: 0.242 ± 0.002, n = 133; WT vs. shuffle: independent 

sample t test, t = −9.42, P < 0.0001; Df(16)A+/− vs. shuffle: independent samples t test, t = 

−4.25, P < 0.0001; WT vs. Df(16)A+/−: independent samples t test, t = −4.71, P < 0.0001) 

and aggregated by mouse (inset; horizontal dashed line is cell-identity shuffle; independent 

samples t test, t = 2.58, P = 0.0295). (e) Mean centroid shift from S-S or D-D for WT and 

Df(16)A+/− mice (dotted line is mean centroid shift, linear mixed-effects model with 

genotype and elapsed time as fixed effects and mouse ID as random effect, genotype × 

elapsed time interaction: F1, 38,078.993 = 15.042, P < 0.0001; post hoc analysis, WT vs. 

Df(16)A+/−, S-S: F1,11.137 = 0.303, P = 0.593; D-D, F1,10.577 = 8.724, P = 0.014, significant 

after Benjamini-Hochberg correction). (f) Correlation of mean day-today stability with 

performance throughout the task. Solid line and shaded regions as in d (Pearson’s 

correlation coefficient, WT: −0.306, P = 0.008; Df(16)A+/−: −0.218, P = 0.097; WT 

correlation vs. Df(16)A+/− correlation, Fisher z transformation of correlations, GLM, 

univariate ANOVA: genotype × R stability–probability interaction: F1,132 = 0.268, P = 

0.605; linear mixed effects model with genotype as fixed effect, centroid shift as covariate 

and mouse ID as random effect: genotype × centroid shift: F1,133.000 = 0.001, P = 0.982; 

centroid shift: F1,133.000 = 8.804, P = 0.004). In b and e, center line in box plot is the 

median, the top and bottom of the box denote the 1st and 3rd quartile of the data, 

respectively, and the whiskers mark the full range of the data. (g–i) Task performance and 

population stability by genotype follow similar trajectories across conditions. Error bars 

represent s.e.m. of total number of sessions by mouse. Bonferroni-corrected post hoc tests 

comparing genotype per condition. (g) Fraction of licks in the reward zone by condition 

(two-way ANOVA, main effect of genotype P < 0.0001, main effect of condition P < 0.0001, 

genotype × condition interaction: P < 0.0001; post hoc comparisons: Condition II, P = 

0.011; Condition III, P < 0.001). (h) Recurrence probability by condition (linear mixed-

effects model with condition and genotype as fixed effects and mouse as random effect, 

genotype effect: F1,11.084 = 7.293, P = 0.021, genotype × condition interaction: P = 0.083; 

post hoc comparisons: Condition III, P = 0.004). (i) Mean centroid shift by condition (linear 

mixed-effects model as before, genotype effect: F1,10.107 = 6.771, P = 0.026). *P < 0.05, **P 
< 0.01, ***P < 0.001.
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Figure 4. 
Lack of context change and task-dependent stability of spatial maps in Df(16)A+/− mice. (a) 

Mean centroid shift from the last day of Condition I to the first day of Condition II (WT: 

0.195 ± 0.008, n = 6; Df(16)A+/−: 0.227 ±0.002, n = 5; independent samples t test: t = 

−3.626, P = 0.0055). Horizontal dashed line represents shuffled data. Error bars represent 

s.e.m. for mice. (b) Fraction of all cells classified as place-preferring (position), cue-

preferring (cue) or neither (pooled across mice) for WT, Df(16)A+/− and shuffled data 

(Pearson chi-square test: ±2 = 85.7776, P < 0.0001). (c) Ratio of the number of cue-

preferring to place-preferring cells per mouse for WT mice, Df(16)A+/− mice (independent 

samples t test: t = −3.172, P = 0.0131) and shuffled data (horizontal dashed line). Error bars 

represent s.e.m. for mice. (d) Schematic of RF task. Rewards (blue circles) are presented 

randomly throughout the belt in the same context (Context B): same belt fabric sequence but 

different auditory, visual, olfactory and tactile cues. (e) Distribution of mean centroid shift 

per session from day to day during RF task (dotted line is cell-identity shuffled distribution; 

WT: 0.222 ± 0.004, n = 30 session pairs; Df(16)A+/−: 0.220 ± 0.004, n = 42 session pairs; 

shuffle: 0.244 ± 0.002, n = 72; WT vs. shuffle: independent sample t test: t = −5.05, P < 

0.0001; Df(16)A+/− vs. shuffle: Welch’s t test, t = −5.12, P < 0.0001; WT vs. Df(16)A+/−: 

independent samples t test: t = 0.451, P = 0.653) and aggregated by mouse (inset; horizontal 
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dashed line is cell-identity shuffle; WT vs. Df(16)A+/−: independent samples t test: t = 

0.799, P = 0.448). (f) Comparison of mean centroid shift per mouse in the RF and GOL 

tasks (GOL data replotted from Fig. 3e; linear mixed-effects model, genotype × task 

interaction: F1,19.471 = 4.316, P = 0.051; effect of task: F1,19.471 = 4.924, P = 0.039; post hoc 
analysis: WT, GOL vs. RF: F1,11.285 = 10.472, P = 0.008, significant after B Benjamini-

Hochberg correction; Df(16)A+/−, GOL vs. RF: F1,8.562 = 0.006, P = 0.940). In box plots, 

center line represents the median, the top and bottom of the box denote the 1st and 3rd 

quartile of the data, respectively, and the whiskers mark the full range of the data. *P < 0.05, 

**P < 0.01
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Figure 5. 
Place field enrichment of goal location. (a) Tuning profiles for all place cells in WT and 

Df(16)A+/− mice on the first and last days of Condition III. Each row is an individual place 

cell. The intensity corresponds to the normalized transient rate in each spatial bin along the x 
axis. Goal location is between dotted lines. WT mice show more place cells near the reward 

by Day 3, an enrichment lacking in Df(16)A+/− mice. (b) Fraction of place cells near the 

goal location (within 1/16 of the belt length) across all days of the experiment. Horizontal 

dotted line is uniformly distributed fraction (linear mixed-effects model, condition and 

genotype as fixed effects and day nested under condition as covariate, with mouse ID as 

random factor: genotype × condition × interaction: F2,174.406 = 4.257, P = 0.016; genotype × 

day (nested under condition) interaction: F3,112.789 = 3.257, P = 0.024; post hoc analysis 

with Benjamini-Hochberg correction for multiple comparisons, Conditions I and II: no 

significant effect of genotype; Condition III, genotype effect: F1,71.243 = 8.776, P = 0.004; 

genotype × day interaction: F1,64.041 = 12.307, P = 0.001; Day 3: t = 4.669, P < 0.0001). 

Error bars are s.e.m. of place cell number. (c) Place cell goal-zone enrichment is correlated 

with task performance during Condition III in WT but not Df(16)A+/− mice (WT: Pearson 

correlation: 0.362, P = 0.023; fraction of licks in the reward zone: F1,31.460 = 11.436, P = 

0.002, significant after Benjamini-Hochberg correction; Df(16)A+/−: Pearson correlation: 

−0.068, P = 0.791). Linear regression and confidence intervals as in Figure 3c. ***P < 

0.001.
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Figure 6. 
Session-to-session place field shift dynamics. (a) Example fields of view from two 

consecutive sessions. Background is time-averaged GCaMP6f movie. Place cells are colored 

corresponding to their spatial tuning within each session. The color bar shows the mapping 

of place field location on the belt. The reward zone for these sessions was between the 

dotted lines. Place fields are generally stable (red arrow), but some shift their place field 

(yellow arrow), while others stop being spatially active (blue arrow). (b) Recurrence 

probability as a function of original distance from the reward. For all pairs of consecutive 

sessions during Condition III, each place cell during the first session is plotted with the 

centroid of its place field along the x axis and whether or not it was also a place cell in the 

second session on the y axis (top cluster is place cell in second session; bottom cluster is not 

a place cell; random y-axis jitter within each cluster for visualization). Cyclic logistic 

regression fit with 95% confidence interval from cross-validation plotted on left axis. (c) 

Session-to-session place field shift as a function of original distance from the reward. For all 

pairs of consecutive sessions during Condition III, each place cell during the first session is 

plotted with the centroid of its place field along the x axis and the change in centroid 

position in the second session along the y axis. Data is fit as a continuous series of von 

Mises distributions for each position, with the offset (solid purple line) and variance (shaded 

band, 1/κ, where κ is the concentration parameter) shown. Green dotted line denotes cells 

that move directly to the reward position in the second session. While it is possible that a 

subset of the goal-enriching cells are reward cells that directly follow the reward, the larger 

effect is the gradual drift of the entire place cell population toward the reward, not the active 

recruitment of reward cells directly remapping to the reward location (for example, lack of 

cells clustered around green dotted line). (d) Same offset curve (solid line, shaded region is 

90% confidence interval calculated from refitting bootstrap resampled data) as in c. Positive 

values to the left of the zero-crossing and negative values to the right correspond to drift 

toward the reward position. (e) Same variance fit as in c, plotted independently. Shaded 

region represents 90% confidence interval calculated from refitting bootstrap resampled 
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data. Place field shift is most consistent (minimum variance) at a position that corresponds 

to the most stable place field location from d, just after the goal location.
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Figure 7. 
Place field drift toward reward drives enrichment in the place field dynamics model. (a) 

Schematic of place cell recurrence (left) and stability (right) model including the four 

parameters that were fit from our data: non-place cell to place cell transition probability 

(Pon), place cell recurrence probability by position (Precur), session-to-session place field 

shift variance and session-to-session place field shift offset. (b) Mean population enrichment 

by simulated iteration (solid lines) for WT and flat parameter sets (dashed lines: 90% 

confidence intervals from 100 simulations). WT parameters reproduce the enrichment 

observed during Condition III. (c) Final distribution of place fields after eight iterations for 

WT and flat-model parameters. Vertical dashed line denotes reward location. (d) Mean 

population enrichment after eight iterations with true-fit parameters and then with swapping 

each set of position-dependent parameters individually between WT and the flat model: 

recurrence probability (Precur), place field shift variance and place field shift offset. (e) Final 

WT place field distributions after eight iterations with the same parameter swaps as in d. 

Mean place field shift (offset) toward the reward is revealed as the main factor underlying 

enrichment in GOL.
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Figure 8. 
Df(16)A+/− mice place fields do not drift toward goal and the model produces no 

enrichment. (a) Place cell recurrence by distance from reward, as in Figure 6b. (b) Session-

to-session place field shift as a function of original distance from the reward, as in Figure 6c. 

(c,d) Place field shift and variance fits from b, as in Figure 7c,d (shaded region is 90% 

confidence interval calculated from refitting bootstrap resampled data). (e) Unlike the WT 

model, the enrichment model with Df(16)A+/− parameters shows no enrichment (see Fig. 

7b). (f) Final distribution of place fields after eight iterations for Df(16)A+/− parameters.
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