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Polystyrene surface-binding peptides (PSBPs) are useful as affinity tags to build a highly effective ELISA system. However, they
are also a quite common type of target-unrelated peptides (TUPs) in the panning of phage-displayed random peptide library. As
TUP, PSBP will mislead the analysis of panning results if not identified. Therefore, it is necessary to find a way to quickly and easily
foretell if a peptide is likely to be a PSBP or not. In this paper, we describe PSBinder, a predictor based on SVM. To our knowledge,
it is the first web server for predicting PSBP. The SVM model was built with the feature of optimized dipeptide composition and
87.02% (MCC = 0.74; AUC = 0.91) of peptides were correctly classified by fivefold cross-validation. PSBinder can be used to exclude
highly possible PSBP from biopanning results or to find novel candidates for polystyrene affinity tags. Either way, it is valuable for

biotechnology community.

1. Introduction

Phage display is a versatile and powerful technology to find
ligands for any given target [1-3]. These targets can be a wide
variety of substances, such as small molecules, proteins, gly-
can, cells, organs, and even whole organisms. In traditional
phage display experiments, the 96-well plates or micro-
plates are commonly used. Therefore, ligands which bind to
polystyrene surface (PS) can appear in the biopanning results
unintentionally. On one hand, a high affinity polystyrene
surface-binding peptide (PSBP) can help to build a highly
effective ELISA system and immobilize proteins or antibodies
directly onto the polystyrene plates with minimal confor-
mational changes [4-8]. On the other hand, PSBPs as the
target-unrelated peptides (TUPs) are false positive results and
may mislead the following experiments [9]. Therefore, it is
important to identify if a peptide is likely to be a PSBP in the
biopanning results as either the intended peptide or just a
TUP.

It is not difficult to identify a PSBP experimentally [9].
However, experimental methods are not economical when
dealing with a large quantity of peptides. To save money and
time, computational methods for the prediction of PSBP are

urgently needed. The machine learning-based approaches
have been proved to be quite powerful in dealing with protein
and peptide classification problems [10-13]. In this paper,
we have proposed a novel PSBP predictor based on support
vector machine (SVM) named PSBinder. It can be used to
exclude the false positive peptides rapidly and effectively and
obtain truly interesting peptides more accurately.

2. Materials and Methods

2.1. Datasets. We collected the training data from the BDB
database released in Jan 2017, which is an information portal
to biopanning data [14-16]. The training datasets consisted of
the positive and negative datasets. As positive data, the PSBPs
were collected from nine different phage display libraries.
In order to ensure the comparability between the positive
and the negative data, we randomly chose peptides obtained
by panning against the same library with targets other than
PS. For some libraries that do not have enough number
of negative peptides, we collected the peptides in the same
length from other libraries as an alternative.

The cysteine amino acids at both ends of the circular
peptides were deleted. All peptides harboring ambiguous
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residues (“B”, “J”, “O”, “U”, “X,” and “Z”) or nonalphabetic
characters were excluded. We compared each sequence in
the negative dataset with the one in the positive dataset
and deleted the identical sequences in negative dataset and
replenished the peptides. To exclude possible PSBP crept in
the negative data, we used the Generalized Jaccard similarity
to keep the peptide sequence similarity of positive and
negative data below 90% [17]. Eventually we constructed the
negative and positive datasets and each had 104 peptides
[4, 18-25]. The whole training dataset is freely available as
supplementary online material (available here).

2.2. Features and Feature Selection. Extracting the rational
features is an extremely significant step in constructing a well-
behaved prediction model [26, 27]. Several kinds of typical
features, such as single amino acid compositions (AACs) and
dipeptide compositions (DPCs), amino acid physicochemical
properties, and the pseudo-amino-acid composition, are
widely used in developing classifiers for protein and peptide
prediction. The classifiers based on these features have shown
excellent performance [10, 28-32].

It is a wise method to count the amino acid frequencies of
protein sequences to express the feature of protein sequences.
We can distinguish different types of protein through the dif-
ference in the frequency distribution of amino acids between
sequences. And this is also applicable for peptide sequences;
we chose the AACs as the feature. In order to compensate for
the lack of intrinsic link of the amino acid, we also import
the DPCs. A peptide sequence can be composed of 20 amino
acids (ACDEFGHIKLMNPQRSTVWY) at random in each
position, so a peptide that contains L amino acids could be
expressed as

B= (BB Br)- ¢))

Bi> B> and B represent the first, the second, and the Lth
amino acid of the peptide sequence 3. And the definition of
AAC and DPC is as follows:

AAC (i) = —i—
i=1 Xi @
2
) Vi
DPC (j) = =0
=17

where i stands for one of the 20 amino acids and j one of
the 400 dipeptides. x; denotes the number of residues of each
type and y; represents the number of dipeptides of each type
in each sequence.

In order to build a prediction model with high efficiency,
AAC and DPC were further screened to drop the irrelevant,
redundant, and noisy features through fselect.py script sup-
ported by LIBSVM3.22 [33]. Feature selection was performed
as follows. The feature was put into an initially null set in
descending order by accuracy one by one and the accuracy
of each set was calculated when an element was added in.
When the prediction accuracy reached the highest value, we
chose the set as the optimal feature subset. After the above
procedures, we finally acquired the optimized AAC (OAAC)
and the optimized DPC (ODPC).
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2.3. Support Vector Machine. In machine learning methods,
the support vector machine is a supervised learning model
algorithm for regression analysis and prediction of data.
The SVM has gained increasing popularity and also been
extensively used in the field of bioinformatics [34-37]. We
applied SVM to the analysis and prediction of PSBP. The SVM
model was developed by using LIBSVM3.22 [33], which is an
integrated software for support vector classification. The best
error factor ¢ and the kernel function variance g needed to
build the model can be found by the software’s built-in python
script grid.py. In order to visualize the prediction results, the
parameter b is set to 1 in the process of model training.

2.4. Prediction Assessment. N-fold cross-validation is often
used to evaluate the predictive performance of statistical pre-
dictive models. The advantage of the N-fold cross-validation
method is the simultaneous and repetitive use of randomly
generated subsamples for training and verification. In this
work, all established models were evaluated by using fivefold
cross-validation, where the entire dataset was randomly
divided into five groups, each containing an equal number
of peptides. Four groups were used for training and the
remaining one was used for testing. This process would be
repeated five times. In such a way, each group was used as the
test group once. Eventually the average prediction accuracy of
five kinds of combination was calculated as the final accuracy
of one model.

To evaluate the performance of the prediction models,
we used four indicators: sensitivity (Sn), specificity (Sp),
accuracy (Acc), and Matthews correlation coeflicient (MCC).

TP
n= —m—m—
TP + FN

. TN
P = Nt P

TP+ TN 3)
TP + FN + FP + TN’

MCC

Acc =

~ TP x TN — FP x FN
/(TP + FP) (TP + FN) (TN + FP) (TN + FN)

In the above formulas, TP and TN represent the number
of correctly predicted PSBPs and non-PSBPs, respectively and
FP and FN represent the number of wrongly predicted PSBPs
and non-PSBPs, respectively. MCC is one of the most robust
parameters in any class predictive approach. A MCC equal
to 1 is deemed to be the best prediction, whereas 0 is for a
completely random prediction and —11is an absolutely adverse
prediction. In addition, the competence of the model is
illustrated with the Receiver Operating Characteristic (ROC)
curve. The area under the ROC curve (AUC) is used as
the performance measure. For a perfect prediction, the
maximum value of the AUC equals 1.0. For a random guess,
the AUC equals 0.5.

2.5. Online Web Service. We used Perl to write the common
gateway interface script for the web service. The feature



BioMed Research International

TABLE 1: Performances of SVM-based models trained with different
features.

Feature Sn (%) Sp (%) Acc(%) MCC
Optimized amino acid

composition (OAAC) 66.35 79.81 73.08 0.47
Optimized dipeptide 88.46 8558 8702  0.74

composition (ODPC)

extraction script was written by Python. The web service
allows user to submit peptide sequences in FASTA format or
as plain text. The result will be returned and displayed in a
table after prediction.

3. Results

3.1. The Establishment of Prediction Model and Performance
Evaluation. In this study, the positive dataset contains 104
peptide sequences, and the negative dataset is composed of
104 peptide sequences with the same length and almost the
same source to the corresponding positive peptides. Accord-
ing to formula (2), each sequence of 420 features can be
calculated. By filtering these redundant and high dimensional
features, we finally obtained 9 OAAC and 146 ODPC. The
model built with ODPC attains the maximum accuracy of
87.02% and an impressive MCC of about 0.74 (Table1).
These indicators show the excellent performance and strong
generalization ability of the predictor.

To more intuitively illustrate the efficiency of the predic-
tor, we also used the ROC curve to graphically describe the
performance of the predictor. Figure 1is the ROC curve of the
predictor constructed by the ODPC. The abscissa of the graph
represents the false positive rate of the prediction model and
the ordinate of the graph represents the true positive rate.
In a rational situation, we expect a true positive rate equal
to 1 and false positive rate equal to 0 and at this time the
AUC is 1. The AUC area of our predictor is as high as 0.91,
which demonstrates that the predictive performance of our
predictor is pretty good.

3.2. Comparison with Other Machine Learning Methods. In
order to prove that the prediction model based on SVM is
better than the prediction model based on other machine
learning methods, we used the ODPC to build predictive
models based on Naive Bayes, Logistic Function, Random
Forest, LibD3C [38], and Decision Tree J48, respectively,
[39]. As the fivefold cross-validation results shown in Table 2,
the average accuracy of the SVM model is approximately
3.82%, 5.95%, 9.12%, 11.06%, and 25.97% higher than that
of Naive Bayes, Logistic Function, Random Forest, LibD3C,
and Decision Tree J48 classifiers, respectively. This indicates
a better performance of our SVM-based model.

3.3. Online Web Service. In order to facilitate its usage among
relevant researchers, we integrated this tool with SAROTUP,
which has been developed into a suite of web tools for
identifying or predicting target-unrelated peptides. Users can
directly access the PSBinder and get results at http://i.uestc
.edu.cn/sarotup/cgi-bin/PSBinder.pl.
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FIGURE 1: The ROC curve graph of the prediction model based on
ODPC.

4. Discussion

In the published papers, the PS-binding motifs such as
WXXW [19], FHXXW [21], and WXXWXXXW [23] had
been found in many PSBPs. However, there are many PSBPs
that do not have the typical motifs [23]. There are no tools
capable of rationally predicting PSBP when peptides bear no
such motifs. PSBinder was modeled by the dipeptide features,
which successfully responds to these situations.

Our model was built with 146 features. The top three
features are WG, WE and WE. According to the analysis of
amino acid composition, we found that the most frequently
occurring amino acids were W, Y, and F. It indicates that
the hydrophobic amino acids with the benzene ring may
play an important role in binding polystyrene. And all the
hydrophobic amino acids appear in our features. Thus, when
a peptide has the amino acids with the benzene ring and is
accompanied by many hydrophobic amino acids, it may be a
PSBP.

In addition, after the completion of our predictor, a paper
published very recently reported a PSBP with the sequence
of VHWDFRQWWQPS [40]. As the paper reported, this
sequence does not have typical PS-binding motifs. Since this
peptide is not seen in the training datasets, we used it as an
independent case test. PSBinder predicted this peptide as a
PSBP (the probability is about 0.88), which agreed with the
experimental result.

5. Conclusions

In this paper, we developed a predictor based on SVM to
detect if a peptide is a PSBP. The model constructed by
optimized dipeptide features had a good performance. The
maximum accuracy of 87.02% was achieved with 0.74 MCC,
88.46% sensitivity, and 85.58% specificity, respectively. In
addition, in order to facilitate its usage, the SVM-based
model was implemented into an online web service called
PSBinder. It is practical and freely available at http://i.uestc
.edu.cn/sarotup/cgi-bin/PSBinder.pl. PSBinder would be a
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TABLE 2: The prediction performances of various machine learning methods.

Machine learning methods Sn (%) Sp (%) Acc (%) MCC
Support vector machine 88.46 85.58 87.02 0.74
Naive Bayes 83.70 82.70 83.20 0.66
Logistic Function 76.90 86.50 81.70 0.64
Random Forest 73.10 82.70 77.90 0.56
LibD3C 78.72 73.68 75.96 0.52
Decision Tree J48 48.10 74.00 61.05 0.23

useful tool to predict PSBPs, whether as TUPs or intended
peptides. It will help to speed up the experiment process and
facilitate the development of biological products.
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