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A B S T R A C T

In Kazakhstan, plague outbreaks occur when its main host, the great gerbil, exceeds an abundance threshold.
These live in family groups in burrows, which can be mapped using remote sensing. Occupancy (percentage of
burrows occupied) is a good proxy for abundance and hence the possibility of an outbreak. Here we use time
series of satellite images to estimate occupancy remotely.

In April and September 2013, 872 burrows were identified in the field as either occupied or empty. For
satellite images acquired between April and August, ‘burrow objects’ were identified and matched to the field
burrows. The burrow objects were represented by 25 different polygon types, then classified (using a majority
vote from 10 Random Forests) as occupied or empty, using Normalized Difference Vegetation Indices (NDVI)
calculated for all images. Throughout the season NDVI values were higher for empty than for occupied burrows.

Occupancy status of individual burrows that were continuously occupied or empty, was classified with
producer’s and user’s accuracy values of 63 and 64% for the optimum polygon. Occupancy level was predicted
very well and differed 2% from the observed occupancy. This establishes firmly the principle that occupancy can
be estimated using satellite images with the potential to predict plague outbreaks over extensive areas with much
greater ease and accuracy than previously.

1. Introduction

Plague (Yersinia pestis infection) is a flea-borne zoonotic disease that
is infamous for inducing three pandemics in the past two millennia
(Gage & Kosoy, 2005). Currently, the plague agent circulates in rodent
populations mainly in Africa, the Americas and Asia, and causes human
deaths predominantly in Africa (World Health Organization, 2004). In
Kazakhstan, plague occurs, and has been extensively studied, in popu-
lations of its main local host, the great gerbil (Rhombomys opimus).
Great gerbils are burrowing, mainly folivorous rodents that live in semi-
desert environments. They live in family groups usually consisting of
one male, one or more females and their offspring, and they occupy one
burrow per family (Randall et al., 2005).

Presence and absence data of plague from these populations show
that plague requires a minimum abundance of great gerbils to be able to
spread successfully – the so-called abundance threshold for plague
(Davis et al., 2004). The number of gerbils in a burrow varies; a study

from 2005, for example, found mean group sizes varied from 3.9 in
1996 to 13.4 in 1998 (Randall et al., 2005). Nonetheless, Davis et al.
(2004) found that to monitor fluctuations in great gerbil abundance and
predict plague outbreaks accurately, it is not necessary to know the
exact number of gerbils in one burrow. Rather, the percentage of the
burrows occupied (referred to as the occupancy level) is an effective
proxy for abundance and also easier to measure. This is because great
gerbils living in the same burrow tend to have the same disease status,
i.e. plague is transmitted easily between family members (Davis et al.,
2007). Indeed, these occupancy levels can be used to predict plague
outbreaks two years in advance (Davis et al., 2004), and they define a
‘percolation threshold’, which, when exceeded, allows plague to spread
between occupied burrows across the landscape (Davis et al., 2008;
Reijniers et al., 2012).

In the past, and especially since the 1950s, field sampling has been
carried out in Kazakhstan to monitor the occupancy level in the field as
a means of estimating great gerbil abundance with a view to controlling
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human plague (Davis et al., 2004). This is expensive in terms of time
and manpower, which in turn sets limits on the spatial extent of sur-
veillance. Recently, remote sensing methods were developed that allow
highly accurate identification of the presence of burrows (Addink et al.,
2010; Wilschut et al., 2013a). However, occupied and unoccupied
burrows could not be distinguished with these methods, and occupancy
levels (abundance) therefore could not be computed.

The desirability of monitoring plague through tracking gerbil oc-
cupancy remotely is thus a focused example of the more general chal-
lenge of monitoring animal abundance from space. Although sparse,
some examples do exist. Fretwell et al. (2017) estimated the size of an
albatross population by counting them manually in 30cm-resolution
Worldview-3 imagery. Fretwell et al. (2014) counted whales by su-
pervised and unsupervised classification. And Laliberte and Ripple
(2003) counted cattle in an IKONOS image by a computer-aided ap-
proach. However, no examples were found on the indirect mapping of a
species by detecting traces of an animal like the burrows they built and
to determine whether the animals are still present.

Here we take up this more general challenge with the aim ulti-
mately, in this particular case, of making medically relevant predictions
of plague risk. Thus, we use high-spatial-resolution remote-sensing
images to estimate the gerbils’ occupancy level, aiming to distinguish
occupied from empty burrows using variables derived from the images,
and subsequently to develop an algorithm to accurately classify a
burrows’ occupancy status. To detect a difference in burrow occupancy,
we use the behavioural characteristics of the great gerbils. As great
gerbils are herbivores, they remove and eat plants and their roots from
the surface of their burrow and from its surroundings. This removal of
vegetation over the season may be visible in high-spatial-resolution
imagery, by using vegetation indices such as the Normalized Difference
Vegetation Index (NDVI). As there is a natural change in the NDVI curve
of vegetation between spring and autumn, we hypothesize that this
curve is different for occupied and empty burrows.

Two objectives are addressed:

1 The first is to assess the NDVI trend of burrow occupancy classes
from April to August

2 The second is to use the information obtained to develop an algo-
rithm, using Random Forests, to classify a burrows’ occupancy
status, allowing occupancy levels to be estimated from satellite
imagery.

2. Methods

2.1. Field data

The study area is located in eastern Kazakhstan, south of Lake
Balkhash. Data collection was carried out in 38 squares of 250 by 250 m
and six squares of 200 by 200 m in April 2013 and repeated in
September 2013. All squares were located in one so-called ‘sector’
(Fig. 1), a monitoring unit of the plague monitoring stations in Ka-
zakhstan, approximately 9.3 km by 9.8 km in size (Wilschut et al.,
2013b, 2015). The squares are all located in the older part of the river
Ili delta consisting of floodplains covered by river sediments, scattered
sand dunes and semi-arid vegetation. The diversity of the floodplain
was reflected in the square locations. The inaccessibility of the terrain
required all squares to be in the vicinity (< 1 km) of sand tracks. All
burrows inside the squares were mapped by field observation, deriving
coordinates from a GPS at the “ecological centre” of the burrow – the
location of most intensive visible great gerbil activity. Burrow dia-
meters were measured in two perpendicular axes crossing at the eco-
logical centre (Wilschut et al., 2013a). The occupancy status of each
burrow was determined using a standard protocol described in Wilschut
et al. (2015) from signs of foraging activity, scent marks, presence of
fresh faeces and the recent clearance of burrow entrances (indicated by
the presence of freshly turned-over soil). Burrows were classified as

either occupied or empty, and all burrows were given a unique code. In
addition, the diameter of each burrow was measured.

2.2. Satellite data and pre-processing

Five 1.8 m resolution ortho-rectified Worldview-2 images
(DigitalGlobe, 2014) with spectral bands Blue, Green, Red and NIR
were acquired on April 12th, May 6th, June 5th, July 10th and August
15th 2013. All images were converted to top-of-atmosphere reflectance
(Chander et al., 2009). The five images were geo-rectified and subse-
quently resampled to match the April image using automatic image
registration. During evaluation of the data, the July image appeared
unsuitable for usage because of many clouds, shade and haze in the
image. It was therefore excluded from the analysis. In order to evaluate
the overall NDVI trend, the mean NDVI value of the entire sector was
calculated for each of the four months.

2.3. Evaluation of NDVI values of burrow-occupancy classes

During the two field campaigns, 872 burrows were mapped and
categorized in the field as either occupied or empty in April 2013 and in
September 2013. This allowed four categories of change between the
two months: occupied–occupied (oo) in both April and September;
empty–empty (ee); empty in April-occupied in September (eo) and oc-
cupied in April-empty in September (oe).

In order to assess the NDVI trend of burrow classes, first the area
occupied by a burrow was identified by buffering the field coordinates
of each burrow centre with the average radius of all burrows. The
average burrow diameter mapped in the field in September was 17.8 m.
Hence, a circular buffer of 9 m radius was used. The NDVI was calcu-
lated for all burrows in all images (April–August 2013). Then, the mean
NDVI values for all the burrow-circles were calculated for each month.

2.4. Overall burrow identification using remote sensing

To identify the great-gerbil burrows (both occupied and empty) in
the sector in the satellite images, the semi-automatic classification
method as described in a previous study was used (Wilschut et al.,
2013a), with some minor adaptations. Here, this method is only de-
scribed briefly. First, the field data set was divided into two parts: 50%
was used for training the classifier and 50% was used for validation of
the burrow classification results. Then, the April 2013 image was seg-
mented into objects using multi-resolution segmentation (Trimble,
2011) at 15 different spatial scales to be able to identify the spatial scale
with the highest classification accuracy after classification. Next, the
Random Forest classifier (Breiman, 2001) was used to classify the ob-
jects in the image as burrow or non-burrow objects. To validate the
classification, several indicators were used. First, producer’s, user’s and
overall accuracies were calculated (Lillesand et al., 2004). Producer’s
accuracy is the percentage of validation burrows that are correctly
classified. The user’s accuracy is the percentage of all validation objects
classified as burrows that are actually burrows. The overall accuracy is
the percentage of classified validation objects (burrows and non-burrow
areas) that are classified correctly. Based on the field data, the densities
of burrows in the squares were calculated. Then, the overall ratio be-
tween the density predicted by the classification and the density ob-
served in the field was calculated to determine the accuracy of the
density of the created burrow maps. Finally, the number of objects that
intersected burrows multiple times was calculated to determine whe-
ther the size of the image objects resembled the size of the field bur-
rows. The optimal segmentation scale was selected by choosing the
scale where the combination of the validation variables reached its
optimum. The objects that were correctly classified as burrows were
processed further.
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2.5. Occupied burrow classification using remote sensing

The correctly classified burrow objects were divided into the tem-
poral occupancy groups (oo, ee, eo and oe) using the field data. The
objects that had a constant occupancy status in both April and
September (oo and ee) were used in the Random Forests as these can be
expected to have the strongest signal. For each of these objects the
NDVI was determined. Furthermore, they were buffered with several
distances to determine the NDVI of the surroundings of the burrows,
since gerbils forage both on and close to occupied burrows, leading to a
different seasonal pattern of vegetation for occupied and empty bur-
rows. Indeed, as the surface of (occupied) burrows is hardly vegetated,
the vegetation is visible in the imagery only around the occupied bur-
rows. To enhance the signal from the surrounding vegetation, both the
burrow systems combined with their surroundings and the surround-
ings alone were studied as illustrated in Fig. 2.

The oo and ee burrow objects were buffered with distances of 5, 7.5,
10, 12.5, 15, 20, 25 and 30 m, to create polygons of different sizes. For
all these polygons, mean NDVI values were determined for the four
images. Next, donuts were created to represent the surroundings of
burrows (Table 1, Fig. 2), and NDVIs were calculated for these donut
polygons. The outer buffer distance as well as the inner buffer distance
of the donut could have different diameters. For example, the donuts
p15-5 were created by symmetrical differencing (subtracting the

polygons) buffered with a distance of 5 m from polygons buffered with
a distance of 15 m. Apart from the mean NDVI values determined for
every image, several derivative, temporal variables were also calculated
for both the polygons and the donuts of the various sizes. These vari-
ables include the absolute temporal differences in NDVI values, such as
|(NDVI August minus NDVI July)| and the normalized temporal dif-
ferences in NDVI variables, such as NDVI August minus NDVI July di-
vided by|(NDVI August plus NDVI April)|. For a full list of the variables
used see Tables 1 and 2.

For the classification, the ee and oo object groups were split into a
training set and validation set, by taking a random sample. The training
set contained equal numbers of oo and ee objects (both 77 objects) to
have equal a-priori probabilities for both groups. The validation set

Fig. 1. Study area in Eastern Kazakhstan. The 38 field data-collection squares are shown, all located within one sector and projected on WorldView-2 image (DigitalGlobe, 2014).

Fig. 2. Schematic overview of the sizes of all shapes used for classification of occupied
and empty burrows.

Table 1
Overview of the shapes used for classification. See also Fig. 2.

Spatial shape types tested

Polygons (p) with buffer B (radius m) [PB]
p0 (no buffer), p5, p7.5,p10,p12.5, p15, p20, p25 and p30

Donuts [pB-b]
p10-0; p15-0; p20-0; p25-0;mp30-0;
p15-5; p20-5; p25-5; p30-5; p15-7.5; p20-7.5; p25-7.5; p30-7.5

p20-10; p25-10; p30-10

Table 2
Overview of the NDVI variables used for classification.

Mean Absolute difference Normalized difference Mean monthly change

April
May
June
August

April–May April–May
April–June April–June
April–August April–August
May–June May–June
May–August May–August
June–August June–August

May–August
June–August
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contained 77 oo and 329 ee objects. Classification was carried out using
Random Forests. A Random Forest is a robust statistical classifier that
makes a prediction of a test set based on observations from a training
set, using multiple decision trees (Breiman, 2001). For further details,
see (Diaz-Uriarte, 2007; Cutler et al., 2007; Verikas et al., 2011;
Rodriguez-Galiano et al., 2012). The Random Forests built in this study
used 10,000 trees, which is a sufficient number to ensure the Out-of-Bag
(OOB) mean prediction error does not increase or decrease anymore if
the number of trees is increased (Breiman, 2001). Each Random Forest
was optimized by removing the least predictive variables using the
VarSelRF R package (Diaz-Uriarte, 2007). VarselRF uses backward
elimination. The function keeps dropping variables until the OOB error
becomes larger than the initial OOB error. In this way the number of
variables is reduced, but not at the cost of the OOB error. For other
settings the default values were used (Liaw and Wiener, 2002). For each
polygon or donut-like-polygon set, 25 sets in total (nine sizes of full
polygons and 16 sizes of donuts), ten Random Forests were built to
avoid overfitting on a randomly selected training set.

To determine if the full polygons and the donuts performed differ-
ently a Student t-test was applied. For both types the mean and standard
deviation of the overall classification accuracy was determined based
on each size and each Random Forest (i.e. 9*10 full polygon accuracy
values and 16*10 donut accuracy values). These values were then fed
into the Student t-test.

2.6. Occupancy estimation

To be able to predict plague, it is essential to have good predictions
of the occupancy level within a region. The percentage of occupied
burrows is thus an important variable to derive from the burrow oc-
cupancy classification. We used the ratio between the observed occu-
pancy and the predicted occupancy as an accuracy indicator of the
estimation. For the optimal polygon set, this ratio was calculated for
each Random Forest.

2.7. Validation

To ensure reliable classification accuracies, each of the polygon sets
was classified ten times, each time using randomly drawn 50% training
and validation samples. Mean producer’s, user’s and overall accuracies
and their standard deviations were calculated from these ten runs. Both
the producer’s accuracies and user’s accuracies for occupied and empty
burrows were calculated. Current plague prediction models use the
percentage of occupied burrows for a region and the ultimate objective
is therefore an accurate prediction of regional occupancy. The ratio
between predicted and observed occupancy was calculated to validate
this (values closest to one being the best).

3. Results

3.1. NDVI values of burrow classes using field locations

In total, 872 burrows were mapped in both April and September
2013, of which 166 were continuously occupied (oo), 406 continuously
empty (ee), 31 occupied-empty (oe) and 269 empty-occupied (eo). The
mean NDVI values for the images, calculated using all pixels in the
sector (number of pixels = 27,783,504) (Fig. 3), showed that NDVI
reached a peak in May (NDVI = 0.15) and then gradually decreased.
Mean NDVI values for the continuously occupied (oo; number of
pixels = 13038) and continuously empty (ee; number of
pixels = 31887) burrows (based on 9 m radius of the circles) showed a
similar pattern from April to June, although the ee burrows had higher
and the oo burrows lower mean values. Between June and August there
was a slight further deviation from the overall trend: the ee NDVI values
decreased less rapidly.

In all months the oo burrows had lower values of mean NDVI than

the ee burrows (Figs. 3 and 4). The occupied-empty class followed a less
constant pattern (Fig. 4), possibly because this was the least numerous
category (31 burrows). The eo class on the other hand followed a si-
milar pattern as the ee class and had larger NDVI values than the oo
class in all months.

3.2. Overall burrow identification using remote sensing

The burrow classification resulted in producer’s, user’s and overall
accuracies of 91%, 82% and 90%, respectively. The accuracy of pre-
dicted density, i.e. the ratio between the density predicted by the
classification and the density observed in the field, was 1.49.

3.3. Classification of burrow occupancy

The highest classification accuracies were obtained when using full
polygons without a buffer (p0, see Table S.1 in the Supplementary
material). Of the ten Random Forests built for this polygon-set, the best
results were obtained using the variables NDVI April, NDVI May and
NDVI August. This resulted in producer’s and user’s accuracies of oc-
cupied burrows of 64.3% and 63.3%, respectively. The producer’s and
user’s accuracies for empty burrows were 62.7% and 64.0%. Overall
accuracy of the classification was 63.5%. All classification accuracies
for the ten Random Forests are given in Table S.2 in the Supplementary
material. The standard deviation of the overall classification accuracy
of the ten runs is 3.8%, which shows that the method is robust, even
when slightly different variables are used.

In total, eight different NDVI variables were selected by the Random
Forests in the ten runs. Most often selected were: NDVI April (9 out of
10 runs), NDVI August (8 out of 10), NDVI May (3 out of 10), (NDVI
May–NDVI August)normalized (3 out of 10) and (NDVI June–NDVI
August)normalized (3 out of 10).

No significant differences were found between the classification
accuracies of objects and donuts (Student t-test, p = 0.81). The ac-
curacies of the full polygons with buffer and the accuracies of the do-
nuts are shown in Table S.1.

As an indication of the spatial variation in the results of the classi-
fication, the classification results are shown for two areas in Fig. 5. In a

Fig. 3. NDVI trends calculated for the entire sector using all pixels (n = 27,783,504), the
continuously occupied burrows (oo; number of pixels = 13038) and the continuously
empty burrows (ee; number of pixels = 31887).
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more dune-rich area (Fig. 5 – left), where occupancy is relatively high,
the identification of oo burrows was successful: only two oo burrows
were misclassified (shown in red in Fig. 5). On the other hand, nine ee
burrows were incorrectly classified as oo (yellow in Fig. 5). In a
floodplain area (Fig. 5 – right) the occupancy is much lower and it can
be seen that the ee burrows are almost all correctly classified (except for
six). Unfortunately, the set-up of our study does not support an ex-
tensive characterization of the spatial variation.

3.4. Regional occupancy

The regional occupancy level is an essential variable to predict
plague outbreaks. The full results for the ratios of predicted occupancy
to observed occupancy are shown in Tables S.1 and S.2. Summarizing,
the ratios calculated based on only validation data show that occupancy
level can be predicted very well: a mean ratio of 1.02 for the optimum

polygon with a range among the 10 Random Forests from 0.82 to 1.17.

4. Discussion and conclusions

A gerbil-burrow-occupancy threshold (i.e. a percentage of burrows
occupied) exists for plague to spread and persist across large regions of
Central Asia (Davis et al., 2008). Monitoring great gerbil abundance has
the potential to determine when this threshold comes close to being
exceeded, and hence predicting when the risk is increasing of plague
outbreaks in the great gerbil and ultimately in the human population.
Here, we have established that there are differences in NDVI values
between occupied and empty great gerbil burrows, and therefore that
satellite-image-based prediction of occupancy and abundance are pos-
sible. We note, particularly, that while the ability of our methods to
distinguish between occupied and empty individual burrows is im-
portant, the ultimate aim would be to derive useful estimates of the

Fig. 4. Left: Box plots of NDVI values for continuously occupied (oo) burrows and continuously empty (ee) burrows. Middle: Similar, but then for oo and occupied-empty (oe) burrows.
Right: Similar, but then for oo and empty-occupied (eo) burrows.

Fig. 5. Worldview image showing identified burrows and their occupancy. Polygons, regardless their colour, show burrow locations. The occupancy of the burrows is indicated with
colours. The left image shows a dune-rich area; the right image shows an area with fluvial sediments.
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level of burrow occupancy, as a proxy for gerbil abundance, allowing
prediction of plague outbreaks.

Estimating animal abundance is important in many areas of ecology,
including disease ecology, where the abundance of animal hosts influ-
ences the dynamics of infectious agents (Keeling, 1999; Keeling and
Gilligan, 2000). Animal abundance has been estimated using a range of
field-based methods (Schwarz and Seber, 1999). Remote-sensing-based
methods based on proxies or surrogates have also been developed, but
observed patterns cannot usually be ascribed to one species alone
(Leyequien et al., 2007), relying, for example, on habitat suitability
mapping (Prins et al., 2005) or assessing species richness through
spatial heterogeneity assessment (Seto et al., 2004). In particular, if the
purpose is to predict infectious disease outbreaks, the spatial resolution
of these remote-sensing studies is likely to be insufficient because no
individual animals or subpopulations are mapped, and only rather
crude estimates are given. In this study, by contrast, we have presented
a remotely-sensed, proxy method to estimate animal abundance with an
arguably useful level of accuracy and with high spatial detail. This is in
contrast to other studies that, for example, found relationships between
abundance and NDVI (Zinner et al., 2001), but failed to predict animal
distribution. In studies where the abundance of vector species was
predicted, the spatial unit is usually much larger than the animal ob-
served (Tran et al., 2008).

Burrow-NDVI values deviated from the sector-mean NDVI values,
indicating that the great gerbils locally have a profound effect on the
vegetation dynamics. On ee burrows (unoccupied throughout the study
period), the NDVI values were higher than the sector-mean NDVI. This
may be due to past occupation by gerbils making the soil more fertile,
as it appears to have done for burrowing sand rats (Psammomys obesus)
in Egypt (El-Bana, 2009) and great gerbils in China (Xu et al., 2012).
Further, on great-gerbil burrows, after one year without great gerbils,
vegetation cover increased from 10 to 15% to 30–40% (Naumov and
Lobachev, 1975). The lower NDVI values of the oo burrows from April
to June are likely to have arisen because the great gerbils remove plants
and shrubs for consumption or storage. Similarly, between June and
August, the NDVI of the oo class decreased faster than that of the ee
class.

The distinction between occupied and empty burrows worked best
using objects without a buffer. Although gerbils do forage in the sur-
roundings of their burrow, this is apparently not sufficient to be re-
flected in NDVI values. Alternatively, it may be that the NDVI differ-
ence is much stronger on the burrows themselves and including the
surroundings in the analysis weakens the NDVI signal.

Several NDVI variables were included in the Random Forests. The
analysis showed that the combination of NDVI April, NDVI May and
NDVI August resulted in the highest accuracies. In the ten runs, NDVI
April, NDVI May and NDVI August were also the three most often se-
lected variables. These three variables have the most differentiating
power and are hence recommended in future analyses. This makes the
method developed here modest with respect to investments: effectively
only satellite images of three months are necessary, and field work in
some strategic locations which represent landscape variability, suffices.
Notably, change rates of NDVI values over time did not prove necessary
for distinguishing occupied from empty burrows.

The approach presented here first identified burrows and then fur-
ther discriminated between occupied and empty burrows. Both steps
are subject to uncertainties. When identifying burrows irrespective of
occupancy, false-positive (objects wrongly classified as burrows) as well
as false-negative (missed burrow) errors occur. The burrows that are
most likely to result in a false-negative error are the empty burrows,
because they show less contrast with the surroundings (Wilschut et al.,
2013a). This may lead to an overestimation of occupancy. The classi-
fication into occupied and empty burrows was made difficult, in part,
because although the mean NDVI values of occupied and empty bur-
rows differed, confidence intervals showed substantial overlap. Suc-
cessful mapping of burrow occupancy may also have been hampered by

the low occupancies in 2013. Mean occupancy as estimated in the field
was 22.8% in April and 48.7% in September. Low occupancies likely
indicate that the number of great gerbils per burrow is lower than the
long-term average, leading in turn to less grazing pressure than at
higher occupancies.

The producer’s and user’s accuracies for occupied (64% and 63%,
respectively) and empty burrows (63% and 64%, respectively) were not
as high as for burrow locations irrespective of occupancy (91% and
82%, respectively), but were nonetheless encouraging given the in-
creased difficulty of the task. However, if the focus is shifted from in-
dividual burrows to occupancy levels, which are important because
they relate directly to the spread of plague (Davis et al., 2004), then the
average ratio between the predicted and observed occupancy levels
(1.02) is close to unity (perfect prediction).

In general, it is likely that when occupancies are stable for a number
of years, they can be better predicted, because the oe and eo classes will
be small, and therefore the differences between occupied and empty
burrows will be more pronounced. The years when it is more difficult to
predict occupancy with high accuracy are those when the overall po-
pulation of great gerbils is expanding (as was the case here) or con-
tracting. Nonetheless, even in such cases, our estimates are valuable
since in practice, previous studies of abundance thresholds for plague
spread (Davis et al., 2004, 2007, 2008; Reijniers et al., 2012) have used
annual estimates of burrow occupancy, combining spring and autumn
values. Given the potentially enormous benefits of remote, as opposed
to direct, estimation of occupancy, in terms of manpower, accessibility
of sites and the extent of the area covered, the ratio of 1.02 that we
found is a very encouraging level of accuracy.

In practical terms, based on our results, we recommend the fol-
lowing method for mapping occupancy in future studies. Satellite
images should be acquired in April, May and August. Whether the same
Random Forest with the training data from 2013 can be used in sub-
sequent years depends on the NDVI values. From year to year the NDVI
can vary due to variations in for example precipitation. To account for
this, the sector-mean NDVI values should first be compared with the
sector-mean NDVI values obtained from the new satellite images, pre-
ferably both in April and in August. If the new NDVI values resemble
the NDVI of the 2013 images, the Random Forest used for the 2013 data
can in theory be used to predict occupancy. If not, for example a
transformation could be applied to the NDVI in the new images to ac-
count for this.

To conclude, occupied and empty burrows have different NDVI
signatures and this characteristic has been used to classify occupied
burrows, which are a proxy for gerbil abundance, and from which the
occupancy level can be derived. This study was possible because, al-
though the great gerbils make daily foraging movements, they have a
stable residence, which can be monitored from space. Classifying oc-
cupied burrows can most likely also be applied to the estimation of
abundance of other burrowing rodents in environments with short ve-
getation. More importantly, the occupancy level of burrows is an im-
portant predictor of plague outbreaks and the spatial distribution of
occupied burrows can be used to more accurately model the spatial
dynamics of plague. This is an encouraging step towards a monitoring
approach for the future that can predict plague outbreaks because
fluctuations in abundance of the wildlife host can be monitored re-
motely over extensive areas.
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