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ABSTRACT: Surface assembly is often decomposed into two
classes: diffusion and reaction limited processes. The
transition between the two cases is complex because the
dynamics are so different. In this article, we simulate, explain,
and experimentally discuss the evolution of the spatial
distribution for surface assemblies with diffusion limited and
reaction limited processes. Explicitly, we demonstrate that
diffusion limited and reaction limited processes show some
temporal differences, but more importantly, we show that the
spatial arrangements are different enough to discriminate
between the two cases. Using fundamental properties, such as
the diffusion constant, we calculate the evolution of the spatial
profile and derive from physical, heuristic models the
assembly rate for reaction and diffusion limited processes based on the individual particle’s interactions with the surface.
Finally, we confirm the spatial profile differences between diffusion and reaction limited cases by experimentally measuring the
surface assembly between two molecules of similar size, but having different assembly routes. Unique to our description is that
we have derived and simulated everything through the particle picture in place of ensemble descriptions such as the diffusion
equation, and we show the equivalence between our heuristic formulas and those derived from the diffusion equation.

■ INTRODUCTION

The dynamics, both temporal and spatial, of surface assembly
are important for the optimization and prediction of
limitations for processes.1,2 By understanding and accurately
modeling the surface reactions and assembly, new architectures
can be implemented to improve upon existing technologies
and to push assay-based sensors to higher sensitivities.3,4 In
general, there are two limiting agents to the speed of a surface
reaction or assembly: the diffusion of the reactants to the
surface and the chemical or physical kinetics of the analyte’s
interaction with the underlying substrate.5,6 As such, the
surface reactions and surface assembly are decomposed into
two classes: diffusion limited and reaction limited processes.
The former is typically understood as scenarios in which the
reaction/assembly barrier is low, such that the rate is set by the
transportation of the particulates in solution; meanwhile, the
latter is the process in which there is a significant chemical
barrier for deposition.
The temporal dynamics of diffusion limited versus reaction

limited processes are treated differently. In the diffusion
limited or barrier-less adsorption, the governing equation is the
diffusion equation; whereas in reaction limited scenarios, the
problem is decomposed into a two compartment model: an
“inner” and an “outer” compartment.7,8 The focus of these
works has been dedicated to the temporal dynamics, but this
two compartment model fails to explain the spatial difference
between a diffusion and reaction limited process.

Recently, we showed that the probabilistic interpretation of
the diffusion equation correctly predicts the spatial flux of
particles assembling onto a circular patch.9 We measured that
during particle adsorption onto a circular patch, there is a bias
of particle assembling at the rim. The analytic form of the flux
with the same boundary conditions shows a divergence at the
rim, and we successfully and quantitatively compared the
theoretical flux against our experiments. This divergence has
been discussed previously,4,10 but was never quantitatively
measured until recently. The key to our recent work is the
barrier-less nature of the depositionthere was no energetic
cost to the particles adsorbing. Many assembly processes,
however, have a barrier to deposition, and it stands to reason
that if the temporal dynamics are different, so too must the
spatial. Indeed, there is some experimental and simulation
evidence to corroborate this spatial evolution,11 but explaining
and mapping out the evolution remains unsolved, particularly
from the individual particle picture.
In this article, we offer a description of the transition from

diffusion to reaction limited processes. Using simulations, we
show that we can accurately map out both the spatial and the
temporal dynamics of processes between the two extreme cases
by accounting for the average behavior of individual particles.
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Furthermore, we derive through heuristic arguments a formula
for the temporal dynamics, and we show that it is functionally
equivalent to rates derived from the diffusion equation using
boundary conditions known as Collins−Kimball method,12 to
describe diffusively influenced reactions. Finally, we exper-
imentally confirm that diffusion limited and reaction limited
processes have exceedingly different spatial profiles by
comparing the assembly of the two fluorescent dyes. The
two dyes have approximately the same size, but different
modes of binding to the surface.

■ METHODS AND MATERIALS
Simulations Details. Simulations were carried out using in-house

developed software in MATLAB. We used Langevin dynamics (LD)
assuming a Gaussian distribution Brownian force for a fixed period of
time. Details on the LD are further described in the Supporting
Information (Figure S2). In the simulations, particles were free to
move under the influence of Brownian motion in a box; the particles
were assumed to have no interactions among themselves. The box was
designed such that five of the six walls were perfectly reflecting and
connected to a reservoir. The sixth wall was designed with a
concentric circular patch, such that anywhere outside the patch,
particles would perfectly reflect, and anywhere inside the patch, any
particle would bind with an efficiency parameter given by p. We refer
to anytime a particle that interacts with the patch as a strike event, and
anytime a binding event occurred, we refer to it as a successful strike.
To determine the information about the flux, the spatial location

and temporal information of 104 successful strikes were recorded for
every p value. The spatial information was translated into a
distribution by binning the radial information and properly normal-
izing each by the respective area given by the radial annulus defining
each bin. To keep the particle number fixed, once a particle
successfully struck the patch, a new particle was randomly added at
one of the five reservoir walls.
Materials and Preparations. For this work, two thermally

activated polymeric materials were used: an amine polymer and a
polyphthalaldehyde (PPA) polymer. Details on the polymers can be
found in the literature.13,14 Under applications of heat, the amine
polymer cleaves a protection group, leaving behind an exposed
functional amine group while the PPA unzips from its polymeric form
to its monomeric units.
Silicon samples of the amine polymer were prepared as previously

described;14,15 a brief description along with the chemical structures is
provided in the Supporting Information (Figure S1). The samples had
approximately 70 nm of the amine polymer. Just before the
experiment, PPA was layered (∼7 nm) on top of the amine polymer.
Two fluorophores were used as a comparison between the diffusion

and reaction limited process: N-hydroxysuccinimide ester-modified

Alexa 488 (NHS-Alexa) and pyranine (trisodium 8-hydroxypyrene-
1,3,6-trisulfonate). Prior to the experiments, diluted solutions of 10
nM in 0.1 mM phosphate buffer or 100 nM in 0.1 mM phosphate
buffer were prepared.

Chemical Patterning and Labeling. To pattern the polymer
materials, we employed thermos-chemical scanning probe lithography
(tc-SPL). tc-SPL provides a means to remove the top layer of PPA
and activate the underlying amine by locally heating the surface and
causing a chemical or physical transformation on the surface.13,16,17

All patterning were performed in the air. To average over a set, a 2 by
2 matrix of 5 μm radius patches spaced 40 μm apart was written into
the sample. To minimize the topographic edge effects, the patterns
were written at a fixed depth and a fixed temperature, see refs 9 and
15.

After tc-SPL patterning was completed, the samples were ready for
fluorophore labeling. For each fluorophore, we do a low-
concentration labeling and a high-concentration labeling. Between
the low- and high-concentration labeling, fluorescent images were
captured. The low-concentration labeling was attained by placing the
samples into the separate baths containing low concentrations of the
respective fluorophore for 1 min. The samples were then rinsed with
phosphate-buffered solution and water and imaged with a Nikon TE
eclipse epi-fluorescence microscopy equipped with a digital camera
(Hamamatsu CMOS Digital Camera ORCA-Flash 4.0). Fluorescence
images were taken with an exposure setting of 500 ms. All imaging
were performed in deionized H2O.

For high-concentration labeling to saturate the patterned areas, the
samples were placed into high concentration solutions of their
respective fluorophores for ∼45 min. They were rinsed and imaged
with the same microscope as previously described. In addition,
background images for each fluorophore illumination were collected.

Image Processing. Image processing was carried out using a
combination of ImageJ and MATLAB. To correct for uneven
illumination, the respective images were divided by the respective
background images. The images were treated to an in-house
developed tracking program to find the center of the patches. Using
the computed center, the image intensities were collected as a
function of radial distance (as measured from the pixels center),
binned, and averaged. The bins were normalized by the annulus area.
Processing was performed in this way to avoid interpolation and to
average over the entire circle in the place of a single cross section.
Finally, the background signal was subtracted from the data set. The
averaged profiles were normalized against the saturated pattern
intensity as measured after the exposure to high fluorophore
concentration. Figure 4 shows the final plotted values as a function
of radial distance for both the unsaturated patch and the saturated
patch images.

Figure 1. (a) Monte Carlo (MC) simulation of the position-dependent flux. The solid line is the theoretical curve obtained from a perfectly
adsorbing patch; the MC simulations correctly estimate the divergence theoretically predicted. Inset shows a schematic representing the perfectly
adsorbing patch (red), whereas the rest of the surface (blue) is perfectly reflecting. (b) MC simulation of the position-dependent “flux” for a
perfectly reflecting patch. Here, flux means the position the particle reflected from the patch. The solid line represent the theoretical curve for a
uniform distribution. Inset shows a schematic of a perfectly reflecting patch (red) with a perfectly reflecting background (blue). In the schematic,
the particle is shown bouncing along the patch to indicate how the divergence seen and simulated in (a) is smeared out.
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■ RESULTS AND DISCUSSION
To understand the difference between diffusion limited and
reaction limited processes, two ideal cases are shown in the
insets of Figure 1a,b: an ideal sink and an ideal reflector. In
both cases, particles undergoing Brownian motion are free to
diffuse in a box; individual trajectories of the particles are
calculated from the Langevin equations. Five walls of the box
act as a reservoir, and the sixth wall is a surface with a
concentric circular patch on it (R = 1 μm). We refer to a
particle hitting the patch as a strike event; moreover, we call a
strike successful if the particle sticks to the patch. The chance
that a particle will successfully strike the patch is given by the
efficiency parameter p. We define the flux, j(ρ), as the
distribution of successful strikes per unit area per second (ρ is
the radial distance from the patch’s center).
To simplify the discussion, we decompose the patch’s flux

into a magnitude component, ∫ ∫φ ρ ρ= ρ[ · ]
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and a spatial distribution component, ι(ρ), such that we can
write the flux as

ρ ι ρ= ·j r( ) ( ) (1)

We interchangeably refer to ι(ρ) as the spatial flux or the
flux’s spatial distribution.
In the ideal sink case (p = 1), each strike event is successful,

and with each successful strike event, the position and time of
the strike are recorded. We concern ourselves with the high
friction limit of the Langevin equations, and using the
Smoluchowski equation,18 we expect the flux to be well-
approximated from the diffusion equation. For these boundary
conditions, the spatial flux, as defined in eq 1, is well-
approximated by19

ι ρ
ρ

≈
−R

( )
1

2 2
(2)

where R is the radius of the patch.
As shown in Figure 1a, eq 2 accurately predicts the particle

distribution on the patch extracted from simulations. We note,
the functional form in eq 2 diverges at the patch’s rim. The
infinite divergence is not physically real; the derivation of eq 2
comes from the assumption of continuous media which has an
infinitesimally small mean free path (MFP). Realistically,
particles have a finite (albeit small) MFP. The MFP acts to
smear out the divergence, and so eq 2 is only valid over length
scales greater than the MFP. For this work, we always present
plots with averaging over length scales several times larger than
the simulated MFP (here we use ∼12 nm to expedite
simulations, but the results presented here can be applied to
smaller MFPs).
In the ideal reflector (p = 0), we measure the distribution of

all strike events for a patch which perfectly reflects (i.e., all
strike events are unsuccessful). We refer to this distribution of
these unsuccessful strike events as the reflecting flux. Given
that the patch is not biased in anyway, we expect the reflecting
flux for the ideal reflector to be uniform. Figure 1b confirms
this with simulations by showing a flat spatial flux.
The key difference between the ideal sink and the ideal

reflector is the nature of the particle−patch interaction and
subsequently how frequently an unbound particle interacts
with the surface. The ideal sink is an averaged measure of a
particle’s first encounter with the patch in solution, whereas the
ideal reflector also accounts for the second, third, fourth

strikes, and so on (see Figure 1b inset). These subsequent hits
blur out the rim’s divergence measured in the ideal sink, and
ultimately these additional encounters cause the reflecting flux
to be uniform across the patch. We refer to this sequential
hitting mechanism as bouncing. It may seem counterintuitive
that the particles would continuously return to the surface
quickly and repeatedly; however, the explanation comes from a
problem in probability known as the Gambler’s Ruin.20,21 In
the particle picture, the Gambler’s Ruin mathematically
guarantees that any freely diffusing particle, which is any
distance away from the surface, will always return back to the
surface. The Gambler’s Ruin analogy applies to every particle,
independent of the particle’s history; this independence
guarantees that reflected particles continuously return to the
surface. Moreover, if we treat the problem discretely, one
expects the particle to return with a time distribution given
approximately by22

τ=q
t

1
2d 3 (3)

where qd is the discrete return time distribution function, τ is
the discrete time step, and t is time. Introducing a more
continuous model, we can use the fact that the particle has an
MFP, l, and assuming the particle moves approximately that far
upon reflecting from the surface, we can calculate the
continuous return time distribution through first passage
time theories as23

= −q
l

Dt4
e l Dt

c 3
/42

(4)

where D is the diffusion constant. The long-time functional
form of eqs 3 and 4 are equivalent (∼t−3/2).
Physically real situations are somewhere between the ideal

sink and ideal reflector. In a binding situation,24 there is a
certain probability, p, that a particle/molecule will react with
the substrate. What determines p is a combination of physical
(e.g., electrostatic repulsion), chemical (e.g., activation
energy), and structural (e.g., orientation) interactions between
the particle and an activated surface. We treat p as a
representation of a barrier imposed by the various interactions
between the particle and the surface. For a chemical reaction, it
can be related to fundamental chemical and physical
constants.24

With a high p ≈ 1, we expect the particles to bind with high
efficiency, corresponding to a low barrier case or a diffusion
limited process. Conversely, a small p ≈ 0 is indicative of a
large binding barrier case or a reaction limited process.
Naively, one may assume the boundary conditions for the
diffusion equations proportional to p. This is equivalent to
decomposing the solution into two classes: those particles that
can overcome the barrier and those that cannot. This
assumption fails because each interaction between the surface
and particles must be treated independently. Rescaling the
problem only provides information about the first encounter
between the particles and the patch while neglecting the
subsequent independently treated interactions between the
surface and particles not binding. In light of the bouncing
mechanism described for the ideal reflector, particles not
binding at the first encounter with the patch further diffuse
until they eventually bind. As a result, we cannot expect a
simple rescaling of the solution to hold. This is especially
apparent if one thinks in terms of a structural barrier caused by
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a particle needing the correct orientation to bind. On first
strike, the particle may be incorrectly oriented, but with each
subsequent hit, the orientation changes, until ultimately there
is a successful strike event.
Understanding that we have to treat the strike events as

independent, we expect the flux to act as somewhere between
the flux for an ideal sink and reflecting flux when p is between 0
and 1. As p gets closer to 1, the divergence associated with the
ideal sink will have little chance to smear out, and the flux will
look more similar to the ideal sink. As p gets smaller, the
divergence will smear out and if p is low enough, the flux will
exhibit spatial behavior closer to the ideal reflector. To test this
hypothesis, we ran simulations with our particles in a box. For
each value of p, we ran the simulation subject to the strike
events having a probability p for success. In Figure 2, we plot
the results for five different probability values (p = 0.01, 0.05,
0.2, 0.5, and 1). We observe that as p changes from high-
efficiency values (p = 1, 0.5) to low-efficiency values (p = 0.05,
0.01), the spatial flux goes from looking similar to the ideal
sink to exhibiting a more uniform flux as associated with the
ideal reflector, confirming our hypothesis.
The evolution of the spatial flux as a function of p can be

mapped out by properly accounting for all attempts that the
particles make to bind to the patch. As determined by
simulation, the first strike attempt distribution (ι1) is well-
mapped by the diverging flux analytically represented in eq 2.
The chance that a particle survives the first strike is given by
the survival, s = 1 − p, and we need to only consider the
surviving particles’ average trajectories. The Gambler’s Ruin
predicts that the surviving particles will return to the surface
and by using the return time distributions such as those
approximated in eqs 3 and 4, we can compute the temporally
averaged return displacement distribution function (tRDF).
The tRDF is a measure of the lateral displacement upon
returning to the surface given that a Brownian particle initially
started at the surface. In Figure 2b, we show a log−log plot of a
tRDF’s simulation along with an analytic approximation. To
get the approximate curve, we used the fundamental solution
of the diffusion equation weighted against the continuous
return time distribution in eq 4. We provide the full details for
calculating the approximate tRDF in the Supporting
Information. We note that the distribution’s tail asymptotically
scales as ρ−3, decisively not Gaussian. This tail is similar to
those observed and discussed in the anomalous surface

diffusion, the nature of which is not present in our
simulations25−27 (i.e., our simulations assume the particles
perfectly reflect, with no short-termed adsorption). This heavy-
tail is a consequence of averaging temporally in conjunction
with the return time distribution’s functional form.
We calculate the average lateral distribution for the surviving

particles after the first strike (h2) as a convolution (NB: We
slightly abuse the term convolution here; this is a cross-
correlation with a negative argument but because of symmetry,
we can replace this with a convolution) of the first strike
distribution, ι1, with the tRDF

ι ι= = × ⊗h A S g( ) ( )2 1 1
(2) (5)

whe re S i s the we igh ted su rv i v a l p robab i l i t y

{= − <
≥( )S p r R

r R
1 ,
1, , ⊗(2) is the 2D convolution, and g is

the tRDF. The distribution h2 relates the lateral information
about where, on average, the particles will return to the surface
after surviving the first strike; it includes the particles that
survive the first strike attempt and return to the surface either
inside or outside the patch. For subsequent bounces, those
outside the patch always survive (S = 1, r < R) but those inside
the patch have a survival probability given by 1 − p. We call
this the second bounce distribution, distinguishing it from ι1
which is the first strike distribution.
To determine the third bounce distribution, h3, we can use

eq 5 substituting h2 in place of ι1. For each subsequent bounce,
there is a contribution to the patch’s spatial flux, and we
calculate the total distribution as the sum of each of these
contributions

∑ι ι= + + + = +
=

∞

h P h h h P A( . . . ) ( )
n

n
1 2 3 1

1
1

i

k
jjjjjj

y

{
zzzzzz (6)

where P is the probability distribution for binding (P = 1 − S),
and

ι ι=A A A A A A( ) ( ( (. . . ( ( )))))n
1 1

In Figure 2, we show these results plotted against the
simulation as the solid lines. The agreement between the
theoretical and simulated curves confirms the validity of eq 6.
Effectively, what we have computed is the flux’s spatial profile
for a particle which has a certain probability of binding to the
surface. Coupling this profile with the information about the

Figure 2. (a) MC simulation of the position-dependent flux for various probabilities of adsorption (p = 0.01, 0.05, 0.2, 0.5, and 1). The solid black
line is the theoretical curve obtained from a perfectly adsorbing patch (overlaps with p = 1 curve); the dashed black line represents the distribution
of particle reflections for a perfect reflecting patch. As the p value changes from an ideal sink (p = 1) to an ideal reflector (p = 0.01), the divergence
predicted from a perfect sink disappears and the distribution approached that of a uniform one. The solid colored lines represent the curves
calculated from eq 7. The curves are offset to help distinguish different p values. (b) log−log plot of the tRFD (green) along with the approximate
curve (black) described in detail in the Supporting Information. The ρ−3 curve is provided as a guide.
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flux’s magnitude provides a complete description for the
average boundary condition on the patch.
We can determine the magnitude of the flux, by measuring

the deposition rate; the rate is the total flux on the patch. In
Figure 3, we show how the rate (number of particles/s)

changes as a function of p. We observe that as p goes up, the
rate increases up to some maximal level set by the diffusion.
We can estimate this bound with the help of the diffusion
equation, which for an ideal sink in an infinite medium goes as
rs = 4DCBulkR; using values from the simulation, we get a rate
given by ∼96 particles/s. The simulation revealed at a
magnitude of approximately 105 particles/s. The discrepancy
between the theoretical and simulated values comes from the
fact that we are working with a finite-sized system. To
compensate for this, we need to rescale CBulk to an effective
bulk concentration, CBulk

eff . We describe in the Supporting
Information how to calculate the effective concentration. Upon
substitution with the effective concentration, we estimate the
rate as 105 particles/s, which is in good agreement with the
simulated values. We note that this rate represents the first
strike rate, and as a result, it is the limiting time scale on the
deposition process, a fact previously discussed.4

Interestingly, Figure 3 shows that over 2 orders of
magnitude of change in p, the rate only decreases by a factor
of ∼2. Physically, this is a manifestation of the particles
continuously bouncing against the patch subject with a return
rate which is much faster than the first strike rate. To account
for the rate change as a function of p, we propose to compute
the average time for a successful strike ⟨τtot⟩ = 1/r. The first
strike on average takes τs = 1/rs = 1/4DCBulk

eff R; with a survival
probability given by 1 − p, the particle will strike again with
some effective revisiting frequency rd and consequently an
effective revisiting time step τd = 1/rd. For each subsequent
strike, the survival probability scales by a factor 1 − p with
approximately the same repeating frequency. Because the first
profile is spatially biased, the revisiting frequency should
change very slightly as a function of time, but this change is
negligible for a decent approximation. We can estimate the
average total rate as

τ τ τ τ⟨ ⟩ = + − · + − · +p p(1 ) (1 ) . . .tot s d
2

d

∑τ τ τ τ τ⟨ ⟩ = + − = +
−

=

∞

p
p

p
(1 )

1

k

k
tot s d

1
s d

τ
τ τ

= ⟨ ⟩ =
+ −

=
+ −r

p
p p

p
1/

(1 ) p
r

p
r

tot tot
s d

1

s d (7)

where we have used the geometric series to simplify the above
equation. To find a good estimate for rd, we can either use
simulation results obtained from the ideal reflection or with the
formula derived in the Supporting Information:

= π
τ

r C RD
d bulk

2 (where τ is a small time step during which

the particle’s motion is unaltered and R is the patch radius). In
Figure 3, we have plotted eq 7 against the simulated data. The
agreement suggests that eq 7 is a very good approximation to
the rate.
There is an attractive and physically intuitive nature about

eq 7. At p ≈ 1 values, the rate is proportional to the diffusion
limited rate, but at small p (p ≈ 0), the rate is given by rtot ≈ p·
rd, that is, the reaction limited rate. Equation 7 fills in the gaps
between these two extreme cases. Furthermore, the spatial
difference between the diffusion and reaction limited process is
embedded in eq 7. We know that rs ∝ R and the collision
frequency is proportional to R2. The extreme limits (p ≈ 1 and
p ≈ 0) reveal the rates as proportional R and R2, respectively.
The only way for the rate to be proportional to R is with a
nonuniform flux, but with a uniform flux, the rate is
automatically proportional to R2. This is exactly the results
we show in Figure 2. Moreover, this tells us physically how to
differentiate between a diffusion and reaction limited surface
reaction: by examining how different-sized spatial elements will
fill. If we take the number of binding sites, N, as proportional
to R2, the time scales for a diffusion limited process, tdiff ≈ N/rs
≈ R2/R ≈ R, implying that the smaller the patch, the less time
it takes to fill. For a reaction limited process, trxn ≈ N/rd ≈ R2/
R2 ≈ 1, meaning the time scale is size-independent.
Finally, we observe and note the equivalence between this

formula and formulas derived through the Collins−Kimball
method. The Collins−Kimball method attempts to rectify the
boundary conditions by equating the flux to the local
concentration; it predicts the rate for diffusively influenced
depositions. If we define rrxn = p·rd, then eq 7 can be rewritten
as

τ= ⟨ ⟩ =
+

≈
+−r 1/

1 1

r
p

r r r
tot tot 1 1 1 1

s rxn s rxn (8)

where in the last step we have assumed rrxn ≫ 0 (meaning it
only contributes when p ≈ 0). The right-hand side of eq 8 is
equivalent to formulas derived from the Collins−Kimball
boundary conditions.12,28,29 Here, however, we have derived
the equation through the individual particle picture, not the
ensemble picture.
Figure 4 shows the experimental evidence that the spatial

distribution changes as a function of binding efficiency. We
measure the fluorescence signal from two probes that have
different modes of deposition. The first fluorophore is
pyranine, which is a negatively charged UV-excited dye.
There is no chemical functionality associated with pyranine,
implying that the only binding forces are electrostatic or van
der Waals in nature. To eliminate long-range electrostatic
forces, we buffered pyranine with a Debye length of ∼30 nm in
0.1 mM phosphate buffer (pH ≈ 7.5); this Debye length is

Figure 3. Plot of overall rate as a function of the adsorption rate value
(p). The points represent values extracted from simulation, whereas
the line represents the heuristic eq 7 discussed in the text. We note,
the rate does not change drastically for significant changes in p
because the effect from the increased attempts at adsorption from
“bouncing” particles at deposition compensates for losses against an
increased barrier.
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short in comparison with the patch diameter (10 μm). The
second fluorophore we introduce is Alexa 488. To bind to the
patch, the NHS group must undergo a chemical reaction.16

This chemical reaction is fairly efficient, requiring some
buffering (0.1 mM phosphate buffer).
Both dyes are relatively small (pyranine molecular weight

(MW) ≈ 524.4; Alexa 488 MW ≈ 643.4). On the basis of their
sizes, we estimate the diffusion constant for both dyes to be
fairly similar and on the order of 100 μm2/s. The key
difference between the dyes is the different binding efficiencies
of the dyes. Pyranine is a barrier-less deposition process, which
should allow it to deposit in a fashion closer to that of an ideal
sink. Alexa 488, however, has a barrier caused by the structural
and chemical effects: the ester group must correctly face the
amine group to react and the molecule itself must have enough
energy to overcome the activation energy barrier for the
reaction to take place. As a result of these effects, we expect the
Alexa fluorophore has a lower efficiency in deposition, causing
the first strike’s divergence to smear out, until ultimately the
profile looks uniform.
To deposit the dyes onto a circular patch (R = 5 μm), we

use tc-SPL17,30 to write chemical patterns into a polymer stack
consisting of a PPA layer on top of an amine polymer layer.
The details of tc-SPL and the polymer can be found
elsewhere.13,17 Briefly, tc-SPL uses thermal probes to locally
heat a surface and under appropriate conditions, the induced
temperature profile can decompose or activate the underlying

substrate. In particular, under applications of heat, PPA unzips
from its polymeric structure into its monomeric units,13

whereas the amine polymer cleaves a protecting chemical
group, leaving behind an exposed, functional primary
amine.14,16 We note, the activated primary amine in water
solutions protonates, creating positively charged patterned
areas. PPA acts as a passivating agent to help prevent
nonspecific adsorption of the dyes, whereas the activated
amine polymer acts as the binding agent.
To ensure the reaction is not saturated, short times (∼1

min) and a low concentration of fluorophore (10 nM) were
employed. These values came from the “back-of-the-envelope”
calculation based on the ideal sink solution and an estimated
functional amine density of ∼0.1/nm2 (i.e., ∼1 amine in a 3 ×
3 nm2 square). With these assumptions, the maximum number
of sites available for deposition is Nmax ≈ 7.5 × 107, and the
ideal deposition rate is 1.2 × 104 molecules/s, which requires
about 1 min to fill approximately 10% of the patch.
Fluorescence images were taken with an epifluorescence
microscope, and Figure 4a,b shows the acquired fluorescence
images; we observe the clear difference in the spatial
distribution of pyranine versus Alexa 488. Pyranine exhibits
preferential deposition at the rim, whereas Alexa 488 deposits
uniformly across the patch. This is consistent with our
argument that pyranine’s deposition will be similar to the
ideal sink, whereas Alexa 488 will be closer to the ideal
reflector.
To verify that we had not saturated the binding reaction, we

placed the samples back into higher concentration of their
respective analyte (100 nM in 0.1 mM phosphate buffer for
∼45 min). We then measured the saturated patch’s
fluorescence signal as a standard for normalization. In Figure
4c, we semiquantitatively plot the fluorescence signal for both
dyes as a function of radial distance. These curves have been
background subtracted and normalized with respect to the
fluorescence signal measured from the final saturated patterns
(dashed lines in Figure 4c). As qualitatively seen from the
fluorescence images, the semiquantitative data show a clear,
measureable difference between the two spatial adsorption
profiles.

■ CONCLUSIONS

In this article, we have presented a series of simulations and
thought experiments to help understand the difference
between diffusion limited and reaction limited processes. We
introduced a binding efficiency parameter, allowing us to map
out how the spatial profile and temporal scales evolve. We
experimentally verified that under cases of highly efficient
deposition akin to a diffusion limited process, the molecules on
average act as expected from the diffusion equation. With a
less-efficient (reaction limited) process, the deposition of
molecules deviates from the ideal sink and deposits in an
increasingly uniform manner. In the reaction limited case, the
molecules require a finite number of binding events for the
deposition to occur. Using mathematical and physical
arguments, we can predict not only the spatial profile but
also how the rate changes as a function of efficiency. What is
attractive about our presented approach is that both the profile
and the rate can be solved for in-real situations using only
fundamental properties of a molecule such as the diffusion
constant and reaction kinetics buried in the Arrhenius
equation. Furthermore, the method developed here can be

Figure 4. (a) Fluorescence image of pyranine and Alexa 488 before
the surface reaction has saturated. Pyranine, which will have a low
barrier to deposit onto the patterned area shows a divergence at the
rim, in agreement with the diffusion equation; Alexa 488, which
requires a chemical reaction to deposit onto the patterned areas, does
not show a divergence. Scale bars 2 μm. (b) Plots of the fluorescence
as a function of the radial distance (normalized by the area). This
semiquantitative plot demonstrates the spatial differences between
adsorption in a reaction limited process vs a barrier-less, diffusion
limited adsorption. The plots are normalized against signals obtained
from a saturated pattern; the dashed lines show the fluorescence
signal for the saturated pattern.
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used for other geometries and is not limited to the 2D case
discussed.
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