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Although mutations and variations of several genes have been identified to be involved 
in Alzheimer's disease (AD), the efforts towards understanding the pathogenic 
mechanisms of the disease still have a long journey to go. One such effort is to identify 
the signal transduction deficits, for which previous studies have suggested that the 
central problems appear to be at the interface between G proteins and their coupled 
receptors. G protein-coupled receptor kinases (GRKs) are a small family of 
serine/threonine protein kinases primarily acting at the “receptor-G protein interface”. 
Recent studies have indicated the possible involvement of GRK, primarily GRK2 and 
GRK5, dysfunction in the pathogenesis of AD. It seems that mild, soluble, β-amyloid 
accumulation can lead to a reduced membrane (functional) and an elevated cytosolic 
GRK2/5. The increased cytosolic GRK2 appears to be colocalized with damaged 
mitochondria and neurofibrillary tangles. Moreover, the total levels of GRK2, not only in 
the brain, but also in peripheral blood samples, are increased in a manner inversely 
correlated with the patient's cognitive levels. The deficiency of GRK5, on the other hand, 
impairs presynaptic M2 autoreceptor desensitization, which leads to a reduced 
acetylcholine release, axonal/synaptic degenerative changes, and associated amnestic, 
mild cognitive impairment. It also promotes an evil cycle to further increase β-amyloid 
accumulation and exaggerates brain inflammation, possibly even the basal forebrain 
cholinergic degeneration. Therefore, continuous efforts in this direction are necessary 
before translating the knowledge to any therapeutic strategies. 

KEYWORDS: G protein-coupled receptor kinase (GRK), receptor desensitization, aging, 
Alzheimer's disease, cholinergic, muscarinic, transgenic mice, β-amyloid 

 

INTRODUCTION 

Alzheimer’s disease (AD) is one of the most persistent and devastating dementing disorders that affects 

millions of Americans, but has little or no effective therapies. The patient population keeps growing and 

is projected to double by 2020. The cost of care for this particular patient population is disproportionately 
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high since they require expensive support. Therefore, advances in the understanding of the disease 

pathogenesis that can shed light on the improvement of the disease prophylaxis, therapies, and 

management are highly appreciable and desperately needed.  

AD is a neurodegenerative disorder, clinically featured with progressive loss of memory and other 

cognitive functions, and pathologically featured with accumulation of senile plaques (SPs) and 

neurofibrillary tangles (NFTs) in association cortices[1,2,3,4]. Although a full picture of the pathogenic 

processes of the disease remains to be puzzled together, the identification of mutations in β-amyloid (Aβ) 

precursor protein (βAPP), presenilin 1 and 2 responsible for early-onset familial AD, and apolipoprotein 

E polymorphisms associated with late-onset or so-called sporadic AD have led to an explosion of the 

knowledge regarding the disease pathogenesis. Mountains of information in AD research have been 

reviewed from a variety of perspectives. This mini-review will briefly summarize recent studies regarding 

the dysfunction of G protein-coupled receptor (GPCR) kinases (GRKs) in AD, and will discuss their 

relation to known aspects of the disease pathogenesis and future perspectives.  

SIGNAL TRANSDUCTION DEFICITS IN AD CONVERGE TO THE RECEPTOR-G 
PROTEIN INTERFACE 

Cellular health depends on a balance of the cellular signal transduction system. Imbalance of the neuronal 

signal transduction system is a pathological feature in AD. It displays as (1) increased activity for many 

protein kinases and/or decreased activity for protein phosphatases, which may contribute to 

neurofibrillary degeneration[5]; (2) increased proteolytic production of Aβ and/or decreased clearance of 

Aβ, which result in cerebral β-amyloidosis[6]; and (3) exaggerated activation of microglia and astrocytes, 

which can lead to inflammatory neuronal damage[7].  

Previous studies have found that the signal transduction system in the AD brain is featured with 

hyperactivity[8], particularly related to various GPCRs and their downstream signaling[8,9,10,11,12,13]. 

More specifically, several authors have pointed out that the locus of the signal transduction deficits 

appears to be at the “receptor-G protein interface”[10,14], where GRKs primarily act[15]. 

GRKS PRIMARILY ACT AT THE RECEPTOR-G PROTEIN INTERFACE 

GRK Family 

GRKs are serine/threonine kinases first discovered through their role in receptor desensitization. GRK 

family members can be subdivided into three main groups based on sequence homology: rhodopsin 

kinase or visual GRK subfamily (GRK1 and GRK7), the β-adrenergic receptor kinases subfamily (GRK2 

and GRK3), and the GRK4 subfamily (GRK4, GRK5, and GRK6). These kinases share certain 

characteristics, but are distinct enzymes with specific regulatory properties. GRK2, 3, 5, and 6 are 

ubiquitously expressed in mammalian tissues, whereas GRK1, 4, and 7 are confined to specific organs. 

GRK1 and 7 are expressed in retinal rods and cones, respectively, and GRK4 is present in testis, 

cerebellum, and kidney[16,17,18]. 

GRK Function 

Structurally, GRKs contain a centrally located 263-266 amino acid (a.a.) catalytic domain flanked by 

large amino- and carboxyl-terminal regulatory domains. The amino-terminal domains of GRKs share a 

common size (~185 a.a.) and demonstrate a fair degree of structural homology. These observations have 

prompted the speculation that amino-terminal domains may perform a common function in all GRKs, 

potentially that of receptor recognition. The primary function of GRKs is to desensitize activated GPCRs, 
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a negative regulative process, including phosphorylating the activated receptor, uncoupling the receptor-G 

protein binding, and initiating the receptor internalization. GRKs phosphorylate GPCRs, but only when 

the receptors are in their activated (agonist occupied) state. The receptor phosphorylation triggers binding 

of arrestins, which blocks the activation of G proteins, leading to rapid homologous desensitization. As a 

result of the arrestin binding, phosphorylated receptors are targeted for clathrin-mediated endocytosis, a 

process that classically serves to resensitize and recycle receptors back to the plasma 

membrane[19,20,21]. Therefore, the primary function of GRKs is to act at the receptor-G protein 

interface to desensitize the activated GPCRs. 

Redundancy and Specificity of GRKs 

Previous studies, especially in vitro studies, have suggested that functional redundancy might exist 

between the seven isoforms of GRKs in phosphorylating different GPCR substrates; some may even have 

suggested that there might be little or no specificity[19]. With the generation of GRK transgenic and 

knockout mice, the functional specificity of GRKs has become clear and convincingly demonstrated in 

vivo. For example, the mice deficient in GRK2, 3, 5, and 6 display selectively impaired desensitization of 

adrenergic, odorant, muscarinic, and dopaminergic receptors, respectively[22,23,24,25]. The molecular 

mechanisms underlying this functional specificity in vivo remain to be elucidated. However, given the 

fact that this in vivo specificity is often weakened or disappears in vitro in cultured cells that artificially 

overexpress multiple GRK isoforms, it is possible that the functional specificity of GRKs in vivo is at 

least, in part, related to cellular specific expression patterns of the GRK isoforms.  

Subcellular Location of GRKs 

GRK2 and GRK5 have been shown to be able to phosphorylate synucleins in vitro[26]. The kinase-

independent function of GRK has also been reported, such as the suppression of nuclear factor κB 

(NFκB) activities by GRK5[27,28]. However, there is no doubt that the membrane-integrated GPCRs are 

still the primary substrates of GRKs. Such a feature determines that GRKs have to be physically 

associated with the membrane in order to execute their primary function. In resting cells, GRK4 

subfamily members (GRK4/5/6) are primarily plasma membrane associated by binding to 

phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphoserine (PS), and are ready to act when GPCRs 

are activated by their agonists; while other GRK isoforms are primarily located in cytosol and have to 

translocate to the membrane in order to function when GPCRs are activated[19,20]. In addition to 

phosphorylation-dependent kinase activity, many factors regulate GRK activities by altering its 

subcellular location. For example, PIP2 and Ca
2+

/calmodulin bind to GRK5 at the same site in a mutually 

exclusive manner to regulate the subcellular location and activity of GRK, with the former keeping it on 

the membrane and strongly enhancing its activity, while the latter disassociates it from the membrane and 

strongly inhibits its activity[29,30]. With varied binding sites and affinities, factors like phospholipids 

(PIP2 and PS) and Gβγ subunits as the membrane binding force, calcium sensor proteins (Ca
2+

/calmodulin 

and others), caveolin, and stress fibers (F-actin and actinin, perhaps NFTs?) as the cytosolic binding force 

can more or less affect different GRK isoforms for their subcellular location and activity (Fig. 

1)[19,20,21,31,32]. Therefore, it is conceivable that factors that can alter cellular concentrations of those 

regulatory factors may change the subcellular location and activity of GRKs as well.    

LINKS OF GRK DYSFUNCTION TO AD 

The earliest report linking GRK dysfunction to AD was published in 2004 by our group[33]. We were 

investigating why low-dose, soluble, Aβ-pretreated cells, like microglia or neurons, were hyperactive to  
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FIGURE 1. Regulations of GRK subcellular locations. Balance between membrane (i.e., PIP2 and Gβγ subunits for GRK2, and PIP2 and PS for 
GRK5) and cytosolic (i.e., calcium sensor proteins, caveolin, and stress fibers) binding forces determines the subcellular locations of GRKs, 

whereas aging- and AD-related factors may break the balance and push it towards cytosol. Ca/CaM stands for Ca2+/camodulin. 

certain GPCR stimuli, such as thrombin. We found that the Aβ pretreatment rapidly pushed away 

membrane-associated GRK5 to cytosol and also prevented GRK2 translocation from cytosol to the 

membrane after the receptor activation, thus inhibiting the GRK activities. As a result, the thrombin 

signaling through its GPCR receptors could not be timely desensitized and led to the hyperactivity. 

Although the mechanisms for how Aβ altered the GRK subcellular location remain to be investigated, it is 

not hard to imagine that the known effects of Aβ on intracellular calcium concentration and membrane 

phospholipids may have played significant roles. Beyond the in vitro study, we also found in vivo 

evidence in this regard: the membrane content of GRK2 and GRK5 was decreased, while the cytosolic 

content was increased in the TgCRND8 transgenic mice. Moreover, such changes began at the prodromal 

stage and lasted until the late stage. The end-stage changes of the GRK subcellular location were later 

confirmed in postmortem human AD brain samples[34]. It is worth noting that we only looked for 

changes in GRK2/5, because they are ubiquitously distributed and may have more relevance to our own 

interests. This does not exclude possible changes in other GRK isoforms, especially considering the broad 

changes in membrane phospholipids and intracellular calcium in AD or aging brains, which should not 

only affect GRK2/5, but may influence other GRK isoforms as well.  

GRK2 Dysfunction and AD 

As detailed in our initial report[33], the changes of GRK2 in AD transgenic brains include two aspects: 

the moderate decrease of membrane content and drastically increased cytosolic content. In addition, the 

total levels of GRK2 in these mice were also significantly up-regulated. Later studies confirmed the 

GRK2 overexpression in human AD brain samples, and also demonstrated that GRK2 accumulated near 

damaged mitochaondria and NFTs[35,36]. Interestingly, the total GRK2 levels in peripheral blood 

samples of AD patients were found not only to be higher than controls, but also inversely correlated to the 

cognitive levels of AD patients[37]. From the GRK2-deficient mice, we learned that the impact of GRK2 

deficiency appears to be limited to the cardiovascular system via its uncompensatable defect in 
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desensitization of β-adrenergic receptors[22,38]. Therefore, if there is any pathologic impact from the 

moderate decrease in the membrane GRK2 content in AD, it might be limited to an effect through the 

cerebrovascular system. For potential impact of the increased cytosolic or total GRK2 in AD, one would 

imagine it could go beyond the cerebrovascular impact, given its ubiquitous distribution and its 

colocalization to damaged mitochondria and NFTs. Unfortunately, the available GRK2 transgenic mice 

were made to overexpress GRK2 only in the cardiovascular system[39,40], which did provide the 

platform to confirm the roles of GRK2 in the cardiovascular system via the β-adrenergic receptors, but 

were not useful for determining its potential impact on other systems. Therefore, the available evidence so 

far for GRK2 dysfunction in AD stays at the correlation level, and the efforts to determine the possible 

value of GRK2 dysfunction in AD pathogenesis are limited to bridging the gap in understanding of the 

heart-brain connection in relation to neurovisceral damage and vascular complications in AD[41]. 

GRK5 Dysfunction and AD 

The changes of GRK5 in AD transgenic mouse brains also include the decrease of membrane and 

increase of cytosolic content, but are not significant for the total level[33]. Similar to the GRK2 

transgenic mice, the GRK5 transgenic mice were also created with a cardiac-specific promoter[42] and 

were inappropriate for studying the impact of GRK5 overexpression on noncardiovascular tissues. 

Nonetheless, the most recent in vitro studies have reported that the RH domain of GRK5 (a.a. 50-176) 

inhibits NFκB via a kinase-independent mechanism and leads to apoptosis in tumor cells[27,28]. 

Therefore, should the effect also be true in vivo, the increased cytosolic GRK5 may promote neuronal 

degeneration. For the membrane GRK5 deficiency, on the other hand, the GRK5 knockout (GRK5KO) 

mice provide a valuable model, and studies using this tool have yielded significant insights into roles of 

the GRK5 deficiency in AD pathogenesis. 

ROLES OF MEMBRANE GRK5 DEFICIENCY IN AD PATHOGENESIS 

GRKs have to be either prelocated at the membrane, such GRK5, or recruited to the membrane to execute 

their primary function on GPCR desensitization. Especially before the kinase-independent function of 

GRK5 was identified, the desensitization of GPCRs was thought to be their entire function. Therefore, the 

term “GRK5 deficiency” in previous literature has been used to refer specifically to the membrane or 

functional GRK5 deficiency, rather than a down-regulation of total GRK5. In this article, we will 

continue using this term for the convenience of description.  

Factors Leading to GRK5 Deficiency 

As mentioned earlier, the subcellular location of GRK5 is regulated by the balance between the 

membrane binding force (i.e., phospholipids) and cytosolic binding force (i.e., calcium sensor proteins). 

The details in this regard, including the specific binding sites and affinities, have been reviewed 

previously[20,31]. What we want to emphasize here is AD- or aging-related factors that can break the 

regulatory balance and lead to the membrane GRK5 deficiency. As mentioned, low-dose, soluble Aβ is 

one of them[33], clearly related to AD. Beyond this, our unpublished data indicate that glutamate, 

homocysteine, and even oxidative stress can all cause the membrane GRK5 deficiency. In fact, although 

total GRK5 is up-regulated with increasing age, aged mice still display significant membrane GRK5 

deficiency as compared to young ones. These preliminary observations have led us to speculate that the 

membrane GRK5 (perhaps other isoforms as well) deficiency may be a generic alteration associated with 

normal aging and is worse in AD (because of the high levels of Aβ and homocysteine, etc.). Therefore, 

specific efforts in this regard have to be made in the future to validate these thoughts.    
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Pathologic Impact of the GRK5 Deficiency 

The evidence for this part of our work was obtained primarily from the GRK5-deficient mouse models, 

such as GRK5KO mice and GRK5 deficient APPsw (Tg2576) double mice (GRK5KO/APPsw). It is 

worth noting that the GRK5KO mice were created by targeted deletion of exons 6 and 7 of the murine 

GRK5 gene, and it was predicted that these mice would produce a transcript encoding a.a. 1-178 (which 

covers the RH domain a.a. 50-176), but exon 9 would be spliced out of frame and would lead to 

termination after the addition of 16 novel residues[24]. This means that the GRK5KO mice are only 

deficient in the kinase activity–dependent functional form of GRK5, while the kinase-independent or RH 

domain–dependent part of the GRK5 remains unaltered. In other words, the phenotypes revealed in these 

animals are irrelevant to the recently proposed RH domain–dependent function of the GRK5. In addition, 

compared to other AD mouse models, no genetic modifications were made to those commonly known 

AD-relevant genes, such as βAPP, presenilins, tau, or apolipoprotein E, etc. Therefore, the phenotypes of 

these mice are solely caused by the loss or lack of the GRK5 kinase activity.  

The initial characterization of the mice revealed that the young mice exhibited mild spontaneous 

hypothermia as well as pronounced behavioral supersensitivity (i.e., hypothermia, hypoactivity, tremor, 

salivation, and antinociception) upon challenge with the nonselective muscarinic agonist 

oxotremorine[24]. Our later characterization in the aged, unchallenged mice discovered that these animals 

displayed significant short-term working memory deficit, along with hypoalertness[43]. Moreover, this 

amnestic, mild cognitive impairment (MCI) was more or less correlated to moderate levels of pathologic 

alterations, including axonal defects (swollen axonal clusters), decreased synaptic proteins (SNAP-25, 

synaptotagmin, and growth-associated protein-43), and muscarinic receptors (M1 and M2), as well as 

increased soluble Aβ and tau phosphorylation levels in the hippocampus. Although the synaptophysin 

level, the standard marker for synaptic degeneration, did not change significantly in the initial study using 

mixed genders, it was later found that the synaptophysin in the GRK5KO mice was significantly reduced 

for the female, but not the male, mice[44]. Other pathologic changes were also worsened in the female 

mice. Beside these changes, there were barely any observable SPs or inflammatory changes, except for a 

few “micro” plaques captured under the electronic microscope that showed fibrillar Aβ-like structures and 

degenerating axonal components wrapped by reactive astrocytes. In addition, stepwise-forward 

discriminant function analysis indicated that different genotype groups (GRK5
+/+

, GRK5
+/–

, and GRK5
–/–

) 

were apparently distinguishable, which supported that there was a significant GRK5 gene-dose effect. 

Therefore, it seems that the GRK5 deficiency alone can cause amnestic MCI and promote several AD-

related pathologic changes during aging. 

In respect to the mechanisms, GRK5 deficiency was initially found to impair desensitization of 

muscarinic receptors selectively[24]. We recently confirmed the finding and further demonstrated that the 

selectivity was primarily for M2, partially for M4, but not for the M1 subtype of the muscarinic 

receptors[45]. It is known that M1, M2, and M4, but not M3 and M5, are enriched in the hippocampus, 

with M2/M4 being primarily presynaptic autoreceptors to regulate acetylcholine (ACh) release negatively 

in hippocampal memory circuits[46,47]. Therefore, the potential pathological impact of the GRK5 

deficiency may be twofold: (1) it directly causes prolonged presynaptic M2/M4 autoreceptor signaling or 

presynaptic cholinergic hyperactivity; and (2) the presynaptic cholinergic hyperactivity in turn leads to a 

reduced ACh release in hippocampal memory circuits and results in postsynaptic cholinergic 

hypoactivity, including postsynaptic M1 hypoactivity. In this regard, our data indeed confirmed that the 

GRK5 deficiency led to a reduced ACh release[45].  

The ongoing investigation is still trying to determine whether the impaired M2 desensitization is 

responsible for most of the pathologic and behavioral changes in the GRK5KO mice. Nevertheless, 

available evidence appears to support such a possibility. For example, previous studies have suggested 

that signaling of M1, M3, and M5, but not M2 or M4, appears to be antiapoptotic[48]. M1 signaling has 

also been shown to inhibit β-amyloidogenic APP processing and to decrease tau phosphorylation in 

vitro[49,50,51]. Moreover, the postsynaptic cholinergic actions also mediate the role of the cholinergic 
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system in cognition[52]. Therefore, the postsynaptic M1 hypoactivity may at least in part contribute to the 

increased soluble Aβ, tau phosphorylation, and the mild cognitive decline in the GRK5KO mice. 

In addition to the inhibited ACh release, would the prolonged/persistent M2 signaling have any 

impact on the cholinergic neuron itself? It is well established that M1 (M3/M5) and M2 (M4) are typical 

Gq- and Gi-coupled receptors, respectively, and often mediate distinct or even opposing signals[53,54]. 

M2 signaling is known to reduce the cAMP level[53,54] and down-regulate protein kinase A (PKA) 

activity, a vital signaling pathway for cell survival and apoptotic resistance[55,56,57,58,59,60]. If the M1 

signaling is antiapoptotic[48], would the persistent M2 signaling promote apoptotic degeneration of the 

cholinergic neurons or synapses? The answer for this question may ultimately determine whether the 

presynaptic M2 hyperactivity is responsible for the cholinergic degenerative changes in the GRK5KO 

mice. 

In addition to the GRK5KO mice, GRK5-deficient APPsw mice were created by cross-breeding the 

GRK5KO mice and APPsw transgenic mice. Characterization of these double mice is currently still 

ongoing, but the initial examination of the aged mice found significantly exaggerated inflammatory 

changes, including microgliosis and astrogliosis, in the brains of the double, as compared to the APPsw 

mice[61]. The GRK5KO mice showed almost no inflammatory changes, but when crossed with APPsw 

mice, the double mice showed exaggerated inflammation, much worse than the APPsw mice. This 

exaggeration is certainly not an additive, but a synergistic effect between the GRK5 deficiency and 

APPsw overexpression. It is clear that GRK5 itself does not initiate any signaling; rather, it modifies the 

signaling strength and duration once the signaling is initiated. If the inflammatory signaling is never 

initiated, such as in the case of GRK5KO mice, the role of GRK5 deficiency may be silenced. In the case 

of the double mice, however, overexpression of Swedish APP gene produces excess Aβ and its fibril, 

which may well serve as the inflammatory initiator, and the role of GRK5 deficiency can then be 

revealed. In AD, fibrillar Aβ itself has been shown to activate a GPCR formyl chemotactic receptor 2 

(FPR2 or FPRL-1)[62,63]. Many other intermediate inflammatory responses that are associated with 

fibrillar Aβ (i.e., C3a, C5a, monocyte chemoattractant protein-1, macrophage inflammatory protein 1, 

interferon-inducible protein-10, and interleukin-8)[64,65,66,67] are mediated through GPCRs, such as 

C3aR and C5aR anaphylatoxin receptors[68] and all CCRs, CXCRs, and CXCXRs chemokine 

receptors[66]. GRKs are known to regulate many of these GPCRs[68,69], including uncompensatable 

selective regulation. For example, GRK6 has been demonstrated to regulate CXCR4 selectively[70]. 

Therefore, it is possible that GRK5 may selectively regulate one or more of these GPCR-mediated 

inflammatory processes, and its deficiency then amplifies the inflammation responses in the double mice. 

In addition, we have observed a moderate increase in soluble Aβ in the GRK5KO mice[43]. It is possible 

that the GRK5 deficiency may promote the total Aβ accumulation in the double mice, which then leads to 

the more severe inflammation (Fig. 2). Therefore, future studies are necessary in order to determine the 

actual underlying molecular mechanisms before appropriate therapeutic targets can be defined.      

Relation of the GRK5 Deficiency to Existing AD Hypotheses 

Debates on detailed causes and processes of AD have been going on for years and will not end soon. 

Among the existing hypotheses of AD, the cholinergic hypothesis and amyloid hypothesis are two 

mainstream hypotheses that have been better received and have largely driven the translational and 

pharmaceutical research of AD in the recent decades[71].  

The cholinergic hypothesis states that central cholinergic neuronal dysfunction is largely responsible 

for the cognitive decline in AD[72]. The amyloid hypothesis proposes that Aβ is the central pathogenic 

molecule in AD[6]. Although the detailed descriptions may evolve over time with increasing insights into 

the disease pathogenesis, the principal concepts of these hypotheses appear to stand solidly up to 

now[6,71,73,74,75,76,77,78]. In fact, rather than being in contrast in any way, these two hypotheses 

simply focus on different stages and aspects of the disease pathogenesis. For example, the  

amyloid hypothesis emphasizes the excessive Aβ as the central cause of AD, while the cholinergic hypothesis  
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FIGURE 2. Schematic illustration of potential pathogenic impact of GRK5 

deficiency. The schema is self-explanatory. BFC stands for basal forebrain 

cholinergic. 

accentuates that no matter what initiates the disease process, it has to lead ultimately to the cholinergic 

dysfunction so to cause the cognitive decline in AD. Therefore, there is a good chance that the two 

hypotheses may eventually integrate together to better explain the disease process. For the latter, the 

knowledge gained from studies of the GRK5 deficiency may provide specific links in between.   

On one hand, Aβ is one of the main causes for the GRK5 deficiency[33]; on the other hand, the 

GRK5 deficiency selectively impairs the cholinergic function[45]. Many studies[50,79,80,81,82], 

including our own[43], have shown that cholinergic dysfunction, especially postsynaptic cholinergic 

hypoactivity, affects APP processing in favor of the β-amyloidogenic pathway, and therefore further 

promotes Aβ production. These steps form a vicious circle to accelerate AD pathogenic processes, 

including both Aβ accumulation and cholinergic dysfunction, while the GRK5 deficiency is a pivotal 

mediator that links both the amyloid and the cholinergic hypotheses together.   

CONCLUSIONS AND FUTURE PERSPECTIVES 

Although studies regarding GRK dysfunction and AD pathogenesis remain to be matured, available 

evidence indicates that the GRK dysfunction is involved in most of the AD pathogenic processes, from 

Aβ accumulation, tau phosphorylation, cholinergic hypofunctioning and degeneration, brain 

inflammation, and cognitive decline, perhaps even cerebrovascular complications as well. From the 

perspective of GRK5 deficiency, the presynaptic M2 hyperactivity is not only a novel concept, but it also 

has a strong potential to become an ideal preventive and/or therapeutic target, not only for combating 

most of the pathologic impact posed by the GRK5 deficiency, but also for breaking the vicious circle 

between the Aβ and cholinergic dysfunction.  

Of course, before translating these researches to the clinical setting, several important questions 

remain to be addressed. The factors (i.e., Aβ, glutamate, homocysteine, and oxidative stress) that can 

cause the GRK subcellular location change broadly exist in AD brains and even in normal aging brains to 

some extent. If they cause the change through altering the balance between the membrane and cytosolic 

binding forces, it is likely that the resulting GRK subcellular location change is not limited to GRK2 and 

GRK5. Therefore, we first need to make clear how broad and specific the GRK dysfunction may be in 
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AD patients. This will help to estimate the overall weight of the GRK dysfunction in the AD 

pathogenesis. Specifically for each GRK isoform, potential pathologic impact needs to be carefully 

evaluated and the underlying molecular mechanisms elucidated. For GRK5 deficiency in particular, 

determination of whether the presynaptic M2 hyperactivity indeed causes cholinergic neuronal or synaptic 

apoptosis should have a higher priority. Because if the prediction is true, the clinical use of cholinesterase 

inhibitors, four out of five FDA-approved medications for AD, could have potential adverse effects by 

worsening the presynaptic M2 hyperactivity, especially when high doses are used. Of course, it needs to 

be clarified whether the presynaptic cholinergic hyperactivity and postsynaptic cholinergic hypoactivity 

lead to increased Aβ accumulation and the exaggerated brain inflammation. If not, which inflammatory 

mediators are under specific regulation by GRK5 and mediate the exaggerated inflammation in the case 

of GRK5 deficiency? The answers for these questions are essential for defining potential therapeutic 

targets in the future.     
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