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Abstract

Chromosomes of eukaryotes adopt highly dynamic and complex hierarchical structures in the 

nucleus. The three-dimensional (3D) organization of chromosomes profoundly affects DNA 

replication, transcription and the repair of DNA damage. Thus, a thorough understanding of 

nuclear architecture is fundamental to the study of nuclear processes in eukaryotic cells. Recent 

years have seen rapid proliferation of technologies to investigate genome organization and 

function. Here, we review experimental and computational methodologies for 3D genome 

analysis, with special focus on recent advances in high-throughput chromatin conformation 

capture (3C) techniques and data analysis.

Recent studies have revealed the existence of millions of potential cis-regulatory elements in 

the human genome, with a great number of them residing in intergenic regions and away 

from their target gene promoters1,2. The distal elements, which largely consist of enhancers, 

influence the transcription of target genes through looping of chromatin fibres3–11 during 

animal development12–16. Evidence of chromatin looping has been detected for many 

enhancers17–21. However, the mechanisms by which chromatin interactions are formed and 

maintained during development remain to be elucidated.

The chromosome conformation capture (3C) method and its studying chromatin interactions 

in eukaryotic cells22–27 (TABLE 1). These techniques have uncovered general features of 

genome organization, which include the existence of hierarchical chromatin structures, such 

as compartments22, topologically associating domains (TADs)6,10, sub-TADs11, insulated 

domains17 and chromatin loops27.However, different C-technologies and analysis strategies 
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have produced variable data on chromatin domains and DNA loops; for example, 100-fold 

differences have been seen in the total number of statistically significant chromatin 

interactions between studies19,27; and different studies have used similarly sounding 

terminologies to describe different structural features (such as ‘loops’ versus ‘significant 

interactions’ and ‘contact domains’ versus ‘topological domains’), thus clouding our 

understanding of chromosome topology in cells19,27. It is unclear whether the differences in 

numbers of chromatin domains and loops identified in different studies are due to 

experimental protocols or data analysis algorithms.

In this Review, we discuss recent experimental and computational advances in C-

technologies. We briefly catalogue all C-technologies, and place special emphasis on a few 

key areas of recent technological advancements regarding methods for chromatin 

fragmentation, approaches for proximity ligation and the use of a target-enrichment step 

before performing ultra-high-throughput sequencing. We also thoroughly explore the recent 

computational advancements that have been developed to analyse data sets produced by C-

technologies (termed C-data). We detail the approaches for interrogating various C-data sets, 

placing special emphasis on methodologies to account for experimental biases, assessment 

of the resolution of a data set, extraction of global chromosome organization features and 

identification of chromatin interactions. We also propose key factors for consideration when 

selecting the appropriate computational methods to analyse C-data. Owing to space 

limitations, this Review does not cover alternative applications of C-data, such as haplotype 

phasing28–30, genome assembly31–33, metagenomic applications34–36 and three-dimensional 

(3D) chromosome modelling22,24,37,38. Readers can find excellent reviews on these topics 

elsewhere5,39–42. We conclude by providing perspective on the challenges that remain ahead.

C-technologies: advances and adaptations

3C was invented as a general method to study chromosome organization in eukaryotic 

cells43. It combines protein crosslinking and proximity ligation of DNA to detect long-range 

chromatin interactions between pairs of genomic loci. Briefly, nuclei are isolated following 

treatment of cells with formaldehyde, which crosslinks the chromatin proteins to their 

associated DNA to fix the chromatin structure. The crosslinked DNA is then digested using 

restriction enzymes and the ends of the digested DNA fragments are re-ligated in diluted 

conditions that strongly favour ligation of the juxtaposed DNA fragments. The frequency of 

ligation between two genomic loci is then assessed using PCR or direct DNA sequencing. 

Although proximity ligation had earlier been used to detect DNA loops between the rat 

prolactin promoter and a distal enhancer in uncrosslinked cells44, the inclusion of 

formaldehyde crosslinking in 3C enhanced the efficiency and robustness of proximity 

ligation reactions43, thereby enabling broad adoption of the 3C technique for high-

throughput analyses of chromosome architecture.

Over the years, many additional modifications have been introduced to 3C techniques that 

further enhanced the scale, resolution and efficiency of chromosome conformation analyses. 

First, with the rapid advances in DNA sequence analysis technologies, 3C quickly developed 

into genome-scale methods with the adoption of microarray technology and eventually 

ultrahigh-throughput DNA sequencing as a way to measure the frequency of proximity 
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ligation products (TABLE 1). As only a fraction of DNA fragments generated by the C-

technologies are legitimate ligation products between distinct genomic loci, it is necessary 

both to enrich for ligation junctions and to reduce or eliminate unligated DNA fragments. To 

achieve this, biotin-labelling with biotin-conjugated nucleotides has been used to fill-in the 

5ʹ overhangs left by restriction digestion before proximity ligation. Following proximity 

ligation, the ligation products are biotin-labelled at the ligation junctions22,23. Biotinylated 

nucleotides at the ends of unligated DNA molecules are conventionally removed by a 

dedicated T4 DNA polymerase reaction22 or during the end-repair step of the library 

preparation procedure27. Biotinylated ligation junctions are eventually isolated by affinity 

purification and subject to ultra-high-throughput DNA sequencing, generating genome-wide 

chromatin contact maps that reflect chromosome organization in a cell population. The first 

rendition of this procedure, known as Hi-C, has now been widely used22.

To increase the resolution of chromosome conformation analyses, modifications have also 

been made to the restriction digestion step (FIG. 1a). At the very core of C-technologies is 

the need to first fragment the chromatin of crosslinked nuclei to generate DNA ends capable 

of re-ligating to other spatially proximal fragmented ends43. Until recently, restriction 

digestion has been generally carried out using ‘6-cutters’ — type II restriction enzymes that 

recognize a six-base-pair sequence motif. The finest resolution possible using 6-cutter 

fragmentation would in theory be the size of the restriction fragment generated (termed 

fragment-level resolution). The closest to achieving this was a recent high-resolution 

analysis of human fetal lung fibroblast, which achieved nearly fragment-level resolution, 

requiring over 3.4-billion valid chromatin contacts (over 5.6-billion raw read-pairs)19. 

Although 4-cutters potentiate higher-resolution analyses of genome conformation by means 

of producing smaller restriction-fragment sizes, the total number of restriction fragments 

genome-wide is ~16-fold higher and the total number of possible pairwise contacts is 256-

fold higher. Accordingly, 4-cutter fragmentation was initially applied in targeted chromatin 

conformation analysis using 4C (circular chromosome conformation capture; also known as 

chromosome conformation capture-on-chip) technology, as 4C interrogates the chromatin 

looping landscape of only a single restriction fragment with the rest of the genome, rather 

than all possible pairwise contacts genome-wide45,46. Genome-wide analyses with 4-cutter 

fragmentation were performed in flies47, in part owing to their relatively small genome size 

compared to mouse or human, which significantly reduces the total number of possible 

pairwise contacts. To date, the finest resolution analysis of mammalian genomes has been 

carried out using a 4-cutter27. In this study, 4.9 billion valid chromatin contacts were 

required to obtain 1 kb-resolution Hi-C maps in a single cell type (‘1 kb resolution’ is 

explained further below). Other methods have now been used for chromatin fragmentation, 

each offering a unique set of advantages and disadvantages. DNase I has recently been 

shown to fragment chromatin of crosslinked nuclei for Hi-C applications48,49 (FIG. 1a). 

Similarly, micrococcal nuclease (MNase) has been used to fragment chromatin before 

proximity ligation in yeast nuclei, helping to achieve nucleosome-level resolution of 

chromatin organization50. In addition, mechanical shearing was used to fragment chromatin 

in a 4C protocol variant and was suggested to be sufficient to fragment chromatin for Hi-

C49, although to our knowledge no Hi-C data from mechanical shearing have yet been 

published.
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Conventional Hi-C requires billions of DNA sequencing reads to achieve truly genome-scale 

coverage at kilobase-pair resolution19,27. By contrast, the first targeted approaches, such as 

4C and chromosome conformation capture carbon copy (5C), are PCR-based C-

technologies, using PCR enrichment to analyse chromatin contact profiles of a single 

locus45,51 or across a continuous locus, respectively52. Although these methods are less 

expensive than Hi-C and are based on relatively straight-forward protocols, they suffer from 

low throughput (4C) or complex primer design (5C) and, importantly, do not include the key 

advantage of Hi-C, which is the enrichment of valid ligation products using biotin-labelling 

of ligation junctions and affinity purification. To gain cost-effectiveness while preserving the 

efficiency afforded by genome-wide C-techniques, two strategies have been developed that 

also generate targeted 3C data. First, chromatin immunoprecipitation (ChIP) was introduced 

before the proximity ligation step to enrich for DNA associated with specific DNA-binding 

proteins, chromatin modifiers or histone modifications23. This method, termed chromatin 

interaction analysis by paired-end tag sequencing (ChIA-PET), allows for targeted analysis 

of chromatin conformation at binding sites of transcription factors or at transcriptionally 

active chromatin domains. It also has the benefit of achieving a higher resolution compared 

to Hi-C, as only ligation products involving the immunoprecipitated molecule are 

sequenced.

Second, Hi-C has recently been combined with target enrichment and sequencing (Capture-

HiC) to reveal chromatin contacts of mammalian gene promoters49,53–57 and other specific 

genomic loci29,53,58–60. Unlike 4C and 5C, Capture-HiC involves first generating a library of 

proximity-ligated DNA fragments using one of several published Hi-C methods. Next, 

biotinylated RNA or DNA oligonucleotide probes are hybridized to specific sequences of 

interest (for example, gene promoters) within the Hi-C library, followed by affinity 

purification of the biotinylated probe–library duplexes, stringent washing of bound DNA and 

finally ultra-high-throughput DNA sequencing (FIG. 1b). Control over which genomic loci 

are interrogated in a Capture-HiC experiment is determined by the user when designing the 

capture probes. Importantly, ligation frequencies of probed regions detected from Capture-

HiC experiments are highly similar to ligation frequencies measured by high-resolution, 

whole-genome Hi-C data29, yet Capture-HiC data sets are obtained at a small fraction of the 

cost because only the probed regions are analysed, underscoring both the quality and 

efficiency of this method. Current Capture-HiC approaches have varied substantially with 

respect to template Hi-C library preparation procedure, target selection, capture probe design 

and target enrichment protocol (TABLE 2). Thus, data generated from such experiments 

vary widely with respect to the quality of target enrichment; for example, the on-target rate 

differs between studies. One consistent tendency is that Capture-HiC data from studies with 

larger target size have substantially higher on-target rates than data from studies with smaller 

captured regions, ranging from ~65% on target in select promoter Capture-HiC 

studies54,56,57 to 5–15% when capturing small continuous regions or interspersed 

loci29,58,59. Interestingly, no reports to our knowledge have implemented the ‘double-

capture’ strategy for small target sizes, which uses two consecutive captures to increase the 

on-target rates for difficult-to-capture templates61. Additionally, promoter Capture-HiC data 

generated using either RNA or DNA probes have reported differing on-target rates, with 

RNA probes currently outperforming DNA probes54–57. However, the first and only report 
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of genome-wide promoter Capture-HiC using DNA probes also used 4-cutter library 

preparation, rather than 6-cutter, making it challenging to interpret which design approach is 

superior. Overall, variations in Hi-C library preparation, probe design, target size, number of 

probes allocated to each target locus and user expertise contribute to the variable quality and 

depth of coverage across loci in each study, making concrete experimental recommendations 

premature and creating challenges for downstream data analyses, as discussed in the next 

section.

A substantial, although variable (~7–50%), proportion of Hi-C contacts detected in 

mammals using the original Hi-C protocol originate from inter-chromosomal (‘trans’) 

ligation events6,19,22,28,62–68. The reported frequency of trans contacts varies tremendously 

across cell types and even biological replicates, and they are much less reproducible than the 

intra-chromosomal (‘cis’) contacts. This raises the possibility that many of these ligation 

products result from random inter-molecular ligations occurring during sample preparation 

in diluted conditions. In the original Hi-C protocol, following restriction digestion and 

biotin-labelling, nuclei are lysed using sodium dodecyl sulphate (SDS) and crosslinked 

chromatin complexes are diluted before proximity ligation22,69,70 (FIG. 1c). Since the 

inception of Hi-C, 4C protocols have forgone the nuclear lysis step by way of omitting SDS 

treatment; conducting proximity ligation without intentional lysis of dilution, resulting in 

fewer observed trans contacts71,72. A recent study also indicated that in Hi-C, nuclear lysis 

and dilution of chromatin complexes before proximity ligation can be omitted, corroborating 

the observation that proximity ligation can occur within intact nuclei38 (FIG. 1c). By 

adapting Hi-C with this modified ligation procedure (a process from here termed in situ Hi-

C), a substantial improvement in the fraction of legitimate, informative ligation products is 

achieved without affecting the accuracy of conformation capture27,38,65, with fewer random 

trans contacts, higher reproducibility of contacts across a range of distances and even 

reduction of previously described experimental bias65. Thus, in situ Hi-C seems to be the 

preferred protocol moving forward. However, as Hi-C data can be used only to infer genome 

organization based on observed contact frequencies, true evaluation of the superior protocol 

requires comparison to a set of known true interaction frequencies, which does not exist in a 

comprehensive fashion. Moreover, evaluating data quality based solely on the fraction of 

observed trans or long-range cis contacts is not entirely appropriate, as cells may indeed 

have highly intermingled chromosomes, depending perhaps on cell cycle stage. Instead, 

additional metrics should be used for assessing data quality, such as estimating random 

collision frequency6 and analysis of read orientation as a function of linear genomic 

distance19,27.

The improved efficiency of in situ proximity ligation and Hi-C facilitated the examination of 

chromatin organization in single mammalian cells using single-cell Hi-C, which provided a 

deeper understanding of cell-to-cell variability in chromosome architecture38 (FIG. 1d). In 

single-cell Hi-C, cell populations are subjected to the initial steps of in situ Hi-C but, before 

crosslink reversal, the intact nuclei are sorted into individual tubes and subjected to a 

modified Hi-C-library preparation procedure and multiplexed PCR amplification. This 

strategy was applied in mouse T helper cells and produced genome-wide contact maps for 

74 individual cells, with 10 of these maps being of high enough quality for further 

analysis38. The resulting single-cell contact maps, despite being very sparse (at 1 Mb bin 
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size), confirmed the existence of chromosome territories and TADs while highlighting the 

cell-to-cell variability of chromosome architecture. Merged single-cell maps are similar to 

Hi-C data generated from millions of cells, supporting the reliability of the single-cell data. 

A key limitation of the method is that only a small number of unique chromatin contacts, up 

to 30,000 in the published work38, were detected. This represents less than 2.5% of the total 

number of theoretical chromatin contacts in a mouse cell. The sparse data set probably 

results from inefficient steps in the existing protocol, such as enzymatic chromatin 

fragmentation, biotin-labelling, proximity ligation and conventional Illumina TruSeq library 

preparation. Removing the biotin-labelling step and performing sticky-end ligation, as in 3C, 

may potentiate the detection of more unique ligation junctions, as ligation junction detection 

will not depend on high efficiency of the enzymatic biotin-labelling reaction or the 

efficiency of blunt-end ligation. Additionally, more-efficient library preparation methods 

designed specifically to handle low inputs, such as tag-mentation73, may improve the yield 

and absolute number of detectable ligation junctions.

Computational analysis of C-data

The rapid development of C-technologies and fast accumulation of large amounts of data 

have posed great challenges for data analysis and interpretation, and necessitated the 

development of sophisticated computational tools that can accurately identify long-range 

chromatin interactions and reveal the general principles of chromatin motion and 

organization. It is important to note that, although the observed frequency of proximity-

ligation products has been used to infer the 3D distances between a pair of DNA sequences, 

procedures including crosslinking, chromatin fragmentation, biotin-labelling and re-ligation 

can all introduce biases that complicate the interpretation of observed contact 

frequencies74–76. Additionally, the resolution of analysis in the available data sets remains to 

be rigorously defined. To overcome these challenges, statistically solid and computationally 

efficient bioinformatics pipelines are essential. Several computational algorithms and tools 

have been developed in recent years, specifically for analysing C-data. Below, we discuss 

several key issues that need to be considered.

Accounting for experimental bias

Similarly to analysis of data generated by ChIP followed by sequencing (ChIP-seq) and 

RNA sequencing (RNA-seq), analysis of C-data can be confounded by multiple layers of 

bias that originate from different steps of experimental procedures. Accounting for these 

biases (at times referred to as bias removal or normalization) is the first and arguably the 

most important step in C-data analysis. Efficient and effective removal of multiple 

systematic biases is critical for the success of any subsequent analysis of C-data as well as 

for the proper interpretation of results.

In general, there have been two types of approaches to account for biases in C-data. The first 

class of bias-removal approaches account for biases in an explicit fashion — by assuming 

that all sources of systematic biases are known based on biases determined empirically from 

the observed data (FIG. 2; TABLE 3). The second class of bias-removal approaches account 

for biases in an implicit way — by assuming no known source (or sources) of bias, and 
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assuming that the cumulative effect of the bias is captured in the sequencing coverage of 

each locus (or ‘bin’). In other words, as Hi-C is a genome-wide assay, the implicit models 

assume that each locus should receive equal sequence coverage after biases are removed. 

These implicit models all rely on some implementation of matrix-balancing algorithms, and 

from here on they are referred to as the matrix-balancing methods (FIG. 2; TABLE 3). 

Therefore, selecting the appropriate bias-removal methodology depends on whether the 

sources of the biases in the data are assumed to be known or unknown. In a seminal study, 

restriction enzyme fragment lengths, GC content and sequence mappability were identified 

as three major sources of experimental biases in Hi-C data77. The key challenge is to 

estimate the combinatorial bias effect between two interacting loci. To address this 

challenge, the binary contact status between any two fragment-ends was modelled as the 

Bernoulli random variable. Next, to estimate the bias effects, the maximal likelihood 

approach was applied to the joint likelihood function, which is defined as the product of 

Bernoulli probability mass function for all possible fragment end pairs. In practice, to make 

such computation feasible, all interacting loci were first grouped into bins based on the 

percentiles of each bias factor. Next, an empirical distribution was used to estimate such 

combinational bias effects, leading to a statistically effective but computationally intensive 

bias-removal method77. Later on, HiCNorm, which is a generalized linear regression-based 

method, was developed to remove the above-mentioned three systematic biases in Hi-C 

data78 (FIG. 2b; TABLE 3). Differing from the first explicit model77, which used a Bernoulli 

distribution to model the binary contact status between any two fragment-ends, HiCNorm 

directly models the contact frequency between any two bins as a Poisson distribution or a 

negative binomial distribution78. Noticeably, analysing binned Hi-C data enables HiCNorm 

to adopt a simple parametric form for the combinatorial bias effect, resulting in much-

improved computational efficiency.

In addition to these two explicit approaches, implicit, matrix-balancing approaches have 

been widely used to account for biases in Hi-C data and rely on two different assumptions. 

First, the combinatorial-bias effect between two interacting loci can be simplified as the 

product of the two locus-specific bias effects. Second, if there is no bias effect (that is, when 

all bias has been accounted for), the total genome-wide contact summation for each locus 

will be a constant, implying that each locus has ‘equal visibility’ to the Hi-C assay. Based on 

these two assumptions, classic matrix-balancing algorithms have been used to account for 

systemic bias. For example, the first method that described balancing Hi-C contact matrices 

was termed vanilla coverage22 (FIG. 2c). To account for bias, the observed contact 

frequency between locus A and locus B is divided by the product of the total genome-wide 

contact frequency at locus A and the total genome-wide contact frequency at locus B, and 

the ratio is used as the normalized contact frequency (FIG. 2c). Later, iterative correction 

and eigenvector decomposition (ICE) was introduced (FIG. 2d; TABLE 3); this process 

iterates through the vanilla coverage procedure until there is convergence of the normalized 

contact frequency, thereby further reducing the coverage variability from locus to locus but 

greatly increasing the computational cost to achieve bias removal79. Since ICE was 

introduced, several efforts have been made to improve its computational efficiency80,81. 

Meanwhile, a fast version of the matrix-balancing Sinkhorn–Knopp algorithm82, originally 

described by Knight and Ruiz83, has been applied to account for biases in the finest 

Schmitt et al. Page 7

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resolution Hi-C data sets27 (TABLE 3). Matrix-balancing methods may also be preferred 

when analysing Hi-C data prepared with other chromatin-fragmentation approaches, such as 

DNase I or mechanical sharing49, as matrix-balancing methods assume that the source of 

bias is unknown, and the presence of empirically determined biases from these Hi-C data 

sets has not yet been thoroughly examined. In practice, both explicit and implicit approaches 

have been used to account for biases in Hi-C data; therefore, it would be helpful to conduct a 

comprehensive comparison between the two approaches. To date, only a partial comparison 

has been made, which highlighted the differences in reproducibility of cis and trans 
interaction frequencies at low resolution84. A novel computational framework that combines 

the strengths of the two approaches may enable more accurate bias removal and higher 

computational efficiency.

As discussed above, Capture-HiC technologies measure chromatin conformation at target 

loci at high resolution54–59. Thus, in addition to the systemic experimental biases already 

present in Hi-C data, Capture-HiC data contain additional biases, owing to uneven capture 

efficiency at targeted loci as well as to some capture bias generated when both interacting 

sequences are targeted by capture probes (compared to when just one end is being probed), 

which manifests as sequence coverage variability at each locus54,56,85. To specifically 

account for such coverage asymmetry in Capture-HiC data, the CHiCAGO (Capture-HiC 

analysis of genomic organization) algorithm was developed; this estimates the bait-specific 

bias and the other-end-specific bias separately85. Moreover, it estimates the bait-specific bias 

by grouping the probed loci with similar local interacting profiles, whereas the other-end-

specific bias is estimated by grouping the non-probed loci with similar distal interacting 

profiles. More studies are needed to fully explore the combinatorial effect of the bait-specific 

bias and the other-end-specific bias in Capture-HiC data.

Although several methods to account for experimental bias are available (TABLE 3), they 

should be used with great caution. The validity of each approach depends heavily on its 

explicit or implicit model assumptions. The explicit approaches assume that the systematic 

biases are known and taken into account in the statistical model to account for inherent 

biases in the observed Hi-C contact matrix. These methods can be overly conservative and 

run the risk of missing additional sample-specific biases whereby the normalized Hi-C data 

may still be affected by unknown biases, namely biases not taken into account in the explicit 

model. For example, DNA-circularization bias86 is not accounted for in the current explicit 

approaches. By contrast, the matrix-balancing approaches rely on the equal visibility 

assumption: that each locus throughout the genome has equal likelihood of being engaged in 

a 3D contact captured by the Hi-C protocol. Therefore, matrix-balancing algorithms assume 

that, after removing all biases, the normalized Hi-C contact matrix should have constant row 

(and column) summation. If these row summations are scaled to one, then each matrix entry 

represents an approximate contact probability between two loci, whereas following bias 

removal from explicit models, the matrix entries represent normalized contact counts. The 

equal visibility assumption may seem intuitive, as Hi-C is indeed a genome-wide sequencing 

technique and approximately equal coverage across the genome may be expected. However, 

there are many biases that are known to affect read coverage in Hi-C data, such as the 

restriction cut site position and the mappability and GC content of sequences flanking the 

restriction enzyme cut sites77. Moreover, it has also been appreciated that the restriction 
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enzyme used in library preparation is biased towards cutting at open chromatin regions49. 

These experimental biases, some of which are unique to Hi-C and do not exist for other 

whole-genome sequencing library preparation methods, will clearly bias the Hi-C 

sequencing coverage; therefore, matrix-balancing assumes that the cumulative effect of all 

bias factors is captured in the coverage of each locus. Coverage distribution across bins in 

Hi-C data is Gaussian (continuous), with several bins having absolutely no coverage, owing 

to poorly annotated sequence content, lack of restriction enzyme cut sites or other known 

experimental biases. In general, the bins with no observed coverage are ignored during 

matrix-balancing. However, bins with very poor coverage can sometimes be corrected by 

orders of magnitude to have balanced coverage compared with the rest of the genome. 

Coverage of conventional whole-genome sequencing data is also not perfectly even, so the 

justification to balance coverage in Hi-C data is imperfect. Finally, as Hi-C data sets seem to 

be rapidly moving towards high-resolution analyses, it remains unclear which bias 

assumptions are more appropriate at smaller bin sizes compared with the larger bin sizes that 

have until recently predominated in the analyses of Hi-C data. Given the limitations of both 

explicit approaches and matrix-balancing approaches, we recommend that users conduct 

careful quality control and experimental validation for the normalized Hi-C data sets. In 

addition, to ensure reproducibility, it is desirable to compare the normalized results from 

multiple biological replicates and from different computational approaches. It is also good 

practice to conduct Hi-C data analyses using both types of bias-removal approaches, as this 

eliminates the possibility of making a discovery that is dependent on the type of bias-

removal method.

Resolution of C-data

To study chromosomal spatial organization, the resolution at which to examine the data 

needs to be determined. As mentioned above, the resolution of a Hi-C experiment is often 

conveyed as the size of the genomic loci (or bins) used to compute the meaningful chromatin 

contacts between pairs of genomic loci19,27. To determine the correct resolution, it must first 

be appreciated that the linear increase of resolution requires a quadratic increase in total 

sequencing depth. For example, the first Hi-C study collected 8.7 million reads to study the 

human genome at 1 Mb and 100 kb resolutions22. The highest resolution Hi-C maps to date 

collected over 4.9 billion reads to study the human genome at 1 kb resolution27, 

demonstrating a 3-orders of magnitude increase in sequencing depth for a 2-orders of 

magnitude increase in resolution. Noticeably, the linear genomic distance between two 

interacting loci is also a key factor required to determine the appropriate resolution. Because 

Hi-C contact frequency dramatically decreases as the linear genomic distance increases, in 

practice, only interactions within a certain range of linear genomic distance are considered. 

For example, a recent study analysed 5–10-kb-resolution Hi-C data for pairwise interactions 

within a linear genomic distance of 2 Mb19.

Despite these general principles of resolution, researchers must still arbitrarily select the bin 

size for which to analyse their Hi-C data, and definitive guidelines for appropriate bin size 

determination are lacking. Most available approaches for determining bin size are heuristic 

and difficult to transfer to other experimental settings. For example, resolution has been 

defined in one study as the smallest bin size for which more than 1,000 valid chromatin 
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contacts can be observed in at least 80% of the bins27. Although this lays out a quantitative 

criterion, it lacks clear theoretical and experimental justification. It may be argued that the 

resolution of Hi-C data should be determined by the specific biological questions at hand 

and interpreted from a statistical perspective. For example, suppose the computational task is 

the detection of enhancer–promoter interactions. First, a set of experimentally validated 

interacting loci (true positives) and a set of random collisions (true negatives) must be 

collected; then, the strength (frequency) of chromatin contacts for both must be quantified. 

The difference in the distribution of chromatin interaction frequency between the true 

positives and true negatives can then be used to calculate the total sequencing depth that is 

required to justify the statistical validity of the pre-specified sensitivity and specificity. Such 

statistically based power analyses and careful experimental design will help to determine the 

optimal resolution of a specific Hi-C data set and to facilitate appropriate biological 

interpretation and discovery.

Analyses of features of global chromatin conformation

The development of the Hi-C technique enabled the characterization of global features of 

chromatin organization (TABLE 4), leading to the discovery of compartmentalization of 

chromosome folding within the nucleus22. Genomic regions at two distinct nuclear 

compartments, arbitrarily labelled compartment A and compartment B, display high contact 

frequency within the same compartment and low contact frequency between the 

compartments. Compartment A roughly corresponds to the euchromatin and features higher 

gene density, whereas compartment B corresponds to the heterochromatin and is largely 

made up of gene deserts. Compartment B is also closely correlated with lamina-associated 

domains (LADs). Interestingly, this large-scale genome compartmentalization is highly 

dynamic during the differentiation of human embryonic stem cells62 and between normal 

and cancer cells22, suggesting compartmentalization has a crucial role in mediating genome 

function and cell identity.

Principal component analysis (PCA) on intra- or inter-chromosomal Hi-C contact maps can 

be applied to designate compartments A and B22,27. More specifically, the sign of the first 

eigenvector determines the compartment label. Although PCA is easy to implement and has 

straightforward interpretation, it has two major caveats. First, for some chromosomes, the 

sign of the first eigenvector represents the short and long chromosome arms, rather than the 

typical A and B patterns observed in most other chromosomes. In this case, the sign of the 

second eigenvector should be used to determine the compartment designation. Second, the 

sign of the first eigenvector is an arbitrary identification method. Without additional 

information, the compartment cannot be determined. In practice, regions with high gene 

density can be assigned as compartment A, and regions with low gene density as 

compartment B.

In general, each compartment is continuous and several megabases in size, reflecting 

relatively large-scale chromatin architecture. In addition, recent Hi-C analysis at high 

resolution discovered that sub-compartments, which are distinct compartments within the 

conventional A and B compartments, may exist; these span smaller genomic regions and 

correlate with the underlying chromatin biochemical activity27. Higher resolution Hi-C or 
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5C studies revealed that compartments consist of TADs6,10. In mammals, TADs are 

approximately 1 Mb in size, conserved across cell types and species, and may serve as the 

basic unit of genome structure and function. A more comprehensive discussion of the 

structure and function of TADs can be found in a recent review87.

Developing computational approaches for detecting TADs is an active research area (TABLE 

4). The first published approach was based on a hidden Markov model (HMM)6. For each 

given bin, the total number of interactions located 2 Mb upstream and 2 Mb downstream 

were calculated and quantified in a metric termed the directionality index. It was assumed 

that the total number of upstream and downstream interactions are comparable at the centre 

of TADs but are highly imbalanced at bins adjacent to TAD boundary regions. Based on 

such an assumption, an HMM was used to capture the sharp transition from the upstream 

interaction bias to the downstream interaction bias at the TAD boundary regions, which is a 

distinctive signature of two spatially separate, self-interacting domains. Later on, the 

Arrowhead algorithm was used to annotate contact domains genome-wide27. Dynamic 

programming was used to ensure efficient implementation of the Arrowhead algorithm to the 

high-resolution Hi-C data. Meanwhile, the Armatus algorithm was developed for detecting 

consistent TAD patterns at different resolutions88. In addition, the HiCseg algorithm can 

narrow down the problem of annotating TADs from 2D image segmentation to linear (1D) 

segmentation89. Similarly, a sliding insulation score approach was recently introduced that 

also transforms the Hi-C contact matrix into an intuitive 1D insulation score vector90. This 

approach has been demonstrated to detect dynamics of TAD boundary strength in different 

experimental conditions90. Importantly, most of these approaches rely on heuristic tuning 

parameters, such as the threshold on the maximal linear genomic distance between two 

interacting loci when computing the directionality index, which is a measure of orientation 

biases in chromatin interactions originating from a genomic locus, or the window size for 

computing insulation, which is a measure of interaction permissibility across a genomic 

locus. Currently, we suggest researchers try different tuning parameters and visually check 

the TAD coordinates alongside the Hi-C contact matrix to ensure the validity and 

reproducibility of TAD-calling results. It is also likely that the hierarchical level of genome 

organization that can be detected is affected by the tuning parameters. For example, smaller 

insulation windows or small directionality index windows are more capable of detecting 

smaller scale chromatin folding structures compared with larger windows.

A key challenge in the analysis of global chromatin conformation lies in the fact that the 

genome is folded into multiple hierarchical structures, from compartments to TADs, nested 

sub-TAD structures and individual chromatin loops. Understanding the principles underlying 

this hierarchical chromosome organization requires the development of novel computational 

approaches. An excellent review41 highlights the recent computational advance in the 

analysis of global chromosome organization.

Analyses of local features of chromosome conformation

As a result of ever-increasing DNA sequencing throughput and decreasing sequencing cost, 

high-resolution Hi-C data sets are attainable and have enabled the analysis of chromatin 

contacts at nearly kilobase resolution. As this resolution is nearly the size of individual cis-
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regulatory elements, high-resolution Hi-C data sets can be interrogated for fine-mapping of 

long-range cis-regulatory interactions and provide novel insights on transcription regulation 

mechanisms. To that end, many computational approaches have been developed for 

detecting biologically meaningful long-range chromatin contacts, which is a process termed 

peak-calling (TABLE 5). In pioneering work, chromatin contact frequencies obtained from 

Hi-C data were modelled as a negative binomial distribution and a global background model 

was devised that consists of both systematic bias factors and the linear genomic distance 

factor19. The Fit-HiC algorithm uses a non-parametric spline approach to model the 

background-chromatin contact frequency91. Both methods take advantage of a global 

background model in which the expected interaction frequency of a given pair of loci 

follows the trend derived from genome-wide contact frequencies at a given linear genomic 

distance. In both methods, peak-calling led to millions of statistically significant chromatin 

contacts; however, by using the global background model, this approach may over-estimate 

chromatin interactions, leading to false positives. Meanwhile, the GOTHiC (genome 

organisation through HiC) algorithm uses a simple binomial distribution model to 

simultaneously remove biases in Hi-C data and detect significant interactions by assuming 

that the global background interaction frequency of two loci depends also on the relative 

genome-wide coverage54,92. Another feature of GOTHiC is that it implemented the 

Benjamini–Hochberg multiple-testing correction to control for the false discovery rate. By 

applying this method to a Hi-C data set from mouse cells, ~90,000 statistically significant 

interactions could be identified92. By contrast, HiCCUPS (Hi-C computational unbiased 

peak search) uses a local background model and has been applied to detect chromatin loops 

in several human and mouse cell lines at 1 kb or 5 kb resolution from in situ Hi-C data27. 

HiCCUPS identified around ~2,500–10,000 chromatin loops, depending on the resolution of 

the data set. Recently, the computational problem of detecting significant chromatin 

interactions was tackled from a different angle, by assuming that the background model 

(either a global background or a local background) is known and by developing a hidden 

Markov random field (HMRF) algorithm to model the spatial dependency among 

neighbourhood interacting loci93 (TABLE 5). In other words, the dependency implies that, if 

two loci are inferred to be spatially proximal based on Hi-C data, then all the neighbouring 

loci will have a higher probability of interacting. The HMRF algorithm can achieve higher 

reproducibility and improves statistical power, especially for the analysis of pairwise 

contacts in high-resolution Hi-C data. In the future, it would be of great interest to compare 

the interaction frequency at these identified peaks, as well as other loci, among different 

experimental conditions and biological contexts. A software package named diffHiC94 was 

recently developed to detect dynamic chromatin interactions across experimental conditions 

or cell types. Using the same statistical framework of the edgeR (empirical analysis of DGE 

in R) package95, which has achieved great success in detecting differentially expressed 

genes in RNA-seq data, diffHiC has the potential to become a powerful tool for differential-

interaction analysis.

Capture-HiC shows great promise in the detection of chromatin interactions at loci of 

interest29,49,54–60. The computational methods for the analysis of Capture-HiC data are still 

under development. One study used a heuristic observed read-count cut-off in identifying 

significant interactions, but this lacks solid statistical justification55. Later on, a statistical 
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model based on a convolution of negative binomial and Poisson distributions was proposed 

to account for background distribution in the Capture-HiC data85. As Capture-HiC 

technology becomes more popular, novel computational methods will be developed to 

better-characterize its data.

Several key issues need to be considered with the above peak-calling approaches. First, 

whether to use a global background model or a local background model is still under debate. 

Unlike peak-calling in ChIP-seq data analysis, in which input DNA is frequently used as 

control, it is unclear how to characterize the random collision frequency between chromatin 

loci. Second, to detect biologically meaningful chromatin interactions, such as those 

between individual cis-regulatory elements, a great number of candidate loci needs to be 

considered when statistically determining if any two loci of interest are interacting more 

frequently than expected. In practice, this imposes a challenging multiple-comparisons 

problem, which requires highly intensive computation and rigorous statistical justification. 

Third, biologically meaningful, long-range chromatin contacts are spatially and temporally 

dynamic. Without a ‘gold standard’ of true-positive and true-negative chromatin contacts, it 

is difficult to fully evaluate the sensitivity and specificity of each approach. Moreover, to 

address biological hypotheses, it is important to conduct targeted analyses across different 

cell types to identify cell-type-specific chromatin contacts94. It is just as important to closely 

examine cell-type-common chromatin contacts where cell-type-specific enhancer activation 

is observed, as these may be controlled by different transcription-factor-binding events, 

rather than by differential chromatin looping27. However, the careful evaluation of technical 

variability and biological variability of chromatin interaction frequency as well as the 

comprehensive experimental validation of cell-type-specific chromatin interactions are still 

lacking. We envision that further advancement in both experimental technologies and 

computational algorithms for the targeted analysis of chromatin conformation will occur in 

the near future.

Future perspectives

Although C-technologies have been increasingly used, current experimental protocols have 

some significant limitations that could prevent the uncovering of additional chromatin 

organization features. First, common methods produce only static molecular interaction 

maps that overlook the temporal dynamics of chromatin in live cells and disregard cell-to-

cell variability in a population, potentially leading to incorrect models of chromatin 

organization. Second, current maps of chromatin interaction still lack the fine resolution 

needed to resolve interactions between individual cis-regulatory elements, greatly limiting 

our ability to interrogate the functional roles of chromatin structure in gene regulation. 

Third, current methods for mapping chromatin interactions permit the efficient mapping of 

only pairwise interactions, thus failing to detect potential multi-way interaction hubs that are 

suspected to exist in the nucleus. Last, with various different techniques for mapping and 

analysing chromatin topology, a critical comparison of these methods is greatly needed.

The recently launched 4D Nucleome Project will address these challenges through a multi-

pronged approach. In particular, new data standards for assessing different experimental 

protocols and data analysis methods will be developed. Such standards could include pairs 

Schmitt et al. Page 13

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of DNA loci for which chromatin interactions have been rigorously assessed genetically, 

biochemically and by using microscopy imaging. This US National Institutes of Health 

(NIH) common fund initiative is also expected to develop improved methods for generating 

high-resolution chromatin-interaction maps, through a combination of substantial 

optimization and improvement of experimental protocols, innovative algorithms for data 

analysis and structural modelling. New methods for determining chromosome organization 

in small numbers of cells or even single cells will be developed, along with methods that 

generate complementary views of genome organization without fixation, restriction 

digestion or ligation.

Live-cell imaging tools and analysis approaches are needed that can accurately inform on 

dynamic chromatin organization both within and between TADs. Multicolour live-cell 3D 

imaging tools will be particularly useful for studying chromatin motion in live cells. The 

results of such experiments could uncover the basic principles governing dynamic chromatin 

organization at various scales in mammalian cells and help to interpret the contact 

probability data obtained from C-technologies.

Finally, to achieve a thorough understanding of the structural and functional role of 

chromatin organization in transcription regulation, 3D chromatin organization data sets will 

need to be integrated with other genomic and epigenomic data sets in a wide range of cell 

types and tissues, such as those produced by large-scale consortia like the NIH Encyclopedia 

of DNA Elements (ENCODE) project, Roadmap Epigenome project and the International 

Human Epigenome Consortium. This will result in improved knowledge of the functional 

relationships between chromatin organization and genome function.
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Glossary

Hi-C
A high-throughput, genome-wide chromosome conformation capture assay using affinity 

purification of labelled-DNA ligation junctions to measure pairwise interaction frequencies 

in cell populations

Chromosome conformation capture carbon copy
(5C). A high-throughput chromosome conformation capture assay that examines the spatial 

proximity of two defined sets of genomic regions, measured using a pair of DNA oligos 

corresponding to the sequences upstream and downstream of the ligation junction

Target size
The cumulative length (in base pairs) targeted by capture probes in a Capture-HiC 

experiment
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Bin size
A measure of Hi-C data resolution. A bin is a fixed, non-overlapping genomic span to which 

Hi-C reads are grouped to increase the signal of chromatin interaction frequency

Restriction enzyme fragment lengths
The total genomic length in each bin that is within 500 bp of restriction enzyme cut sites 

used in the Hi-C library preparation

Mappability
The probability of a read-mapping uniquely to the effective fragment length sequence within 

each bin

Poisson distribution
A probability distribution for the discrete random variable in which the variance is the same 

as the mean

Negative binomial distribution
A probability distribution for the discrete random variable in which the variance is larger 

than the mean

Hi-C contact matrices
Symmetric, two-dimensional matrices (M), for which each matrix entry (Mij) represents the 

raw or normalized contact frequency between bin i and bin j

Bait-specific bias
An experimental bias in the Capture-HiC procedure, referring to the unequal probability of 

probe hybridization to the target sequence as a result of variable sequence content and 

hybridization properties

Other-end-specific bias
An experimental bias in the Capture-HiC procedure, referring to the unequal probability of 

ligation between the bait locus and its interacting restriction fragment as a result of variable 

local genomic features

Principal component analysis
(PCA). A statistical approach for multivariate data analysis. PCA converts a set of correlated 

variables into a set of linearly uncorrelated variables named principal components, each of 

which is a linear combination of the original correlated variables

First eigenvector
The coefficients of the linear combination in the first principle component, which has the 

largest variance among all principal components. In Hi-C data analysis, the sign of the first 

eigenvector was used to determinate the A and B compartments

Hidden Markov model
(HMM). A statistical model assuming that the observed data are determined by a set of 

unobserved (hidden) states with the Markov property: the future state depends on only the 

current state and is independent of all the previous states
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Heuristic tuning parameters
The parameters in the statistical models and computational pipelines that are not estimated 

from the observed data but are determined based on prior knowledge and expectation

Global background model
The statistical model for the expected chromatin contact frequency estimated from genome-

wide measurements. It is used to systematically identify significant pairwise Hi-C 

interactions throughout the genome. All interacting loci pairs at a given linear distance share 

the same global background model

Non-parametric spline
A statistical approach to fit the observed data using a piecewise-defined polynomial function

Benjamini–Hochberg multiple-testing correction
A statistical procedure that uses stringent statistical significance thresholds to control the 

false discovery rate when performing multiple comparisons

Local background model
The statistical model for the expected chromatin contact frequency estimated from local 

chromatin interaction properties. Each pair of interacting loci has a unique local background 

model, which depends on the definition of its local neighbouring regions
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Figure 1. Experimental modifications to genome-wide chromosome conformation capture (3C)-
based technologies (C-technologies)
a| Chromatin fragmentation can be achieved using type II restriction enzymes (REs), which 

cut at enzyme-specific recognition motifs22,47, endonucleases such as DNase I, which 

fragments DNA at sites of open chromatin48,49, and micrococcal nuclease (MNase), which 

fragments chromatin in histone linker sequences50. b | Hi-C includes the sequencing of all 

biotin-labelled ligation products, which are enriched by biotin-affinity purification and 

subsequent library preparation22,69,70. In Capture-HiC, sequences of interest can be enriched 

from a Hi-C DNA library to obtain highly multiplexed, targeted interaction profiles29,53–60. 

This involves the hybridization of biotinylated capture-probes to DNA sequences of interest 

(step 1), the immobilization of this library of probe–target sequence duplexes on streptavidin 

beads (step 2) and the washing away of unbound DNA, leaving only the captured probe–

library duplexes (step 3). c | Proximity ligation in Hi-C sample preparation was originally 

done after nuclei were lysed and chromatin complexes were diluted, to favour intramolecular 

ligation events22,69,70 (left). An alternative strategy is to carry out the proximity ligation step 

within intact nuclei27,38 before nuclear lysis and DNA–protein crosslink reversal (right). d | 

Single-cell Hi-C38,96 (top) differs from cell-population Hi-C22,69,70 (bottom) by the plating 
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of nuclei, the sorting of them individually into tubes and the processing of them using a 

modified library preparation protocol. X-links, crosslinks.
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Figure 2. Comparison of computational methods to account for bias in Hi-C data
We reprocessed high-resolution Hi-C data from IMR90 cells19 uniformly until the bias-

removal step, at which point either raw contact matrices were generated or normalization 

was conducted with one of three methods. Here, we illustrate a semi-quantitative 

comparison of human chromosome 7 (chr7) for 3 genomic resolutions (whole chromosome, 

a multi-megabase (multi-Mb) locus and a topologically associating domain (TAD)) at 40 kb 

bin size for a raw Hi-C contact matrix (part a), an explicit model of bias removal (HiCNorm) 

(part b), and two methods of matrix-balancing algorithms for bias removal, namely a fast, 

rough, single-iteration balancing method, vanilla coverage (VC) (part c) and iterative 

correction and eigenvector decomposition (ICE) (part d). It can be visually appreciated that 

the explicit or implicit assumptions made by each method to account for biases result in 
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quantitative differences in the normalized interaction frequency between loci. The intensity 

gradient is a linear increase from zero to the maximum noted (units are observed read counts 

for the raw matrices, and normalized read counts for the normalized matrix columns). 

Depicted are a series of symmetrical Hi-C contact matrices at various genomic resolutions. 

The rows (i) and columns (j) of each matrix represent bins along a chromosome, in this case 

various regions of human chr7. Each matrix entry [i,j] represents the observed or normalized 

interaction frequency between a pair of genomic loci. Pairwise interactions observed at 

higher frequency are depicted as a darker red colour along the colour gradient, whereas light 

red coloration represents very few observed interactions in the Hi-C data. The gradient units 

for raw matrices (part a) are ‘observed interaction frequency’ and the units for HiCNorm, 

VC and ICE (parts b–d) are ‘normalized interaction frequency’, which become increasingly 

apparent when analysing more-local Hi-C contacts (closer to the diagonal). Matrix entries 

near the matrix diagonal represent pairwise interactions between loci that are proximal in 

linear genomic distance (i~j), whereas matrix entries far off the diagonal (i≫j) represent 

pairwise interactions between loci that are very distal in linear genomic distance. For whole-

chromosome and TAD resolutions, the maximal signal intensity was set to the ninety-ninth 

percentile for the given matrix. For the multi-Mb resolution, the maximal intensity was set to 

the ninety-fifth percentile value of the given matrix. Each matrix is a symmetrical matrix, 

NxN, and the chromosome coordinate information is given below each matrix in megabases.
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Table 1

A tabulation of known chromosome conformation capture technologies

Assay abbreviation Full assay name Refs Related protocols or 
guidelines

1 versus 1*

3C Chromosome conformation capture 43 97–100

1 versus Many/All*

Multiplexed 3C-seq Multiplexed chromosome conformation capture sequencing 101 102

Open-ended 3C Open-ended chromosome conformation capture 103 –

3C-DSL Chromosome conformation capture combined with DNA selection and ligation 104 –

4C Circular chromosome conformation capture 45 105

4C Chromosome conformation capture-on-chip 51 –

4C-seq Chromosome conformation capture-on-chip combined with high-throughput 
sequencing

106 46,72, 107,108

TLA Targeted locus amplification 30 –

e4C Enhanced chromosome conformation capture-on-chip 109 110

ACT Associated chromosome trap 111 112

Many versus Many*

5C Chromosome conformation capture carbon copy 52 113–116

ChIA–PET Chromatin interaction analysis paired-end tag sequencing 23 –

Many versus All*

Capture-3C Chromosome conformation capture coupled with oligonucleotide capture 
technology

25 –

Capture-HiC Hi-C coupled with oligonucleotide capture technology 58 –

All versus All*

GCC Genome conformation capture – 117

Hi-C Genome-wide chromosome conformation capture 22 69,70,118

ELP Genome-wide chromosome conformation capture with enrichment of ligation 
products

119 –

TCC Tethered conformation capture 24 –

Single-cell Hi-C Single-cell genome-wide chromosome conformation capture 38 96

In situ Hi-C Genome-wide chromosome conformation capture with in situ ligation 27 –

DNase Hi-C Genome-wide chromosome conformation capture with DNase I digestion 49 –

Micro-C Genome-wide chromosome conformation capture with micrococcal nuclease 
digestion

50 –

*
‘1’, ‘Many’ and ‘All’ indicate how many loci are interrogated in a given experiment. For example, ‘1 versus All’ indicates that the experiment 

probes the interaction profile between 1 locus and all other potential loci in the genome. ‘All versus All’ means that one can detect the interaction 
profiles of all loci, genome-wide, and their interactions with all other genomic loci.

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 January 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schmitt et al. Page 27

Ta
b

le
 2

D
es

ig
n 

an
d 

im
pl

em
en

ta
tio

n 
of

 C
ap

tu
re

-H
iC

 e
xp

er
im

en
ts

O
lig

o 
ar

ra
y 

ve
nd

or
P

ro
be

O
rg

an
is

m
Ta

rg
et

 (
or

 t
ar

ge
ts

)
C

on
tr

ol
 (

or
 c

on
tr

ol
s)

H
i-

C
 li

br
ar

y 
pr

ot
oc

ol
R

ef
s

A
gi

le
nt

 S
ur

eS
el

ec
t

R
N

A
H

um
an

B
re

as
t c

an
ce

r 
ri

sk
 lo

ci
Si

ze
-m

at
ch

ed
 g

en
e 

de
ss

er
t r

eg
io

ns
H

in
d 

II
I 

di
lu

tio
n 

H
i-

C
58

A
gi

le
nt

 S
ur

eS
el

ec
t

R
N

A
H

um
an

C
ol

on
 c

an
ce

r 
ri

sk
 lo

ci
N

/A
H

in
d 

II
I 

di
lu

tio
n 

H
i-

C
59

In
-h

ou
se

*
R

N
A

H
um

an
M

H
C

 a
nd

 K
IR

 lo
ci

N
/A

H
in

d 
II

I 
di

lu
tio

n 
H

i-
C

29

In
-h

ou
se

*
R

N
A

H
um

an
T

hr
ee

 ~
2-

M
b 

lo
ci

N
/A

M
bo

 I
 in

 s
itu

 H
i-

C
60

R
oc

he
 N

im
bl

eg
en

 S
eq

C
ap

D
N

A
H

um
an

L
nc

R
N

A
 p

ro
m

ot
er

s
β-

G
lo

bi
n 

L
C

R
, N

A
N

O
G

, a
nd

 S
O

X
2 

lo
ci

D
N

as
e 

I 
di

lu
tio

n 
H

i-
C

49

A
gi

le
nt

 S
ur

eS
el

ec
t

R
N

A
M

ou
se

Pr
om

ot
er

s
R

an
do

m
 li

ga
tio

n 
lib

ra
ry

‡
H

in
d 

II
I 

di
lu

tio
n 

H
i-

C
56

A
gi

le
nt

 S
ur

eS
el

ec
t

R
N

A
M

ou
se

Pr
om

ot
er

s
R

an
do

m
 li

ga
tio

n 
lib

ra
ry

‡
H

in
d 

II
I 

D
ilu

tio
n 

H
i-

C
57

A
gi

le
nt

 S
ur

eS
el

ec
t

R
N

A
H

um
an

Pr
om

ot
er

s
R

an
do

m
 li

ga
tio

n 
lib

ra
ry

‡
H

in
d 

II
I 

D
ilu

tio
n 

H
i-

C
54

A
gi

le
nt

 S
ur

eS
el

ec
t

R
N

A
H

um
an

Pr
om

ot
er

s 
an

d 
au

to
im

m
un

e 
di

se
as

e 
ri

sk
 lo

ci
H

B
A

 lo
cu

s
H

in
d 

II
I 

di
lu

tio
n 

H
i-

C
53

R
oc

he
 N

im
bl

eg
en

 S
eq

C
ap

D
N

A
M

ou
se

Pr
om

ot
er

s
In

te
rg

en
ic

 a
nd

 e
xo

ni
c 

re
gi

on
s

M
bo

 I
 d

ilu
tio

n 
H

i-
C

55

H
B

A
, h

ae
m

og
lo

bi
n 

su
bu

ni
t a

lp
ha

; L
C

R
, l

oc
us

 c
on

tr
ol

 r
eg

io
n;

 L
nc

R
N

A
, l

on
g 

no
n-

co
di

ng
 R

N
A

; N
/A

, n
ot

 a
pp

lic
ab

le
.

* Si
ng

le
-s

tr
an

d 
D

N
A

 o
lig

on
uc

le
ot

id
es

 a
re

 o
bt

ai
ne

d 
fr

om
 C

us
to

m
A

rr
ay

 a
nd

 s
yn

th
es

iz
ed

 in
to

 R
N

A
 p

ro
be

s 
in

-h
ou

se
.

‡ In
 th

e 
ra

nd
om

 li
ga

tio
n 

lib
ra

ry
, c

ro
ss

lin
ks

 a
re

 r
ev

er
se

d 
be

fo
re

 th
e 

pr
ox

im
ity

 li
ga

tio
n 

re
ac

tio
n.

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2018 January 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schmitt et al. Page 28

Table 3

Approaches to account for systematic biases in Hi-C data

Approach Model assumption* Implementation‡ Computational speed Refs

Yaffe and Tanay Three systematic biases Perl and R Slow 77

HiCNorm Three systematic biases R Fast 78

ICE Equal visibility Python Fast 79

Knight and Ruiz Equal visibility JAVA Fast 27

HiC-Pro Equal visibility Python and R Very fast 80

ICE, iterative correction and eigenvector decomposition.

*
Model assumption refers to the inherent assumptions in the computational model used to account for bias in Hi-C data. These approaches can be 

classified based on their model assumptions: they are either explicit, assuming that systematic biases are known (three systematic biases), or 
implicit, assuming systemic biases are unknown and all the bias is captured by the sequencing coverage of each bin (equal visibility).

‡
Implementation refers to the programming language in which the normalization programme is written.
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Table 4

Approaches for the analysis of global chromatin conformation

Approach Objective Pros Cons Refs

PCA Detect nuclear compartments Easy to implement; straightforward 
interpretation

First eigenvector may not work; arbitrary 
compartment assigning

22

DI/HMM Detect TADs Model the change of upstream and 
downstream interaction bias

Heuristic tuning parameters 6

Arrowhead Detect TADs High computational efficiency with 
dynamic programming

Heuristic tuning parameters 27

Insulation score Detect TADs Robust to different sequencing depth; 
can detect dynamics of TAD 
boundaries

Heuristic tuning parameters 90

Armatus Detect TADs TAD calling robust in different 
resolutions

Fails to provide uncertainty in TAD 
calling

88

HiCseg Detect TADs Models the uncertainty in Hi-C data Fails to detect multi-level TADs 89

DI, directionality index; HMM, hidden Markov model; PCA, principle component analysis; TAD, topologically associating domain.
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Table 5

Approaches for chromatin contact peak-calling

Approach Assumption on 
background model

Pros Cons Refs

Jin et al. Global background Models contact-frequency uncertainty as 
a negative binomial distribution

Variability of local chromatin organization 
may introduce biases

19

Fit-Hi-C Global background Accurate background model using non-
parametric spline

Variability of local chromatin organization 
may introduce biases

91

GOTHiC Global background Models contact-frequency uncertainty as 
binomial distribution

Variability of local chromatin organization 
may introduce biases

54

HiCCUPS Local background Designed for high-resolution Hi-C data Deep sequencing is required 27

HMRF Global or local background Models spatial dependency among 
adjacent, interacting loci

High computation cost 93

GOTHiC, genome organisation through HiC; HiCCUPS, Hi-C computational unbiased peak search; HMRF, hidden Markov random field.
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