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Abstract

It is argued that during ongoing visual perception, the brain is generating top-down predictions to
facilitate, guide and constrain the processing of incoming sensory input. Here we demonstrate that
these predictions are drawn from a diverse range of cognitive processes, in order to generate the
richest and most informative prediction signals. This is consistent with a central role for cognitive
penetrability in visual perception. We review behavioural and mechanistic evidence that indicate a
wide spectrum of domains—including object recognition, contextual associations, cognitive biases
and affective state—that can directly influence visual perception. We combine these insights from
the healthy brain with novel observations from neuropsychiatric disorders involving visual
hallucinations, which highlight the consequences of imbalance between top-down signals and
incoming sensory information. Together, these lines of evidence converge to indicate that
predictive penetration, be it cognitive, social or emotional, should be considered a fundamental
framework that supports visual perception.
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Introduction

Visual perception is not a passive or exclusively stimulus-driven process. Instead, there is a
proactive interplay between incoming stimuli and predictions based on internally generated
models, which shapes our conscious perception of the world around us (Bar, 2004; Bullier,
2001; Engel, Fries, & Singer, 2001). This enables our perceptual system to harness a lifetime
of experience with the world, leveraging our past to aid our interpretation of the present.
Along these lines, a predictive coding framework for visual perception is well established,
fitting with a broader general principle of the brain as a predictive machine (Clark, 2013;
Dayan, Hinton, Neal, & Zemel, 1995; Friston, 2010). Echoed across perceptual modalities,
motor outputs and learning systems, hierarchically organised top-down pathways convey
information about what to expect based on our prior experience. These predictions are
combined with incoming sensory information to sculpt the most likely interpretation of the
world around us. Sparingly, only mismatches between the descending predictions and lower-
level sensory information are carried forward in the form of prediction error signals, to be
reconciled at higher levels of the processing hierarchy, where new hypotheses are generated
to accommodate the incoming input (Friston, Stephan, Montague, & Dolan, 2014).

Predictive coding is both a biologically and computationally plausible description of
information flow in the brain, yet the intimately related process of cognitive penetration in
perception is hotly debated (Firestone & Scholl, 2015, in press; Macpherson, 2012;
O’Callaghan, Kveraga, Shine, Adams, & Bar, in press; Raftopoulos, 2014; Stokes, 2013;
Vetter & Newen, 2014; Zadra & Clore, 2011). Cognitive penetration entails that a myriad of
information from other modalities can influence the earlier stages of the perceptual process.
Access to a wide variety of information processing systems when generating predictions will
ensure that the predictions will be rich and most effective for minimising global prediction
error (Lupyan, 2015), emphasising a central role for cognitive penetration in visual
perception.

The predictive nature of the visual processing system itself is apparent from the basic tenets
of object perception, (Bar et al., 2006; Enns & Lleras, 2008), but there is less clarity
regarding the extent to which other cognitive systems shape perception. Here we start by
using object recognition to demonstrate the mechanisms of top-down influence on
perception. We then extend this framework to show that beyond features intrinsic to an
object itself, contextual factors, as well as other cognitive and affective processes, all
converge to provide a source of top-down prediction that influences visual perception. We
explore these patterns both in social and affective neuroscience, and then describe novel
insights on how a failure of this system can manifest neuropsychiatric disorders such as
visual hallucinations.

Object recognition

The premise for a predictive coding account of visual perception relies on descending neural
pathways throughout the visual processing system (Angelucci et al., 2002; Bullier, 2001).
This structure allows for feed-forward projections, originating in the primary visual cortex
and ascending via dorsal and ventral streams, to be matched with reciprocal feedback
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connections (Felleman & Van Essen, 1991; Gilbert & Li, 2013; Salin & Bullier, 1995).
Under this scheme, top-down predictions are generated at higher levels and compared with
lower-level representations of sensory input, with any resultant mismatch coded as a
prediction error (Clark, 2013; Friston, 2005b; Friston et al., 2014; Rao & Ballard, 1999). In
the case of object recognition, the orbitofrontal cortex has emerged as a source of such top-
down expectations (Bar et al., 2006).

Earlier work characterised the ascending dorsal and ventral visual pathways as dominated
respectively by magnocellular and parvocellular cells (Goodale & Milner, 1992; Ungerleider
& Mishkin, 1982). The magnocellular (M) pathway carries achromatic, low spatial
frequency information rapidly and is sensitive to high temporal frequencies, whereas the
parvocellular (P) pathway transmits fine detail in the luminance channel, low spatial
frequency information in the colour channel, has slower conduction velocities and can only
process lower temporal frequencies (Maunsell, Nealey, & DePriest, 1990; Nowak & Bullier,
1997; Tootell, Switkes, Silverman, & Hamilton, 1988). Studies have since capitalised on the
different properties of M and P pathways to reveal the time course and sources of top-down
modulation of vision. Using low spatial frequency (LSF) stimuli to preferentially recruit M
pathways, a combined approach of magnetoencephalography (MEG) functional magnetic
resonance imaging (fMRI) revealed early activity was evident in the orbitofrontal cortex
~130 ms post stimulus presentation, well before object recognition-related activity peaks in
the ventrotemporal cortex (Bar et al., 2006). A similar time window for top-down responses
to categorising LSF scenes versus HSF scenes, where fMRI showed increased activity in the
left prefrontal cortex and left middle temporal cortex, was associated with ERP activation in
the 140-160 ms period (Peyrin et al., 2010). Although these time scales do not represent the
earliest temporal component in visual processing (i.e., 0-100 ms), they are occurring at the
short latency between 100-200 ms, suggesting that these top-down influences on object
recognition modulate processing from reasonably early stages.

In order to provide a clearer picture of the spatiotemporal trajectory of top-down feedback,
an fMRI study using dynamic causal modelling confirmed that early activation in the
orbitofrontal cortex in response to M-biased stimuli then initiated top-down feedback to the
fusiform gyrus (Kveraga, Boshyan, & Bar, 2007). P-biased stimuli in the same study were
associated with a different connectivity pattern where only feedforward information flow
increased between occipital cortex and fusiform gyrus. By comparison, orbitofrontal cortex
activity only predicted M- and not P-biased stimuli, which resulted in faster recognition of
M stimuli by ~100 ms. Similar evidence of early orbitofrontal activation preceding temporal
lobe activity has been found when individuals make initial judgements about the coherence
of degraded visual stimuli (Horr, Braun, & Volz, 2014) as well as during categorisation of
face versus non-face images (Summerfield et al., 2006). These studies highlight the
orbitofrontal cortex as an origin for top-down effects that can modulate processing in earlier
visual processing areas.

The above findings support a predictive coding account of object recognition, whereby
cursory visual information is sufficient to engage a memory store of information about the
basic category of the object, used to generate the most likely prediction about the object’s
identity (Bar, 2003; Oliva & Torralba, 2007). Rapidly extracted predictions about the general
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category of an object is fed back to lower levels of the visual processing hierarchy to enable
faster recognition by constraining the number of possible interpretations. Fitting with the
predictive coding framework that we generate top-down hypotheses based on our knowledge
of stored regularities in the world, another fMRI study revealed this orbitofrontal cortex
facilitation of object recognition was triggered only for meaningful LSF images (Chaumon,
Kveraga, Barrett, & Bar, 2014). Meaningful LSF images resulted in a top-down feedback
signature of increased functional connectivity between the orbitofrontal cortex and ventral
visual pathway, whereas meaningless images did not. This suggests that generating strong
top-down predictions requires connection with a learned representation of an object. In
typical circumstances, guiding perception with top-down expectations facilitates the
accuracy and speed of object recognition. When sensory input is ambiguous, top-down
guidance is even more important for supplying information to resolve the ambiguity
(O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013; Panichello, Cheung, & Bar, 2012). In a
predictive coding framework, the integration of top-down signals with the feed-forward
information flow is an iterative process geared toward progressive error reduction. Initial
feed-forward sweeps associated with coarse (LSF) categorical processing are followed by
graded HSF recurrent processing, which reflects the formation of increasing detailed
recognition judgments (Clarke, Taylor, & Tyler, 2011; Poch et al., 2015). Such a pattern
supports the idea that more complex information may require further iteration in the error
reduction process.

Over and above this predictive mechanism characterising visual perception, considering the
orbitofrontal cortex as an origin site for top-down effects reveals how diverse information
streams may penetrate visual processing from the initial stages. The orbitofrontal cortex is
well connected with the visual system, receiving projections from the temporal visual
regions (inferior temporal cortex, superior temporal sulcus and temporal pole) (Barbas,
1988, 1995; Carmichael & Price, 1995) and is a target of visual information relayed via the
pulvinar (Bridge, Leopold, & Bourne, 2015; Guillery & Sherman, 2002). Recordings in non-
human primates reveal neuronal responses to visual stimuli in the orbitofrontal cortex (Rolls
& Baylis, 1994; Thorpe, Rolls, & Maddison, 1983). Further to this, however, the
orbitofrontal cortex is a richly connected association region, receiving inputs from visceral,
limbic and other sensory modalities (Rolls, 2004). The orbitofrontal cortex is therefore
ideally positioned to integrate cross-modal information relevant to the interpretation of
incoming visual stimuli. Studies relating orbitofrontal activation to top-down modulation of
object recognition chiefly identified activation in the inferior orbitofrontal cortex (Bar et al.,
2006; Bar et al., 2001; Chaumon et al., 2014). This region overlaps with the lateral
orbitofrontal region (area 12) where sensory input from the visual system terminates
(Kringelbach & Rolls, 2004).

The orbitofrontal cortex has been associated with an array of functions, including inhibition,
emotion regulation and reward processing. Evidence suggests the unifying computational
nature of the orbitofrontal cortex is to signal the predicted value of choice or action
outcomes, by encoding both the sensory features of outcomes and their biological value
relative to the current state of the organism (Passingham & Wise, 2012; Rudebeck &
Murray, 2014; Schoenbaum, Roesch, Stalnaker, & Takahashi, 2009). Exactly how this
computational process supports early categorical predictions in object recognition is not yet
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clear, but activity related to expected versus observed outcomes during perceptual decision
making has been observed in the orbitofrontal cortex (Summerfield & Koechlin, 2008),
consistent with a comparative process extending to visual predictions. The inter-
connectedness of the orbitofrontal cortex may allow object interpretations to be evaluated on
the combined basis of sensory information, emotional information and information
regarding an organism’s current internal state and environmental context. The convergence
of sensory, emotional and contextual information is consistent with more information-rich
prediction error signals being a most effective means of minimising global prediction error.
The winning interpretation is then fed back to bias processing in earlier visual regions
(Trapp & Bar, 2015). In the following section we consider contextual associations as one of
the critical sources of information harnessed in ongoing visual processing.

Contextual processing

A fundamental assumption is that our cognitive and perceptual processes do not operate in a
vacuum, but are subject to the constraints of a changeable environment that requires flexible
and context-dependent behaviour (Engel et al., 2001). Responses to contextual cues dictate
much of human behaviour, from influencing our social interaction to determining levels of
reward seeking or avoidant behaviours (Bartz, Zaki, Bolger, & Ochsner, 2011; Koob &
Volkow, 2010; Pennartz, Ito, Verschure, Battaglia, & Robbins, 2011). An ability to both
encode contextual associations and utilise them to guide behaviour is hard-wired across
animals and humans, and visual perception leverages this same mechanism. In this way,
scene perception can be understood in terms of the broader cognitive mechanism of
associative processing (Aminoff & Tarr, 2015; Bar, 2004; Summerfield & Egner, 2009).

Visual objects tend to occur in stereotypical settings. For example, before even walking into
a bathroom we could predict seeing certain objects — a shower, basin, lavatory, towels, and
so on. Experience affords the opportunity to learn such associations, which can in turn
become a rich source of information to guide predictions about object identification. In the
case of ambiguous visual input, information about the contextual surrounding will facilitate
its interpretation (Bar & Ullman, 1996). For example, the same object can be perceived as a
hairdryer or a drill, depending on whether it appears in a bathroom or a workshop context
(Bar, 2004). Regions anchored in the ventral visual stream, such as the parahippocampal
cortex, along with hippocampal and retrosplenial complexes, have a well-established shared
involvement in place-processing and episodic memory (Burgess, Maguire, & O’Keefe, 2002;
Epstein, Harris, Stanley, & Kanwisher, 1999). Studies exploring contextual processing in
visual perception unified these disparate functions to reveal their role for penetration in the
visual processing system, as described next.

By contrasting stimuli that are strongly versus weakly associated with a specific context, or
by training associations between novel visual stimuli, a network of activation across
parahippocampal, retrosplenial, and medial orbitofrontal cortices has been uniquely
associated with contextual processing (Aminoff, Gronau, & Bar, 2007; Aminoff, Kveraga, &
Bar, 2013; Bar & Aminoff, 2003). In contrast to the sites associated with early processing of
LSF information, more medial areas of the orbitofrontal cortex were identified in relation to
contextual processing. Although broadly involved in the computational processes outlined
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earlier, a more fine-grained distinction is that lateral orbitofrontal regions evaluate options
independently of each other, and medial regions are involved in comparing the options to
directly guide decisions (Rudebeck & Murray, 2014). Consistent with a comparative process
that draws upon multiple information streams, activity in overlapping regions of the medial
orbitofrontal cortex tracks both an object’s valence and its associative strength (Shenhav,
Barrett, & Bar, 2013). Continued careful examination of the exact role of the orbitofrontal
cortex in generating predictions to guide visual processing may reveal a lateral-medial
gradient related to the information processing demands of the incoming visual stimulus. The
significance of context in object processing is further highlighted when identical objects that
were included in different task sets (i.e., manipulating the context) resulted in different
patterns of ventral temporal and prefrontal cortex (Harel, Kravitz, & Baker, 2014). In this
case, activation in higher processing regions reflected the nature of the task set (context)
rather than object identity.

Critically for a predictive coding account, MEG with phase synchrony analyses revealed that
top-down contextual influences occur during the formation stages of a visual percept,
extending all the way back to early visual cortex (Kveraga et al., 2011). Substantiating an
account of top-down modulation drawn from associative processing, the reduced responses
in early visual areas shown in the context of cued or expected visual stimuli (Marois, Leung,
& Gore, 2000; Summerfield & Egner, 2009; Yoshiura et al., 1999) result in sharper
representations of the expected stimulus in those early regions (Kok, Jehee, & de Lange,
2012) - suggesting that the learnt association directly affects the perceptual process. This
has been interpreted as neural activation of expected events being silenced as it is
constrained by prediction feedback from higher-level regions (Murray, Kersten, Olshausen,
Schrater, & Woods, 2002; Summerfield & de Lange, 2014)

In object recognition, the orbitofrontal context emerges as an origin of neural prediction that
incorporates cross-modal information and utilises associative memory, in concert with
parahippocampal and retrosplenial complexes. Top-down information from these higher-
level regions is consistent with an initial global ‘context signal’, which incorporates a range
of information from LSF input and learned associations to facilitate perceptual processing in
earlier visual areas (Trapp & Bar, 2015). This rich set of information and associations
penetrates the earlier processing stream in the form of top-down predictions about the most
likely interpretation of the visual world. However, the scope of information that penetrates
visual perception is by no means limited to features intrinsic to an object or scene.
Information is drawn from a range of sources in order to formulate the predictions that
mould ongoing visual processing. Predictions in visual perception are drawn not only from
learned associations and context, but also from cognitive biases, interoceptive feedback and
affective states, as emphasised by the roles of social cognition and emotion in visual
processing.

Social cognitive penetration

There is a long history in social psychology of empirical work in favour of the claim that
social, cultural and mativational factors can directly influence visual perception (Bruner,
1957). For instance, social status is found to affect perceptions of the size of coins (Bruner &
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Goodman, 1947). Motivational factors that centre on how desirable an object is to the
perceiver are suggested to influence perception of the size, distance, steepness, salience, and
brightness of visual stimuli (Alter & Balcetis, 2011; Balcetis & Dunning, 2006; Banerjee,
Chatterjee, & Sinha, 2012; Bhalla & Proffitt, 1999; Den Daas, Hafner, & de Wit, 2013;
Radel & Clément-Guillotin, 2012; Song, Vonasch, Meier, & Bargh, 2012). Social
categorisation, including judgements about gender and race, is also thought to be strongly
influenced by well-learnt cultural stereotypes (Correll, Wittenbrink, Crawford, & Sadler,
2015; Levin & Banaji, 2006; MacLin & Malpass, 2001; Macrae & Martin, 2007; Payne,
2006).

Many of these behavioural findings, however, have been effectively criticised as failing to
provide true evidence of dynamic cognitive penetration of visual perception. Pitfalls in the
methodological approaches of many of these studies mean that task-specific effects of
judgement, memory and response bias cannot be ruled out as potential explanations of the
findings, as opposed to being true examples of top-down effects altering visual perception
(Firestone & Scholl, 2014, in press). This criticism highlights the continued need to validate
behavioural evidence of cognitive penetration in vision against neural markers, to establish
whether they are indeed consistent with top-down effects on ongoing visual processing.

Electrophysiological and fMRI studies of face perception, which is central to social
interactions, go some way to support a role for diverse social cognitive effects on visual
perception. When making judgements about the gender of a face, activity in the fusiform
cortex tracks closely with the linear gradations between morphed male and female faces,
whereas orbitofrontal cortex responses instead reflect subjective perceptions of face gender
(Freeman, Rule, Adams, & Ambady, 2010). Greater neural activity in upstream top-down
processing areas, including the fusiform face area of the ventral visual stream and the
orbitofrontal cortex, has been found in response to faces from a individual’s own “‘group’
(i.e., their racial group, or a group they have been arbitrarily assigned to by an experimenter)
(Golby, Gabrieli, Chiao, & Eberhardt, 2001; Van Bavel, Packer, & Cunningham, 2008).
Neural activity in the fusiform face area during processing of ‘in-group’ faces is functionally
distinct from the pattern of activity in lower-level processing regions of the primary visual
cortex (Van Bavel, Packer, & Cunningham, 2011). Consistent with the effects of ‘in-group’
categorisation influencing visual processing from fairly early stages, the N170 component of
the event-related potential (i.e., the earliest component reflecting perceptual processing of a
face (Rousselet, Husk, Bennett, & Sekuler, 2008)) is larger for ‘in-group’ faces (Ratner &
Amodio, 2013). Together, these findings support that social category cues modulate early
visual processing of faces, and that the influence of these top-down effects is particularly
evident in the fusiform gyrus of the ventral visual stream (Amodio, 2014). Importantly, these
neural sites supporting top-down effects in facial processing overlap with those identified for
object recognition and contextual processing.

It is perhaps not surprising then that social cues, such as gender, culture, race and eye gaze
have all been shown to influence the perception of, and neural responsiveness to, facial
displays of threat (Adams, Gordon, Baird, Ambady, & Kleck, 2003; Adams, Hess, & Kleck,
2015; Adams & Kileck, 2005). Consistent with the notion that the visual system might be
penetrable by a range of information processing streams, such effects have been found to be
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modulated by individual differences in trait anxiety and progesterone levels; this is
presumably linked to threat vigilance, as demonstrated in both perceptual tasks (e.g.,
(Conway et al., 2007; Fox, Mathews, Calder, & Yiend, 2007) and in amygdala
responsiveness to threat cues (e.g., (Ewbank, Fox, & Calder, 2010)).

Other social factors that are claimed to influence ongoing visual perception, such as morality
and social norms, remain to be validated against neuroimaging and electrophysiological
markers to substantiate that they do exert top-down effects on visual processing (Gantman &
Van Bavel, 2015). In time, social vision may emerge as a particularly salient example of
cognitive penetration of visual processing, as social interactions are amongst the most
information-rich human activities. Drawing from a wealth of cognitive resources to help
interpret social situations would be an effective way of generating top-down predictions and
lowering global prediction error. This is likely to be particularly relevant in social vision,
where we are required to interpret complex, and often very subtle, social cues.

Emotional penetration

Until quite recently, emotion was thought to be independent (and usually studied separately)
from perception and cognition — something that came after the stimulus was recognised.
Rather than being separate or competing processes, however, emotion and perception
interact to maximise the probability of correctly identifying a stimulus. In this way, a
person’s affective state is presumed to be a source of top-down penetration of visual
perception (Barrett & Bar, 2009). Effects of valence during visual perception are detectable
at a reasonably early time scale, with the earliest ERP modulations as a function of valence
emerging at 120-160 ms (Carretié, Hinojosa, Martin-Loeches, Mercado, & Tapia, 2004;
Olofsson, Nordin, Sequeira, & Polich, 2008; Schénwald & Miiller, 2014; Smith, Cacioppo,
Larsen, & Chartrand, 2003). Rapid extraction of affective information about a visual
stimulus may be highly adaptive, signalling whether an object should be approached or
avoided (Barrett & Bliss-Moreau, 2009). Multiple neural routes exist whereby the affective
value of a stimulus can be rapidly processed, including the magnocellular system and
projections to the orbitofrontal cortex (Pessoa & Adolphs, 2010).

Supporting the integration of affective state and conscious visual awareness, in a binocular
rivalry paradigm pairing faces against houses, unseen faces with an affective value (i.e.,
scowling or smiling) modulated perception of neutral faces, such that they were imbued with
affective value (Anderson, Siegel, White, & Barrett, 2012). The temporal course for visual
information entering conscious awareness is also found to be modulated by positive versus
negative mood induction (Kuhbandner et al., 2009). These effects are apparent at the neural
level, where negative mood induction produced lower recognition reaction times and
decreased the latency of responses in a number of visual and affective brain regions, from
the primary visual cortex, to fusiform, medial temporal and insular cortex, to the
orbitofrontal cortex (Panichello, Kveraga, Chaumon, Bar, & Barrett, under revision). These
effects of emotional valence became apparent at around 80-90 ms in V1 and LOC,
suggesting at least some early-stage penetrability of early and mid-level visual regions
(Panichello et al., under revision). Evidence from fMRI suggests that the orbitofrontal cortex
is a site for triggering top-down predictions about the affective value of visual stimuli, as
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activity in overlapping regions in the medial orbitofrontal cortex indexes both an object’s
associative strength and whether is has positive or negative valence (Shenhav et al., 2013).
The amygdala may be providing a critical source of input for orbitofrontal cortex
computations about the affective value of stimuli, given the amygdala’s connectivity with
the orbitofrontal cortex, its position as a target of visual pathways and its role in encoding
emotionally salient information (Pessoa & Adolphs, 2010; Roy, Shohamy, & Wager, 2012).
Consistent with ERP time scales cited above describing the time course of valence effects in
human vision, cellular recordings from the monkey amygdala in response to visual stimuli
range from 100-200 ms (Gothard, Battaglia, Erickson, Spitler, & Amaral, 2007; Leonard,
Rolls, Wilson, & Baylis, 1985; Nakamura, Mikami, & Kubota, 1992), with differential
effects depending on valence detectable in the range of 120-250 ms (Gothard et al., 2007).

Affective predictions play an important role in facilitating visual recognition of not just
familiar faces and objects, but also in quickly identifying danger. Viewing threatening visual
stimuli is accompanied by increased activity in regions implicated in threat detection and
initiating “fight-or-flight” responses in the sympathetic system, such as the amygdala,
periaqueductal grey, and the orbitofrontal cortex (Kveraga et al., 2015). However, the
activity in these regions, as well as behavioural threat ratings, were found to be dependent on
the context of the threat: images of someone handling a gun at a shooting range vs. being
robbed at gunpoint evoked vastly different response patterns. Threatening objects or animals
oriented towards the observer heightened the personal feeling of danger compared to when
they were oriented towards someone else. Moreover, in a threat detection task, context
influenced how quickly threatening objects or animals were recognised: threatening objects
and animals were recognised quickest in direct-threat contexts (Kveraga et al., 2015, Supp.
Mat.). These findings suggest that affective information in threatening situations is
integrated with visual processing, modulating both how objects are interpreted and how
quickly they are recognised.

Another avenue supporting the penetration of affective information in ongoing visual
processing is derived from neuropsychiatric syndromes where visual recognition is impaired
in the context of reduced emotional certainty about a decision. Patients with Capgras
syndrome have apparently intact visual recognition abilities (though their recognition
latencies are unknown), but insist their family members and friends (and sometimes, familiar
objects) have been replaced by impostors or “doubles” (Anderson, 1988; Ellis & Lewis,
2001; Ellis, Young, Quayle, & De Pauw, 1997). Capgras syndrome can emerge in the
context of varied disorders and its neural substrate is not precisely defined (Thiel, Studte,
Hildebrandt, Huster, & Weerda, 2014). A consistent finding in these patients, however, is the
absence of an increased skin conductance response when viewing familiar faces, indicating
no covert recognition by their autonomic system (Ellis et al., 1997). This highlights an
integrative role for affective responses and visual processing facilitating complete
recognition — i.e., beyond recognising a physical likeness, but recognising a person or object
as one that is known and familiar.
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Visual hallucinations

It becomes clear from the preceding sections that given the multiple avenues of top-down
penetration into visual processing, accurate perception requires striking a balance between
the weighting assigned to our predictions versus that assigned to incoming sensory input.
Visual hallucinations illustrate the consequences of an imbalance in this system. To be
adaptive, the relative influence of top-down versus bottom-up sensory input must be flexible
and context-sensitive (Lupyan & Clark, 2015). For example, navigating our homes in
darkness we will rely heavily on a stored model of the topography and less on sensory
information, but in a novel, challenging environment — say, navigating precipitous terrain on
a bushwalk — reliance on sensory information is paramount, though not exclusive. Predictive
coding frameworks allocate precision weighting measurements that signal how much
confidence should be assigned to prediction errors, in effect this allows information from the
most relevant channels to be weighed higher (Friston et al., 2014). An emerging theme in
neuropsychiatry is that imbalances in this system cause undue reliance on either top-down or
on incoming sensory information, contributing to a range of symptoms (Corlett, Honey,
Krystal, & Fletcher, 2011; Fletcher & Frith, 2009; Stephan et al., 2015; Teufel et al., 2015).
Hallucinations are linked to a relative increase in the weighting of prior predictions (Adams,
Stephan, Brown, Frith, & Friston, 2013; Friston, 2005a), such that top-down influences tend
to dominate visual processing in hallucinations and erroneous perceptions prevail in the face
of contradictory sensory evidence. The predictive coding framework provides a mechanistic
account of how aberration in the visual processing hierarchy results in hallucinations.
However, considering the nature of cognitive penetration in visual perception gives a much
richer picture of the qualitative aspects of visual hallucinations and clues to their underlying
anatomy.

Phenomenological enquiry in conditions that manifest visual hallucinations, including
schizophrenia, psychosis, Parkinson’s disease and dementia with Lewy bodies, suggests that
the content of hallucinatory percepts can be furnished by contextual associations drawn from
the environment or by autobiographical memories. For example, identifiable faces or objects
can be construed from ambiguous scenery as is the case with pareidolic hallucinations
(Uchiyama et al., 2012), and hallucinations of familiar people or pets are commonly
reported (Barnes & David, 2001). Furthermore, the frequency and severity of visual
hallucinations has been linked to mood and physiological states (e.g., stress, depression and
fatigue), with mood also playing an important role in determining the content of
hallucinations (e.g., when the image of a deceased spouse is perceived during a period of
bereavement) (Waters et al., 2014). Together, the influence of contextual associations,
autobiographical memories and emotion on the hallucinatory percept dovetails with the
above sections to show that cognitive penetration of visual processing accommodates diverse
information streams.

Convergent evidence across disorders suggests that abnormal activity in those regions
supplying top-down influences during normal visual processing, identified in the previous
sections to include medial temporal and prefrontal sites, is instrumental in generating
hallucinatory visual percepts (Shine, O’Callaghan, Halliday, & Lewis, 2014). Hippocampal
and parahippocampal regions of the medial temporal lobe, combined with midline posterior
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cingulate and medial frontal sites comprise the default network (Andrews-Hanna, Reidler,
Sepulcre, Poulin, & Buckner, 2010). This functionally defined network sits at the nexus of
dorsal and ventral attentional networks responsible for top-down direction of attention and
orientation to salient events, respectively (Corbetta & Shulman, 2002; Fox et al., 2005).
Across disorders with visual hallucinations increased instability, or elevated activity and
connectivity, within the default network have been identified (Franciotti et al., 2015; Jardri,
Thomas, Delmaire, Delion, & Pins, 2013; Shine et al., 2015a; Yao et al., 2014). More
broadly this is in keeping with observations that an over-active/poorly supressed default
network may underscore many positive and ruminative symptoms in neuropsychiatric
disorders (Anticevic et al., 2012; Whitfield-Gabrieli & Ford, 2012). Collectively the default
network is associated with memory, self-referential processing, construction of mental
imagery and creative cognition, mind wandering and emotional processing (Beaty, Benedek,
Silvia, & Schacter, 2015; O’Callaghan, Shine, Lewis, Andrews-Hanna, & Irish, 2015).

As outlined above, key nodes in the default network, including the medial prefrontal cortex
and parahippocampal cortex, are sources of the top-down input that directly influences
ongoing visual perception. It follows that abnormal activity in these input zones could
conceivably produce the combination of visual, autobiographical, and emotive qualities that
characterise complex visual hallucinations (O’Callaghan, Muller, & Shine, 2014).
Importantly, the emergence of hallucinatory phenomena with abnormal activity in these sites
has been verified independently in direct electrical stimulation studies conducted during
neurosurgery. Stimulation to medial temporal areas, including parahippocampal regions, as
well as to the prefrontal cortex, is capable of generating complex visual hallucinations
(Blanke, Landis, & Seeck, 2000; Mégevand et al., 2014; Selimbeyoglu & Parvizi, 2010).
Aside from abnormal activity in default network regions emerging as a neural signature,
patients with visual hallucinations due to Parkinson’s disease and schizophrenia exhibit
higher functional and structural connectivity from the visual cortex to medial temporal and
medial prefrontal sites (Amad et al., 2014; Ford et al., 2014; Yao et al., 2015) and increased
coupling between visual cortex and default network (Shine et al., 2015b). Hyperconnectivity
of these pathways suggests a possible route whereby top-down recurrent feedback may be
overactive, and dominating early visual regions in people with chronic visual hallucinations.

Examining cognitive penetration in visual hallucinations at the macro scale of brain regions
and large-scale neural networks gives important clues to the brain systems involved and
explains the convergence of sensory, memory and emotional based content that comprises
hallucinations. More research is needed to marry this with neural function at the micro scale
associated with predictive coding and precision weighting. Current evidence suggests that
pyramidal cells are critically involved in comparing prediction error against top-down
expectations at each level of the processing hierarchy, but neuromodulatory control flexibly
influences the weighting (or precision) of these comparisons (Friston et al., 2014). Therefore
‘leaky’ systems that result in improper weighting of incoming sensory versus top-down
input in perception could result from neuropathology at levels of the cortical hierarchy or
imbalances in neuromodulatory systems. Emerging evidence from schizophrenia has begun
to relate predictive coding disruptions to neural changes at high levels in the processing
hierarchy, including prefrontal cortex and medial temporal lobe, as well as disruption to key
neuromodulators (glutamate, GABA and dopamine) (Adams et al., 2013). Continued
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understanding of the specific predictive coding deficits in visual hallucinations will help
explain what causes the system to be so vulnerable to cognitive penetration into the visual
perception process.

The timescale of top-down penetration in vision

Much of the empirical evidence we have discussed here has not directly addressed the
timescale of cognitive penetration in vision, and where timing of effects have been reported
they are in the vicinity of 120-200 ms post stimulus onset. Indeed, it has been argued that
the first 100 ms of visual processing are cognitively impenetrable (Raftopoulos, 2009, 2014),
and there is certainly scarcer evidence to support penetration of this very early processing
stage. However some investigations have highlighted that the C1 component (originating in
V1, with onset around 50 ms post-stimulus and peak latencies before 100 ms) is penetrable
by top-down influence (Rauss, Schwartz, & Pourtois, 2011). For example, C1 amplitude is
increased when subjects actively attend to a location (Kelly, Gomez-Ramirez, & Foxe,
2008), and using MEG with source localisation modulation of V1 as a function of attentional
engagement is evident within the first 100 ms post-stimulus (although not the first 50 ms)
(Poghosyan & loannides, 2008; Poghosyan, Shibata, & loannides, 2005). Aside from
attentional engagement, modulation of the C1 is also found in response to attentional load
(Rauss, Pourtois, Vuilleumier, & Schwartz, 2012; Rauss, Pourtois, Vuilleumier, & Schwartz,
2009). These human findings are supported and extended by cell recordings in monkeys that
show effects of attention (Ito & Gilbert, 1999) and task context (Li, Piéch, & Gilbert, 2004)
are evident in V1 from the very onset of neural response. Such findings raise the possibility
that V1 is not impenetrable, but that cells there are dynamic and their functional properties
and ensemble organisation is influenced by top-down effects (Gilbert & Li, 2013;
Ramalingam, McManus, Li, & Gilbert, 2013) and that these effects are evident from the
earliest stages.

It is important to note, however, that the detection of these very early top-down effects is
much less robust that those top-down effects detected after 100 ms (Rauss et al., 2011).
Furthermore, support for very early top-down influences mostly comes from studies where
attention is found to have modulatory effects. Attention is, arguably, not necessarily an
example of cognitive penetration as its effect on perception may only be the extent to which
it influences the visual input we receive, but not directly modulating how the visual
processing stream operates (Firestone & Scholl, in press). As attention could represent a pre-
perceptual process, to help resolve the current debate about cognitive penetrability in very
early vision more thorough investigation of different cognitive processes is warranted. Given
the inconsistencies in detecting effects at this time-scale (Rauss et al., 2011) there may also
be methodological challenges to be addressed. One possibility is that the effects of very
early top-down modulation on V1 may be mostly evident in the subtle tuning of cells’
functional properties (Gilbert & Li, 2013; Nienborg & Roelfsema, 2015), as opposed to net
effects of increased neural/BOLD activity that are documented in higher cortical regions to
indicate the origins of top-down effects. Careful consideration of how to detect these
potentially subtler effects in human studies is needed. However, one could speculate that,
given the initial evidence and the fact that the neural architecture is in place to support
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penetration even at these earliest levels, additional evidence of cognitive penetration at this
earliest stage may be uncovered.

Summary and outlook

The existence of top-down predictions in visual processing has received substantial
empirical support, and fits with the broader notion of predictions as a framework for
explaining much of the information processing in the brain. However, the penetration of
other cognitive and behavioural processes into ongoing visual perception is often contested.
The basis of top-down predictions is to utilise past experience to streamline visual
processing, it follows that information-rich top-down signals will be best suited to forming
accurate predictions. Cognitive penetration into visual perception enables diverse sources of
information to contribute to the formulation of predictions that influence ongoing visual
perception.

We have described examples at the behavioural level demonstrating that affective states and
cognitive biases can alter visual perceptual judgements. At a mechanistic level, a prominent
role for the orbitofrontal cortex emerges as a site for early generation of top-down
predictions, alongside higher-level visual regions in the lateral temporal cortex, and
subcortical memory and limbic structures (hippocampus; amygdala). Much of the work to
date characterising orbitofrontal function has focused on value-based decision making. An
important goal for future research in visual processing will be extending what is currently
known about orbitofrontal computational mechanisms (signalling and evaluating potential
outcomes or choices), to prediction in vision. The involvement of the orbitofrontal cortex in
early top-down predictions for vision may ultimately be a similar computational process of
signalling potential interpretations of a visual stimulus and selecting the most tenable.
However, accommodating insights drawn from reinforcement theories of choice and
behaviour into a predictive processing framework remains an ongoing challenge (Pezzulo,
Rigoli, & Friston, 2015).

Going forward, the work reviewed here highlights the continued need to validate claims of
cognitive penetration on vision against neural markers. This is particularly relevant for
behavioural experiments in social and emotional vision where methodological pitfalls have
called in to question whether these experiments reveal true top-down effects (Firestone &
Scholl, 2014, in press). An obvious extension would be to combine these behavioural
paradigms with temporally sensitive brain imaging and recording techniques, to establish
neural evidence of top-down effects. The ongoing debate regarding the time course of
cognitive penetration in vision emphasises a need to combine both spatial (e.g., fMRI) and
temporal (e.g., EEG, MEG) information sources. Furthermore, work in non-human primates
can make valuable contributions to this debate; however future studies using simultaneous
recordings in both higher-level regions and V1 sites are needed to assess both the origins and
targets of top-down effects (Nienborg & Roelfsema, 2015).

The broad range of cognitive and affective information streams that converge to influence
visual perception emphasises the highly dynamic and adaptive nature of visual perception.
Neuropsychiatric conditions, however, confirm that this system relies on a finely tuned
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balance between top-down predictions and sensory input, where imbalances can have
significant consequences. The various lines of evidence discussed here suggest that
predictions in visual perception are intimately tied to a process of cognitive penetrability, as
the very formation of those predictions is not only based on features intrinsic to a visual
stimulus, but also on prior knowledge and current affective state. Going forward, prediction
and cognitive penetration should be considered as complementary processes and mechanistic
frameworks to describe them must account for the vast range of information that is
encapsulated in top-down predictions for vision.
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