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Abstract

Optical coherence tomography angiography (OCTA) is increasingly becoming a popular 

inspection tool for biomedical imaging applications. By exploring amplitude, phase and complex 

information available in the OCT signals, numerous algorithms are proposed to contrast functional 

vessel networks with microcirculation tissue beds. However, it is not clear which algorithm 

delivers optimal imaging performance. Here, we investigate systematically how the amplitude and 

phase information would have an impact on the OCTA imaging performance, upon which to 

establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), 

time interval and particle dynamics. With either the repeated A-scan or repeated B-scan imaging 

protocols, the amplitude noise increases with the increase of OCT SNR, however the phase noise 

does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental 

measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of 

amplitude, phase and complex-based algorithms for OCTA imaging, the results of which suggest 

that the complex-based algorithms deliver the best performance when the phase noise is < ~40 

mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to 

verify the findings from MC model through assessing the OCTA performance metrics of vessel 

connectivity, image SNR and contrast to noise ratio. We show that for all the metrics assessed, 

complex-based algorithm delivers better performance than either the amplitude or phase based 

algorithms for both the repeated A-scan and B-scan imaging protocols, which agrees well with the 

conclusion drawn from the MC simulations.
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1 Introduction

As a functional extension to optical coherence tomography (OCT), OCT-based angiography 

(OCTA) is becoming increasingly important in clinical and pre-clinical applications where it 
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is required to image microvascular networks within tissue beds in vivo1–3. OCTA utilizes the 

motion of moving particles, e.g. red blood cells (RBCs), as the contrast mechanism to 

visualize functional blood vessels innervating tissue bed, without a need for exogeneous 

contrasting agents. Compared to the gold standard fluorescein angiography (FA) and 

indocyanine green angiography (ICGA) currently used in ophthalmic clinic, OCTA is a 

label-free, safer, faster and cheaper alternative that can provide more comprehensive 

information about tissue structure and vasculature in 3D4. Recent advances in the 

development of light source, detection strategy, interferometer design as well as electronics 

significantly improved the performance of OCT-based angiography. Paralleled with the rapid 

development of instrumentation, OCTA methods and algorithms also had significant 

contribution to the high-quality blood flow images obtained in vivo.

In early times, Chen et al. developed phase resolved optical Doppler tomography to measure 

in vivo blood flow by utilizing Doppler frequency shift imparted by moving RBCs in the 

blood vessels5. However, by evaluating the change in OCT signal phases between adjacent 

A-scans, this method is difficult, if not impossible, to detect slow blood flow within capillary 

vessels. Wang et al. proposed a novel method named optical angiography (OAG) by using a 

modified Hilbert transform to convert the modulated OCT signal into complex function, as a 

consequence, the blood flow signal is efficiently decoupled from static tissue signals6. 

Benefiting from this decoupling, the OAG method images blood vessel networks within 

tissue beds without contamination from the static tissue background. Due to the increase of 

OCT imaging speed, novel scanning strategy of repeated B-scans (BM scans) instead of 

dense A-line scans is evolved, which dramatically improves the flow sensitivity of OCT 

angiography, enabling the visualization of slow blood flow within capillary tissue beds7–8. 

With the development of bulk motion phase compensation and intensity weighting or 

thresholding to reduce the phase noise in this scanning mode, the algorithms of phase-

variance9 and Doppler-variance10 have proposed for OCTA imaging. The method of ultra-

high sensitive optical microangiography (OMAG) utilizes the complex information and 

performs the differential operation (i.e. signal variance) between neighboring B frames for 

contrasting blood vessels. OMAG has demonstrated capability to resolve capillary-level 

blood vessels in retina, skin and brain with slow flow velocity down to ~10s μm/s8, 11–12. As 

an adaptive high-pass filter, the approach of eigendecposition- (ED-) based algorithm is 

developed to efficiently extract the blood flow signals through adaptively rejecting the static 

tissue components13–14. Most of the aforementioned OCTA algorithms are applied in the 

spectral-domain OCT (SD-OCT) system that has superior stability for both amplitude and 

phase information.

Recently, the swept-source OCT (SS-OCT) becomes increasingly popular due to its several 

advantages over SD-OCT, including faster imaging speed, longer imaging range distance, 

less system sensitivity roll-off along the imaging depth, higher detection efficiency and more 

compact fiber-based configuration for system design 15. However, SS-OCT often encounters 

the problems of severe time jitter and phase instability during cycle-to-cycle sweeping, 

which would significantly deteriorate the performance of phase-based and complex-based 

OCTA algorithms. A number of amplitude-based algorithms like speckle variance16, 

correlation mapping17 and split-spectrum amplitude-decorrelation angiography (SSADA)18 

have been proposed to mitigate the strict requirement of high-phase stability. Combined with 
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amplitude information, the phase gradient method was performed to minimize the trigger-

jitter induced phase error and eliminate the bulk phase shift for OCTA imaging in SS-

OCT19. Several approaches, for example utilizing an additional Mach-Zehnder 

interferometer20, external phase reference21–22 and extra fiber Bragg grating as a fixed 

wavenumber reference23 have been proposed to compensate for the time- induced phase 

error, making it feasible to implement the phase-sensitive angiography algorithms in SS-

OCT system. Without the increase of system complexity and computational demand in post-

processing, a novel akinetic swept source has been demonstrated to deliver unprecedented 

phase stability, benefiting the phase- and complex-based OCTA algorithms 24–26.

To date, numerous OCTA algorithms have been reported to provide improved imaging 

performance in contrasting functional blood vessels, through tackling one or more of 

following issues: imaging contrast, noise level, motion artifact, hyper-reflection feature, 

projection (or tailing) artifact and flow sensitivity. These OCTA algorithms can be generally 

categorized into the following groups: phase-, amplitude- and complex-based algorithms. 

They may be considered as a family of algorithms, e.g. phase variance, speckle variance and 

complex variance, which use the same data processing procedures but on different 

information available in the OCT signals. The ample choice of algorithms often raises 

confusion about their optimal performance for clinical imaging applications. There are prior 

investigations attempting to compare different OCTA algorithms, which has helped users 

understand the strengths and weaknesses of these techniques27–29. However, these studies 

lacked general guidance for algorithm selection for differed imaging applications because 

they did not systematically investigate how the amplitude and phase information in the OCT 

signals would have an impact on eventual OCTA imaging performance. In addition, there is 

also lack of considerations of some practical parameters into the formulation, for example 

system phase noise level, OCT signal strength as well as motion artifacts.

The Monte Carlo (MC) simulation is a statistical method relying on repeated random 

sampling of variables from well-defined probability distributions30. This approach has been 

utilized to interpret the light propagation in turbid tissue in OCT studies. Smithies et al 
(1998) introduced an MC model to investigate the influence of multiple scattering effects on 

signal attenuation and localization in homogeneous samples of intralipid and blood31. Yao 

and Wang also developed a MC model with angle-biased sampling technique to simulate the 

contribution of the multiple-scattered light in homogeneous turbid media to the OCT 

signal32. In 2002, taking the optical properties of the medium as variables, Wang used the 

MC simulation to systematically investigated the OCT signal degradation and localization 

by multiple scattering, and demonstrated how optical clearing could be utilized to enhance 

the penetration depth and improve the imaging resolution33. Since the light interaction 

between the tissue particles is stochastic in nature and noise is inevitable in the light source 

and system setup, the amplitude and phase signals become fluctuated in one way or another. 

In this case, the Monte Carlo (MC) simulation is expected to be an effective method to 

evaluate the performance of different OCTA algorithms, facilitating its future usage in 

various pre-clinical and clinical imaging applications.

The purpose of this paper is to provide systematic investigation of the performance of OCTA 

algorithms utilizing different aspects of OCT information through experimental 
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measurements and MC simulations. To properly utilize the MC model, we first explore the 

behavior and stability of amplitude and phase of the OCT signals by experimental 

measurements of scattering phantoms. The results from these measurements are then fed 

into a Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and 

complex-based OCTA algorithms. Finally, in vivo OCTA imaging is performed in an animal 

model and human retina, illustrating the OCTA performance where different algorithms are 

utilized to contrast the functional blood vessels.

2 System setups and its performance characterization

In this study unless otherwise stated, the experimental work was performed on a home-built 

fiber-based SD-OCT system because of its high phase stable performance. The schematic of 

the system is illustrated in Fig. 1, where a broadband superluminescent diode (LS2000C, 

Thorlabs Inc.) centered at 1340 nm was employed to illuminate the system. The full-

wavelength width at half maximum (FWHM) bandwidth of the light source was 110 nm, 

yielding a high axial resolution of ~7 μm in air. With a 10× scan lens in the sample arm, the 

transverse resolution was measured at ~10μm, enabling a clear visualization of 

microvascular networks. A pair of XY galvanometric mirrors (Thorlabs Inc, USA) were 

used to provide stable scanning patterns for OMAG imaging. The optical power incident on 

the sample was ~5 mW, leading to an OCT sensitivity of ~105 dB. In the spectrometer, we 

used an optical grating with a density of 1145 lines/mm and a high-speed line-scan camera 

(up to 92 kHz) with 1024 pixels, providing an imaging range of ~3 mm with a spectral 

resolution of ~0.1 nm. A visible red laser (635 nm) was employed in the fiber-based 

interferometer for the purpose of imaging guidance.

To estimate the stability of the amplitude, phase as well as complex information in the OCT 

signals, a high reflecting sample (i.e. a mirror) was used as the target in the sample arm, 

located at the position of ~0.5 mm below zero-delay line. After the captured spectral 

interferograms were fast Fourier transformed (FFT), a complex matrix containing the OCT 

amplitude and phase information was created. Fig. 2 results from the consecutive 

measurements of the target, illustrating amplitude, phase and complex information at the 

location corresponding to the target. The differential operation between adjacent 

measurements is similar to a high-pass filtering, which indicates cycle-to-cycle fluctuation in 

the OCT system. With 92 kHz A-line rate, 4000 consecutive measurements were taken, 

requiring a total measuring time of ~43.5 ms. During this time-period, the noise of the 

amplitude (plotted by blue line in Fig. 2(a)) is dominated by high-frequency fluctuation. 

Removing the DC component of the amplitude, the amplitude difference (plotted by the red 

line in Fig. 2(a)) demonstrates the instantaneous amplitude stability of the OCT system. Fig. 

2(b) is the histogram of the amplitude difference, giving a normal distribution with a 

standard deviation of 56.3 in arbitrary unit.

The phase is ultra-sensitive to small displacement, and possesses a relationship of 

where ϕ is the phase, z is the optical path length difference, λ is the wavelength of the light 

source. As shown by the blue curve in Fig. 2(c), the phase has a slow up-and-down shift, 

most likely due to the low-frequency motion of the target. The value varies from ~ −0.35 rad 

to 0.02 rad, corresponding to ~34 nm displacement. After filtering out the slow shift of the 
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target motion, the phase difference between the adjacent measurements is plotted by the red 

line in Fig. 2(c), which could be used to estimate the instantaneous phase stability of the 

OCT system.

The corresponding histogram fits well with a normal distribution [Fig. 2(d)]. The standard 

deviation of the phase difference is ~3.8 mrad, which is sufficiently stable for phase-

sensitive OCTA imaging. The corresponding complex numbers (plotted by blue circles in 

Fig. 2(e)) are scattered in a wide range in the complex plane with an arc shape, mainly due 

to the bulk motion phase shift of the target. The complex difference values also remove the 

low-frequency component and are plotted by the red circles in Fig. 2(e). Per the histogram 

shown in Fig. 2(f), the values of complex differences are closely distributed near the origin 

point 0, demonstrating a stable performance of both amplitude and phase in the SD-OCT 

system used in this study.

3. Model characterization

To perform Monte Carlo (MC) simulation for OCTA comparison based on different 

algorithms, we first developed a simple sample model, where the sample is assumed only 

containing two homogeneous components, i.e. static particles and moving particles [Fig. 

3(a)]. In this paper, the OCT signal-to-noise ratio (SNR) is defined by SNROCT = A/σnoise, 

where A is the OCT magnitude after the FFT of the spectral interferometric signal, σnoise is 

the standard deviation of noise magnitude34. It should be noted that the definition of the 

OCT SNR might be different from others for the sake of simplifying the expressions of the 

standard deviation of the amplitude and phase information in this manuscript. Similar to the 

exponential attenuation of light propagating in the tissue sample, the SNR of OCT signal 

along the propagating depth also follows Beer–Lambert law:

(1)

where z is the optical path length difference with zero delay at the surface of tissue sample, 

SNROCT (0) is the initial SNR value at zero position, α is the attenuation coefficient of the 

sample. As illustrated in Fig. 3(b), the OCT SNR exponentially decreases within tissue 

sample. We assume that static and moving components have the same attenuation 

coefficient.

By varying the variable neutral density filter located in the sample arm, we repeated the 

stability measurements of amplitude and phase with varied OCT SNRs. As shown in Fig. 

3(c), the measured standard deviation of amplitude differences increases with the OCT SNR, 

meaning the stronger of OCT signal results in the more fluctuation of OCT amplitudes. It 

should be noted that the axis of OCT SNR is in log scale, where the unit of dB is calculated 

by 20*log10 of OCT SNR. The measured data could well fit with an equation of σΔA = 

2.46×10−2 *SNROCT + 51.2.

Per the experimental data, the standard deviation of amplitude differences is assumed to 

have a linear relationship with OCT SNR described by:
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(2)

where T is the time interval between adjacent measurements. The value of slope aparticle (T) 

and intercept bparticle (T ) are determined by the motion of scattering particles as well as the 

stability of OCT system during the time of the measurement. Since there are only two types 

of particles in the model, i.e., static particles and moving particles, the standard deviation of 

amplitude differences due to static particles could be expressed by σΔA,st (T, z, ) = ast 

(T)*SNROCT (z) + bst (T ), while the standard deviation of amplitude differences due to 

moving particles could be expressed by σΔA,fl (T, z, ) = afl(T)*SNROCT (z) + bfl (T).

On the contrary, the standard deviation of phase differences decreases with the increase of 

OCT SNR, opposite to that of amplitude statistics. For the phase information, there is a 

fundamental SNR-limited noise σΔϕ,SNROCT =1/SNROCT 34, which is plotted by the green 

line in Fig. 3(d). It should be noted that for the concise equation expression, the OCT SNR 

definition in this study is slightly different from some other studies in literature. The 

measured standard deviation of phase differences [blue circles in Fig. 3(d)] is close to the 

SNR-limited noise. The data could well fit with an equation of σΔϕ =1/SNROCT + 0.34mrad 
[the blue line in Fig. 3(d)], where the 0.34 mrad is the additional phase noise due to slight 

sample motion or system error. In the MC simulation, we assume that the phase noise terms 

are uncorrelated, thus the standard deviation of phase differences can be given by:

(3)

where σΔϕ,SNROCT (z)=1/SNROCT (z) is the SNR limited phase noise, σΔϕ, particle motion (T) 

is determined by the internal motion of particles during the time interval, σΔϕ,noise (T) is the 

phase noise including tissue bulk motion, scanning shift, system fluctuation, computation-

related error and any other noises. The terms of σΔϕ,particle motion (T) and σΔϕ, noise (T) are 

closely related to the time interval between the adjacent sampling. The static tissue 

component is assumed to be solid, thus the internal motion contribution of static particles 

could be neglected. Therefore, the standard deviation of phase differences due to static 

particles is expressed by σΔϕ,st (T z, )= σΔϕ,SNROCT (z) + σΔϕ,noise (T ) , while the standard 

deviation of phase differences due to moving particles is given by σΔϕ,fl (T, Z) = 

σΔϕ,SNROCT (Z) + σΔϕ, fluid motion (T) + σΔϕ, noise (T).

In order to demonstrate and quantify the different behavior for static tissue and moving 

particles, we constructed a phantom to measure the standard deviation of amplitude 

differences and phase differences for simulation analysis. In the phantom, a transparent tube 

with ~400 μm inner diameter was embedded in scattering plasticine, i.e. static tissue 

component. We used intralipid solution as the moving particles. Here, we diluted the 

intralipid solution by water with a ratio of 10:90 to attenuate the highly scattering effect. 

Using a syringe pump, the flow speed was ~1 cm/s, similar to moderate blood flow in real 

tissue.
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Figure 4(a) shows the cross-sectional structure of this phantom. Two different scanning 

modes, i.e. MB mode and BM mode, were adopted to measure stability of amplitude and 

phase in different time intervals. The term of MB mode means multiple repeated A-scans are 

taken at the same transverse location over time and then move to next position to construct a 

B-frame image. On the other hand, the BM mode refers to multiple repeated B-scans taken 

at the same B-line position. With 92 kHz A-line rate and 200 Hz B-frame rate, the time 

intervals between adjacent scans in MB mode and BM mode are ~11 μs and 5 ms, 

respectively. Fig. 4(b)–(e) show the measured (circles) and fitted (lines) standard deviation 

of the amplitude differences (middle) and phase differences (right) for the moving particles 

(top) and static particles (bottom) captured in MB mode (red color) and BM mode (blue 

color), respectively. For the amplitude information [Fig. 4(b) and (d)], the measured data is 

well fitted by a linear relationship with OCT SNR in the form of Eq. (2). As for the phase, 

the measured data is fitted by an inverse relationship with OCT SNR in the form of Eq. (3), 

except for the moving particles in BM mode. Due to the long-time interval in BM mode, the 

phase changes due to the moving particles are too large not to have phase wrap, leading to a 

uniform distribution in the range from −π to π. Thus the standard deviation of phase 

differences is fitted by horizontal line located at ~1.8 rad. The parameter values of the fitted 

equations are listed in table 1.

4. Monte Carlo simulation method and analyses

To separate the moving component from the static tissue component, we applied an effective 

algorithm of OMAG8, 29 as the representative. OMAG performs differential operation 

between adjacent measurements in the amplitude, phase and complex information:

(4)

where Inf particle i, is the information of OCT signal for different particles in the i’th repeated 

measurement. For example, the amplitude-based OMAG is expressed by 

, where Afl,i is the amplitude of OCT signal in the 

i’th repeated measurement. Similarly, the phase- and complex-based OMAG can be written 

by  and , 

respectively, where ϕfl,i is the phase information of OCT signal in the i’th repeated 

measurement, and Cfl,i is the corresponding complex information expressed by Cfl,i = Afl,i 

*exp(jϕfl,i) . To evaluate the performance in the simulation model, we define the signal-to-

noise ratio of OMAG ( SNROMAGInf) based on different OCT information (amplitude, phase 

or complex information) by:

(5)
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where  is the mean value of OMAG based on specified OCT information for all 

moving particles,  is the corresponding mean value for all static particles.

According to the phantom experimental data, we make a MC simulation for the two- 

compartment sample model to investigate how the phase noise affects the performance of 

OMAG algorithm based on different OCT information. The work flow of the MC simulation 

is illustrated by Fig. 5(a). To generate the random samplings for OMAG imaging, the mean 

and standard deviation values of the amplitude and phase information are needed for both 

static and moving particles. In the MC simulation, we assume the two- compartment sample 

has an attenuation coefficient of 2.3 mm−1 and thickness of 1 mm. With an initial amplitude 

value of 104 at zero depth position and amplitude noise of 30 in arbitrary unit, the OCT SNR 

ranges from 10 dB to 50 dB within the tissue sample obeying the Beer–Lambert law by Eq. 

(1). The mean of the phase information (ϕ0) could be set at any value. We assume that the 

amplitude and phase have normal distributions with the standard deviations following the 

relationship described by Eq. (2) and (3). Using the parameter values of MB mode and BM 

mode in table 1 except for the term of phase noise (σΔϕ,noise(T)) which we set it as a variable 

value, we generate 100 million random numbers to simulate the amplitude and phase of 

4×105 static and moving particles with 5 repeated measurements and 50 variable phase-noise 

levels at varied depth positions in the sample. Later, according to Eq. (4), we create the OCT 

angiography for the tissue particles based on the amplitude, phase and complex information. 

Finally, taking the average of OMAG signal of moving and static particles along the depth 

direction, the OMAG SNRs based on different OCT information are calculated by Eq. (5).

Figures 5 (b) and 5(c) show the results of OMAG SNR utilizing the amplitude, phase and 

complex information versus phase noise through the MC simulation. Since the difference of 

the parameter values between moving particles and static particles increases with the 

increase of the time interval, the OMAG SNR in the MB mode (as shown in Fig. 5(b)) is 

relatively low compared to the case of BM mode (Fig. 5(c)). Without the effect from phase 

noise, the OMAG SNR based on amplitude information maintains at a constant value. In the 

sample model, the low OCT signals of the static particles in deep region introduce severe 

SNR-limited phase noise, which results in poor performance for the phase-based OMAG 

compared to other methods. Utilizing both the amplitude and phase information, the 

complex-based OMAG works like a balancer (or optimizer) between the methods that use 

phase and amplitude alone, which greatly reduces the SNR-limited phase noise. 

Furthermore, the phase fluctuation induced by the moving particles enhances the difference 

from static particles, which improves the angiography SNR for complex-based OMAG. For 

both MB and BM scanning modes (shown by Figs. 5(b) and (c)), the complex-based method 

demonstrates the best angiographic performance when the phase noise is small (less than 

~40 mrad). This finding is significant because under the in vivo σΔϕ,noise imaging situations, 

the total phase noise of the whole imaging system is typically ranged from 20 to 40 mrad 

depending on tissue types, dominated by the cellular movement within in vivo biological 

tissue. Therefore, we may conclude that complex based algorithms would deliver in vivo 

imaging performance superior to those algorithms that use amplitude or phase information 

alone.
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5. Imaging results

To verify the MC simulation results, we conducted a series of in vivo imaging experiments. 

Since the time interval of adjacent measurement is an important factor that greatly affects 

the imaging performance, we adopted two scanning protocols, i.e. MB mode and BM mode, 

for the visualization of functional blood vessels. We applied a thresholding mask for the 

OMAG images to avoid phase noise artifact in the non-tissue region. The experimental 

procedures related to animal imaging were approved by the Institute of Animal care and Use 

Committee (IACUC) of the University of Washington (Protocol number: 4262-01). The in 
vivo measurements related to human retina imaging were approved by the Institutional 

Review Board of the University of Washington and informed consent was obtained from 

volunteer subject before imaging. This study followed the tenets of the Declaration of 

Helsinki and was conducted in compliance with the Health Insurance Portability and 

Accountability Act.

For the case of MB scanning mode, we performed the OMAG imaging to visualize the brain 

blood vessels of a three-month-old mouse (C56/BL6). A technique of thinned-skull cranial 

window was applied to eliminate the scattering effect from the cranium 35. During the 

experiment, the mouse was anesthetized with isoflurane (0.2 L/min oxygen and 0.8 L/min 

air), and was immobilized on a stereotaxic stage to minimize motion artifacts. For the 

scanning protocol, the OMAG data contains 200 A positions and 300 B locations with 10 

repeated A-scans, which covers the field of view (FOV) of 1.8×2.2 mm2. As the time 

interval between adjacent measurements in MB mode is only ~11 μs, the motion contrast to 

separate the blood vessels from the static tissue has relatively low flow sensitivity (Fig. 6). 

During this short time interval, the phase noise induced by bulk tissue motion, scanning shift 

or other errors is also very small (less than 10 mrad).

Since there is ambiguity to identify the blood vessels and static tissues in real OCTA images, 

it is difficult to evaluate the vascular imaging performance by Eq. (5). To quantify the 

quality of the vascular images based on different algorithms, we assessed three parameters 

(i.e. vessel connectivity, image contrast-to-noise ratio (CNR), and image SNR). In doing so, 

the en face images were first normalized from 0 to 1. We applied a threshold at 0.5 to 

generate binary image to separate the blood vessels from the static tissues. Then the binary 

image was skeletonized by reducing continuous vessel segments to obtain a vessel skeleton 

map ( M(x, y) ) with 1 pixel width36. In the skeleton map, the vessel connectivity is defined 

by:

(6)

where Ncon.|M (x,y)==1 is the number of connected flow pixels and Ntot.|M (x,y)==1 is the 

number of total flow pixels. We also defined the image CNR as the following equation:
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(7)

And the image SNR of the angiogram is given by:

(8)

where  is the mean value of the strength of en face angiogram on the vessel 

network map,  is the mean value of the background strength and 

σI (x,y)|Background is the standard deviation of the background signals. Here, the background 

area is the non-vascular region where the value is 0 in the binary images. According to the 

definitions, the parameters of vessel connectivity, image CNR and SNR for Fig. 6(a–c) are 

tabulated in table 2. Furthermore, with a total of 10 separate experimental measurements on 

mouse brains using the same system, the averaged values and the standard deviations are 

also listed and bracketed in table 2.

As illustrated by Fig. 6 and table 2, the OMAG en face image based on complex algorithm 

[Fig. 6(c)] delivers the best vascular visualization in terms of connectivity, CNR and SNR 

compared to amplitude- [Fig. 6(a)] and phase-based [Fig. 6(b)] algorithms. It can also be 

observed from the cross-sectional images that the complex-based image [Fig. 6(f)] has the 

highest blood flow contrast, where the amplitude-based image [Fig. 6(d)] has more noise 

artifact in the superficial region where there is high OCT SNR, and the phase-based image 

[Fig. 6(e)] suffers from the SNR-limited noise in the deep region where the OCT SNR is 

low. The results agreed well with the analyses from MC simulations [Fig. 5(a)].

To investigate the performance in the BM scanning mode, we conducted the in vivo OMAG 

imaging for the ear pinna of a hairless mouse (SKH1, two-month-old). As shown in the 

cross-sectional structural OCT image [Fig. 7(g)], the ear pinna is a simple tissue model that 

consists of two layers of skin separated by a cartilage layer. The data contains 400 by 400 

transverse positions with 5 repeated B-scans, covering a FOV of 3×3 mm2. With the frame 

rate of 200 Hz, the time interval between adjacent B frames is 5 ms, leading to a high-

contrast mapping of blood perfusion created by amplitude-based OMAG algorithm [Figs. 

7(a) and (d)]. However, the relatively long time interval accumulated severe phase noises 

that were mainly introduced by mouse breaths, heart beats, stage mechanical vibration or 

galvo scanning. These phase noises greatly deteriorate the quality of the phase- and 

complex-based OMAG images [Figs. 7(b)–(c) and 7(e)–(f)].

To minimize the phase noise, we applied a post-processing approach of phase compensation 

which is based on statistical histogram estimation to correct the phase error of tissue bulk 
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motion37. As a result, the performance of amplitude-based OMAG [Fig. 8(a) and (e)] keeps 

the same image quality as before; however, there are significant improvements for the phase-

based [Figs. 8(b) and (f)] and complex-based [Figs. 8(c) and (g)] OMAG images. In Fig. 

8(d), we also generated a histogram of the corrected bulk motion phase in the OMAG 

images. The standard deviation of the compensated phases is 0.402 rad. After the phase 

compensation, the complex-based OMAG demonstrates the best imaging performance in 

terms of vessel connectivity, image CNR and SNR as shown in table 3. Due to the total 

thickness is only ~ 0.5 mm as observed in the cross-sectional structural image (Fig. 8(h)), 

the OCT signal of the whole mouse ear pinna is strong. Without severe deterioration of 

SNR-limited phase noise, the sufficient image quality of phase-based OMAG after phase 

compensation (Fig. 8(b) and (f)) also result.

Since OCTA has significant clinical value in the field of ophthalmology, we next compared 

the vascular imaging performance for the algorithms applied to the case of human retina. 

The data was captured by a commercial SD-OCT system (Zeiss Cirrus HD5000 AngioPlex). 

The system is equipped with a motion tracking mechanism to minimize the involuntary eye 

movements, such as microsaccades and drift 38. To construct the vascular images, there are 

245 A-lines along the fast scanning direction and 245 B-scans along the slow scanning 

direction with 4 repeated B-scans. With 68 kHz A-scan speed, the B-frame rate is 270 Hz, 

which has a corresponding time interval of ~ 3.7 ms. The scanning FOV is 2.4×2.4 mm2. 

Combined with the aforementioned phase compensation approach, we created the OMAG 

images based on amplitude, phase and complex algorithm. The results are shown in Fig. 9. 

The cross-sectional structural OCT image (Fig. 9(f)) enables clear visualization of retinal 

layer (including superficial retina and deep retina), outer nuclear layer (ONL), retinal 

pigment epithelium (RPE) and choroid. Figs. 9(d)–(f) are the corresponding blood flow 

images calculated by amplitude, phase and complex-based OMAG algorithms at the position 

near the fovea. Due to the motion-tracking hardware and software correction of motion 

artifacts, the complex-based OMAG demonstrates the best blood flow visualization. 

Utilizing the structural information, a semi-automated segmentation39 is applied to create 

the en face vascular network of the whole retina as shown in Figs. 9(a)–(c). With additional 

quantification for these vascular network maps as shown in table 4, the complex-based 

algorithm delivers the best performance in terms of flow connectivity, CNR and SNR (Table 

4). The clear visualization of blood perfusion map in retina is of great importance to 

diagnose and monitor various eye-related diseases such as glaucoma, diabetic retinopathy 

and age-related macular degeneration.

6. Discussion and conclusions

As demonstrated in the experimental measurements, the variation of amplitude has an 

increasing relationship with the increase of the OCT SNR, while the phase information has 

an intrinsic SNR-limited phase noise that is inversely increased as the decrease of the OCT 

SNR. Following these measurements, a Monte Carlo (MC) simulation has been used to 

investigate the OCTA performance of amplitude, phase and complex-based algorithms. It 

should note that this MC simulation was based on a simplified model where it only contains 

two homogeneous components, i.e. static and moving particles, with the same attenuation 

coefficient. These two particles demonstrate different fluctuation behavior in the OCT 
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amplitude and phase information. In the current simulation, we neglected many factors such 

as tissue attenuation coefficient variation, multiple scattering, speed of blood flow, 

concentration of blood cells, tissue complexity, beam size, light focusing and so on, which 

may also affect the performance of OCTA imaging. The described method of MC simulation 

would be amendable if it is required to consider these factors into the investigation. 

Nevertheless, the current MC approach captured the most essential OCTA contrast 

mechanism, i.e. the dynamic change, to simulate the performance of the algorithms utilizing 

different parts of OCT signals, which is general enough for clinical OCTA imaging. We have 

demonstrated that the simulation results agreed well with those from experiments, providing 

valuable insights as to how the phase noise would affect the OCTA performance. Due to the 

lack of ability to manipulate the amount of phase noise, the fully validation of the MC 

simulation is difficult to complete. The work here is the first time to use the MC simulation 

to estimate the performance of different OCTA algorithms, which should provide a general 

guidance for selecting appropriate algorithms or optimizing the imaging system.

In this study, we compared the OCTA performance based on different information available 

in the OCT signal using two scanning modes, i.e. the MB and BM modes. The essential 

difference between the MB and BM modes is the time interval of the repeated sampling, 

which influence the measured amplitude and phase variation for the static and moving 

particles. Typically, in highly stable OCT system (without much noise in the light source and 

detection), the phase noise induced by sample motion, galvo-scanning and other errors in the 

MB mode is relatively small due to the short time interval. However, in the BM mode, the 

relatively long time interval is likely to accumulate the measured phase noise due to 

inevitable bulk tissue motion. To verify the simulation, we performed the comparison of 

different algorithms using these two scanning strategies in the animal model and human 

retinal imaging. For the scenario of MB mode, the complex-based OMAG algorithm 

demonstrated obvious advantages compared to the amplitude and phase-based algorithms. 

For the BM scanning mode, the phase noise could be more than 100s mrad due to bulk 

motion, leading to severe artifacts in the phase and complex-based algorithms. Unless the 

system is equipped with a motion tracking mechanism, the method of phase compensation 

can be employed to effectively minimize the phase noise due to tissue bulk motion, which 

has been demonstrated to greatly improve the image quality of the phase-sensitive OCTA 

algorithms. In the BM mode after phase compensation, the complex-based OMAG also 

delivered the best performance. But the superior imaging performance of complex-based 

OMAG in BM mode is not as impressive as that in the MB mode, which might be due to 

other time-varying phase noise like tissue morphological change and cellular movement 

induced phase noises. With flexible scanning strategies, more experiments could be 

conducted to investigate the influence of different time interval on OCTA imaging.

Currently, there are several OCTA algorithms available in the community, generating 

questions in terms of their advantages and limitations under different scenarios. We elected 

to use OMAG algorithm as the representative approach for OCTA imaging, through 

differential operations on the amplitude, phase and complex information in the OCT signals 

to contrast functional blood vessels within tissue beds. Other OCTA algorithms could also 

be investigated by this MC method. With consideration of other factors as well as system 

parameters, the MC simulation described here would be applicable to commercial or 
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prototype OCT systems. In the perspective of the SNR of angiographic images, we 

quantified the OMAG performance based on amplitude, phase and complex information 

with different phase noises for the cases of the MB and BM scanning modes, where we 

observed that the complex-based OMAG delivered superior performance in the region of 

small phase noise (<~0.04 rad). The system stability and signal sensitivity are important 

factors to consider in order to generate high-quality vascular mapping within tissue beds. In 

general, the amplitude-based algorithms are relatively immune to the phase stability of the 

OCT system. For this reason, they have been widely used in swept-source OCT systems that 

usually have time-jitter induced phase noise. However, the amplitude information is 

relatively insensitive to motion, and it could be easily affected by tissue hyper-reflection on 

the surface layer. On the other hand, the phase information is highly sensitive to small 

displacement at submicron level, which should be in favor for OCT angiography. However, 

the intrinsic phase-wrap limited by the dynamic range for flow detection, and the inevitable 

live tissue motion or system mechanical vibration present sources to generate severe phase 

noises. Furthermore, the phase stability also relies on the strength of OCT signal, giving the 

SNR-limited phase noise. Therefore, the utilization of the phase information alone in the 

phase-based OCTA algorithms could be difficult to generate high-quality blood flow images. 

The complex-based algorithms take the advantages of both the amplitude and phase 

information to contrast functional blood flow signals within tissue beds. The amplitude 

strength is used to weigh the phase information, compensating the SNR-limited phase noise. 

The motion-sensitive phase information further enhances the blood flow signal in OCTA 

images and reduces the hyper-reflection artifacts. As predicted in the MC simulation, with 

advanced algorithm or hardware motion tracking mechanism to correct the motion error, the 

phase noise can be greatly minimized, delivering the best performance for complex-based 

algorithms.

In future, the rapid development of instrumentation and algorithms would be no doubt to 

further improve the performance of OCTA imaging. One such improvement would be in the 

advancement of SS-OCT technology. Recent work has shown that with robust technique of 

phase stabilization in SS-OCT system, the complex-based OCTA algorithms demonstrated 

improved vascular image quality and enhanced visualization for the vessels in deep layer40, 

which also agrees well with the MC simulation here. It is foreseeable that the further 

development of the swept light sources and detection strategies will greatly reduce the time-

jitter error, providing more and more phase-stable swept-source system for implementing 

OCTA imaging. With dedicated hardware designs, such as sample fixation and motion 

tracking as well as sophisticated software controls and algorithms, the tissue motion artifacts 

are expected to be greatly reduced. Therefore, it is expected that future development of SS-

OCT would play a significant role in providing high-quality and high-sensitive functional 

images of blood vessels within tissue bed.

In summary, we have implemented a highly stable spectral-domain OCT system suitable to 

demonstrate and investigate the impact of amplitude and phase information on OCTA 

imaging performances. Using a simple tissue model, we utilized a Monte Carlo simulation 

for the analysis of OCTA algorithms that use either amplitude, phase or combined 

information in the OCT signals. The fitted parameters derived from the phantom 

experiments were fed into the MC simulation, with which to investigate the performance of 
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amplitude, phase and complex-based algorithms with different phase noise levels in the MB 

and BM scanning modes. A series of animal experiments as well as clinical OCTA imaging 

of human retina were conducted to verify the MC simulation. With less phase noise, either 

due to fast temporal sampling in MB mode or data processing of phase compensation in BM 

mode, the complex-based algorithm has been demonstrated to deliver the best performance 

for OCTA imaging. By estimating the system stability and the dynamic status of the static 

and moving particles, the proposed MC simulation is capable of providing numerical 

analysis of imaging performance to assess OCTA algorithms, which is helpful in selecting 

appropriate algorithms for clinical imaging or implementing additional techniques in the 

system. The purpose of this paper is to serve as a general guidance to choose reliable 

information with appropriate algorithms in specific applications for OCTA imaging. As the 

further development of the OCT systems that are of more phase stable, the complex-based 

algorithms are expected to be the optimal methods for recovering microvascular networks 

within living tissue beds.
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Fig. 1. 
Experimental setup of a SD-OCT system. SLD: superluminescent diode, PC: polorization 

controller, Col: colimator, GM: galvanometric mirrors. Ob: objective lens.
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Fig. 2. 
The stability assessment for the amplitude, phase and complex information in the SD-OCT 

system. The top figures (a, c, e) are the consecutive measurements of amplitude, phase and 

complex information, respectively. The blue plots are the value of amplitude, phase and 

complex, while the red plots are the difference of amplitude, phase and complex between 

adjacent A-line scans, respectively. The bottom figures (b, d, f) are the corresponding 

histograms of the difference values. The black dashed lines in (b) and (d) are the curves of 

normal distribution fitted from the histograms.
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Fig. 3. 
(a) Two-compartment simulation model in which only moving and static particles are 

assumed. (b) The exponential relationship between OCT SNR and the axial depth in the 

sample. (c) The relationship between the standard deviation of amplitude differences and the 

OCT SNR. (d) The inverse relationship between the standard deviation of phase differences 

and the OCT SNR.
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Fig. 4. 
The stability assessment of the SD-OCT system when imaging a scattering phantom with 

intralipid solution being the moving particles. (a) The cross-sectional structural image of the 

phantom. The measured and fitted plots of the standard deviation of amplitude differences 

(b) and phase differences (c) versus the OCT SNR in MB mode and BM mode for the 

moving particles at the position indicated by the orange dashed line in (a). (d) and (e) are the 

corresponding plots for static particles at the position indicated by the green dashed line in 

(a), respectively.
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Fig. 5. 
(a) The flow chart for Monte Carlo simulation procedure. (b) and (c) are the simulation 

results of OMAG SNR based on complex (red), amplitude (blue) and phase (green) versus 

phase noise for MB and BM scanning modes, respectively.
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Fig. 6. 
OMAG images of mouse brain in MB mode. (a), (b) and (c) are the en face MIPs of OMAG 

based on amplitude, phase and complex information, respectively. (d), (e) and (f) are the 

corresponding cross-section images at the locations indicated by the dashed lines. (g) is the 

corresponding structural images. The scale bar = 0.5 mm.
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Fig. 7. 
OMAG images of mouse ear obtained through BM scanning mode without phase 

compensation of bulk motion. (a)–(c) are the en face blood perfusion maps resulted from 

amplitude, phase and complex based algorithms, respectively. (d)–(f) are the corresponding 

cross-sectional blood flow images at the position indicated by the dashed lines in (a)–(c). (g) 

is the corresponding structural OCT image. CL: cartilage layer, US: upper skin, BS: bottom 

skin. The scale bar = 0.5 mm.
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Fig. 8. 
OMAG images of mouse ear obtained through BM scanning mode with phase compensation 

of bulk motion. (a)–(c) are the en face blood perfusion maps resulted from amplitude, phase 

and complex based algorithms, respectively. (e)–(g) are the corresponding cross-sectional 

blood flow images at the position indicated by the dashed lines in (a)–(c). (h) is the 

corresponding structural OCT image. (d) is the histogram of phase compensation. The scale 

bar = 0.5 mm.
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Fig. 9. 
OMAG images of human retina obtained through BM scanning mode captured by Zeiss 

Cirrus 5000 AngioPlex system. (a)–(c) are the en face vascular networks of retina resulted 

from amplitude, phase and complex based algorithms, respectively. (d)–(f) are the 

corresponding cross-sectional blood flow images at the position indicated by the dashed 

lines in (a)–(c). (d) is the cross-sectional OCT structural image. F: fovea, R: retinal space, 

ONL: outer nuclear layer, RPE: retinal pigment epithelium, C: choroid. The scale bar = 0.2 

mm.
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Table 1

Parameter values of fitted equations.

MB mode BM mode

afl (11 μs) =1.86 afl (5m s) = 40.46

bfl (11μs)=45.36 bfl (5ms )=5.28

ast (11 μs) = 0.31 ast (5m s) = 0.64

bst (11μs)=50.07 bst (5ms)=48.81

σΔϕ, fluid motion (11μs ) = 70mrad σΔϕ, fluid motion (5ms ) =1.8rad

σΔϕ,noise (11μs ) = 2.3mrad σΔϕ,noise (10μs ) = 78mrad
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Table 2

The connectivity, CNR and SNR comparisons for mouse brain angiograms in MB mode among three 

algorithms. The values outside the brackets were resulted from the en face images in Fig. 6, while the numbers 

inside the brackets were the averaged values and the standard deviations calculated from 10 separate 

experimental measurements.

Amplitude-based OMAG Phase-based OMAG Complex-based OMAG

Connectivity 0.748 (0.711±0.081) 0.546 (0.543±0.052) 0.811 (0.797+0.063)

CNR 4.906 (4.629±0.584) 4.252 (3.543±0.756) 6.084 (5.742±0.414)

SNR 3.759 (3.682±0.281) 2.815 (2.462±0.458) 5.285 (5.045±0.325)
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Table 3

The connectivity, CNR and SNR comparisons for mouse ear angiograms in BM mode among three algorithms 

after phase compensation. The values outside the brackets were resulted from the en face images shown in Fig. 

8, while the numbers inside the brackets were the averaged values and the standard deviations calculated from 

10 separate experimental measurements.

Amplitude-based OMAG Phase-based OMAG Complex-based OMAG

Connectivity 0.873 (0.851±0.042) 0.835 (0.812±0.074) 0.885 (0.881±0.061)

CNR 3.323 (3.264±0.313) 3.183 (3.105±0.441) 3.857 (3.712±0.395)

SNR 2.548 (2.465±0.217) 2.471 (2.369±0.373) 3.516 (3.502±0.254)
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Table 4

The connectivity, CNR and SNR evaluated for human retinal angiograms among three algorithms.

Amplitude-based OMAG Phase-based OMAG Complex-based OMAG

Connectivity 0.909 0.869 0.914

CNR 3.109 2.435 3.528

SNR 2.234 2.178 2.930
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