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Abstract

Causative mutations in a patient’s cancer drive its biology and, by extension, its clinical features 

and treatment response, a concept underpinning the vision of precision medicine. However, 

considerable between-patient heterogeneity in driver mutations complicates evidence-based 

personalization of cancer care. Here, re-analysing 1,540 patients with acute myeloid leukemia 

(AML), we explore how large knowledge banks of matched genomic-clinical data can support 

clinical decision-making. Inclusive, multistage statistical models accurately predicted likelihoods 

of remission, relapse and mortality, validated on independent TCGA patients. Comparison of long-

term survival probabilities under different treatments enables therapeutic decision support, 
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available in exploratory form online. Personally tailored management decisions could reduce the 

number of hematopoietic cell transplants in AML by 20–25%, while maintaining overall survival 

rates. Power calculations show that databases require thousands of patients for accurate decision 

support. Knowledge banks facilitate personally tailored therapeutic decisions, but require 

sustainable updating, inclusive cohorts and large sample sizes.

INTRODUCTION

Led by a small number of high-profile successes, there has been considerable enthusiasm for 

the concept of personally tailoring cancer management based on individual genomic 

profiles1,2. Mutations in cancer genes fundamentally drive the tumor’s growth, giving strong 

rationale for the belief that therapeutic choices made on the basis of these causative events 

will be biologically sound. Applications of genomics in cancer medicine include enhanced 

diagnostic accuracy through molecular characterization, personalized forecasts of a patient’s 

prognosis and support for choosing among different therapeutic options3,4. There are, 

however, complications to this narrative: surprisingly few cancer genes are straightforward 

therapeutic targets; many cancer genes are only rarely mutated in a given tumor type; each 

patient’s tumor typically has several driver mutations. Above all other complications, 

though, is the challenge that, for most tumor types, there are hundreds to thousands of 

different combinations of driver mutations observed across patients5–7.

The promise of precision medicine has triggered considerable funding commitments, such as 

the Precision Medicine Initiative in USA, Genomics England in UK and similar efforts in 

several other countries8,9. Amongst other aims, these initiatives will build large banks of 

patients’ genomic data matched to clinical variables, treatments and outcomes. Despite these 

investments reaching hundreds of millions of dollars in scale, there has been little formal 

evaluation of the potential utility of knowledge banks. In particular, it is unclear whether 

accurate predictions about cancer outcomes can be made from a large genomic-clinical 

database; what improvements in survival at the population level might be achieved from 

personally tailored therapeutic choices; and what sample sizes knowledge banks need to 

accrue before predictions are sufficiently accurate to underpin decision support for the 

individual patient. Precision medicine requires therapeutic decisions fine-tuned to the unique 

genome of an individual cancer; evidence-based medicine requires therapeutic decisions 

grounded on documented, verified data.

Here, we explore these questions by re-analyzing genetic data from 111 cancer genes, 

cytogenetic profiles, and clinical data from 1,540 patients with acute myeloid leukemia 

(AML) undergoing intensive treatment10, validated on an independent AML cohort from the 

TCGA11. In our previous study10, we identified 11 genomic subcategories of AML, each 

with distinctive constellations of clinical features. However, even within individual 

molecular subgroups, there remains considerable patient-to-patient variability in treatment 

response and clinical outcomes, partially explained by co-operating driver mutations and 

other diagnostic clinical variables. At the population level, then, we can make strong 

statements about overall patterns of long-term survival from such data. At the level of a 

patient in the clinic faced with a difficult therapeutic decision, however, it is not at all clear 
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how such genomic complexity impacts on the accuracy or relevance of predictions about 

potential clinical outcomes for that patient.

AML presents an interesting exemplar for evaluating the potential of precision medicine 

because of a real, current therapeutic dilemma – who should be offered an allogeneic 

hematopoietic cell transplant (allograft) in first complete remission (CR1)12,13? The 

equations are not straightforward. Allogeneic hematopoietic cell transplants in first complete 

remission undoubtedly decrease relapse rates for most patients, but this comes at the cost of 

higher treatment-related mortality, as high as 20–25% at 3 months14, with a further 30% risk 

of debilitating chronic morbidity15. Furthermore, even though more patients relapse after 

chemotherapy in first remission, up to a fifth can then be successfully salvaged with 

allografts or more intensive chemotherapy16,17. We use this particular therapeutic dilemma 

to illustrate how a knowledge bank approach can inform therapeutic decisions tuned to the 

specifics of an individual patient, a concept that could be extended to other cancers, other 

treatments, other clinical conundrums.

RESULTS

Predicting complex patient outcomes from genomic and clinical variables

We recently sequenced10 all coding exons of 111 myeloid cancer genes in diagnostic 

leukemia samples from 1,540 AML patients undergoing intensive treatment within three 

prospective clinical trials of the German-Austrian AML Study Group (AMLSG). We 

identified driver point mutations and combined these data with the clinical trials database to 

generate a comprehensive knowledge bank. Here, we focus on evaluating the utility of the 

knowledge bank for generating predictions personally tailored to the individual patient, and 

how this can be used to compare likelihoods of various clinical outcomes under different 

treatment strategies. The full knowledge bank, together with all analysis code used here, is 

documented in the Supplementary Note and is available as a git repository (see URLs 

section below).

Throughout, we use overall survival as the primary end-point of these analyses since the aim 

of intensive therapy in the young AML patient is cure. The full dataset consists of 231 

predictor variables, spanning the seven broad categories of fusion genes, copy number 

alterations, point mutations, gene-gene interactions, demographic features, clinical risk 

factors and treatment received, across 1540 patients. To assess the accuracy of our 

predictions we use the following validation strategies: (1) random cross-validation on this 

dataset, (2) building models from any two clinical trials here and testing on the third; and (3) 

testing the model built from all three AMLSG trials on an independent AML cohort from 

USA (TCGA)11. All predictions for individual patients reported here were made using 

models excluding that patient.

We tested a range of regularized regression methods for predicting survival and also 

implemented more novel approaches, based on random effects and multistage statistical 

models, for deriving detailed associations between genomic and clinical endpoints (Figure 

1a; Supplementary Note sections 2–3). Using a variety of accuracy measures, the random 

effects models and multistage models typically scored best in predicting overall survival, 
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roughly doubling the amount of explained variance compared to current prognostic criteria13 

(Figure 1b–c; Supplementary Note section 4). A key aspect of these approaches is that they 

include all available variables in the model, but shrink their estimated effects if there is only 

weak support in the data in order to control overfitting. In contrast, conventional methods 

typically chose reduced subsets of 5–20 variables, seemingly at the cost of discarding 

prognostically relevant information (for more discussion, see Supplementary Note section 

4).

Reassuringly, we found strong ‘out-of-cohort’ validation for our models, either when models 

built on this cohort were tested on the TCGA cohort, or when models using two of the three 

trials in the knowledge bank were tested on the third trial (Figure 1a). Of particular note is 

the observation that the concordance decreased only moderately for predictions from a 

model trained on younger patients (AMLHD98A and AMLSG0704: age range, 18–65 years) 

evaluated on a trial of older patients (AMLHD98B: range, 58–84 years). This implies that 

many of the differences between age groups in AML outcomes are captured in clinical and 

genetic variables and can therefore be learnt from the knowledge bank.

The multistage model offers the advantage of separating long-term outcomes into individual 

constituents – death without complete remission, non-relapse death (mostly treatment-

related) and death after relapse; as well as survival in induction, first remission (CR1) and 

after relapse (Figure 2a–c). As we shall see, understanding which of these constituent 

outcomes is especially likely for a patient considerably enhances therapeutic decision-

making. The added detail does not come at the cost of overfitting, since the combined 

prediction of overall survival in the multistage model yields the same accuracy as predicting 

overall survival directly (Figure 1a).

Personally tailored prognosis

The models for predicting outcome developed here are considerably more complex than 

those currently used in clinical practice. In AML, the current standard is the European 

LeukemiaNet (ELN) genetic scoring system13, which defines four categories of disease risk 

based on 6 fusion genes, 3 point mutated genes and cytogenetic abnormalities. We explored 

how much more informative our more complex prognostic models are than the ELN system.

We find that individual risk in this AML cohort was continuous, with no obvious cut-points 

for stratification, suggesting that grouping patients on the basis of few predictor variables 

discards much prognostic information (Figure 2d). Our more detailed survival estimates 

confirm the broad trends of known ELN risk groups, but a third of patients have survival 

predictions deviating more than 20% from their ELN stratum (Figure 2e).

From the multistage model, we can quantify how much the various classes of predictor 

variables contribute to explaining patient-to-patient variation in each possible endpoint of 

treatment (Figure 2f, Supplementary Tables 1–6). We find that clinical and demographic 

factors, such as patient age, performance status and blood counts, exerted most influence on 

early death rates, including death in remission (mostly due to treatment-related mortality). 

Genomic features, be they copy number changes, fusion genes or driver point mutations, 

most strongly influenced the dynamics of disease remission and relapse.
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These estimates represent the contributions of the various categories of predictors to 

outcomes of treatment at the population level. At the individual level, we can score each 

patient for his or her risk along these dimensions of predictor variables. What emerges is the 

considerable heterogeneity in personal risk profiles across the cohort (Supplementary Figure 

1). The heterogeneity of risk profiles and the variable impact they have on the different 

AML outcomes combine to generate a kaleidoscope of predictions for patients’ journeys 

through therapy (Figure 3). Thus, there are distinct groups of patients for whom we can 

confidently predict long-term survival in first remission, or death after relapse, or death 

without achieving remission, manifesting as swathes of purple, green or pink respectively in 

Figure 3. Reassuringly, these predictions square well with what actually happened to the 

patients (status lines and circles in Figure 3). It is these patients for whom the personally 

tailored predictions have much confidence. There are, however, some patients for whom 

there is genuine uncertainty about outcomes even with the full model. These patients have 

predicted survival curves that deviate little from the population average.

Personally tailored therapeutic decision support

The preceding sections show that a knowledge bank can provide meaningful information 

about a patient’s prognosis. The goal of precision medicine is more ambitious than this, 

however, in seeking to inform the choice of therapy for an individual patient. In AML, a 

major therapeutic dilemma is deciding which patients should be offered allogeneic 

hematopoietic cell transplants (allografts), and whether this should be in first complete 

remission or after relapse12,13. With 20–25% transplant-associated mortality and substantial 

rates of chronic graft-versus-host disease, allografts tend to be reserved for high-risk 

patients. We now explore how a knowledge bank can inform the decision on allograft versus 

chemotherapy in first remission for the individual patient with AML.

Our calculations have shown that using a knowledge bank to model patient outcomes 

reclassifies the risk estimates of a substantial fraction of patients (Figure 2e). A given 

patient’s risk prediction represents an aggregation across multiple facets of the disease. 

Thus, two patients can both have an overall intermediate probability of death but arrive at 

this through different risk contributions: one might be older and more frail but have a 

leukemia with generally favorable genomic features; the other might be young and fit but 

with a leukemia carrying adverse driver mutations. Intuitively, a clinician will favor the more 

intensive allogeneic transplant in the latter, fitter patient while preferring standard 

chemotherapy in the older patient at higher risk of treatment-related mortality.

We illustrate these calculations using two patients from the cohort (Figure 4; other 

representative patients illustrated in Supplementary Figure 2). The first was a 29-year 

woman with t(8;21) and no other driver mutations: favorable risk by ELN criteria13. Under a 

strategy of chemotherapy in CR1 with salvage allograft after relapse, we predict her chance 

of 3-year survival to be 86% (CI95%: 78–91%) (Figure 4a). In contrast, with allograft in 

CR1, we estimate her overall cure rate to be 88% (79–93%) (Figure 4b), with the decrease in 

probability of relapse matched by the increase in non-relapse mortality with transplant. 

Hence there is no indication for an up-front allograft for this patient, with only 2 percentage 

points difference in predicted survival (CI95%: −3 to 7). For this patient, the treatment 
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recommendation under current clinical standards13 is unchanged under a knowledge bank 

approach.

The second patient was a 49-year old male with mutations in NPM1, DNMT3A, IDH1 and 

normal karyotype. Under ELN criteria, his risk also classifies as favorable, and he would not 

currently be recommended for allograft in first CR. With standard chemotherapy as first-line 

therapy, we estimate his 3-year survival probability at 55% (41–67%), compared to 68% 

(55–77%) for allograft in CR1 (Figure 4c–d). Thus, his disease is not especially favorable 

risk when all predictive information is considered. Furthermore, the absolute risk reduction 

associated with an up-front allograft is estimated at 13 percentage points (3–24%). This is 

equivalent to curing 1 additional patient for every 7 (4–26) treated with allograft instead of 

standard chemotherapy in first remission.

Treatment choices from knowledge banks versus current practice

The cases shown in Figure 4 illustrate that some, but not all, patients would have had their 

treatments changed using a knowledge bank compared to current recommendations. It is 

therefore natural to assess how many patients would have had their treatment altered under 

such an approach, and whether the predictions accurately reflect what actually happened to 

the patients.

On average, we find that patients who are predicted to have poor prognosis, more than 60–

70% chance of mortality at 3 years, are most likely to benefit from allogeneic transplantation 

in first remission (Figure 5a), a finding captured in current clinical recommendations. 

However, there is considerable spread of patient estimates around the population average. 

This variance around the average is critically important for precision medicine because it 

suggests that population-based criteria for treatment choices only poorly capture the 

predictive information available for the individual patient.

Overall, we estimate that 12% (124/995) of patients in CR1 aged 18–60 years would gain 

more than 10 percentage points improvement in survival at 3 years with an allograft in CR1 

compared to standard chemotherapy (number needed to treat <10; Figure 5b). Only 29 of 

these 124 patients are identified as adverse risk by current criteria, with most being 

intermediate and some even favorable risk. Furthermore, 57% (302/534) patients classified 

as adverse or intermediate risk by ELN criteria, and therefore strongly considered for 

allograft in CR1 under current clinical recommendations13, are predicted to derive <5 

percentage points improvement in survival from up-front allografts. Similarly, 15% (58/386) 

ELN favorable patients are predicted to benefit >5% from a bone marrow transplant in CR1. 

Clearly, then, a knowledge bank approach might change management in up to 1/3 of patients 

compared to current practice recommendations.

We next compared the therapeutic predictions made by our model with what actually 

happened to the patients under the two different treatment strategies (Figure 5c; 

Supplementary Figure 3). We split the cohort into two groups depending on whether they 

were predicted to derive more or less than 10 percentage points improvement in survival 

with allograft in CR1 compared to chemotherapy in CR1, allograft after relapse. If our 

model were correctly identifying those patients most likely to benefit from transplant, then 
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the survival curves in this group should show distinctly better outcomes for allograft in first 

remission than for chemotherapy. This is indeed what we observe (blue lines, Figure 5c). For 

the patients our model predicts minimal or no benefit from an up-front transplant strategy, 

we do indeed find that there was little meaningful difference in the survival curves between 

those receiving transplant and those receiving chemotherapy in first remission (grey lines, 

Figure 5c).

Taken together, then, these data demonstrate that up to a third of patients would have their 

treatment altered using a knowledge bank approach compared to current practice 

recommendations13. Furthermore, predictions made from the knowledge bank match well 

with the actual outcomes observed under the two different treatment philosophies, 

confirming the accuracy of the decision support.

Population impact of a knowledge bank approach

Knowledge banks would be costly to build and maintain, and it is therefore important to 

evaluate whether the overall impact of improved treatment choices at the population level 

would justify this outlay. The impact in AML could be expressed as either the improvement 

in expected survival for a fixed number of allografts in CR1 or the reduction in the number 

of allografts in CR1 needed to achieve the same overall survival (Figure 5d). In USA, ~30% 

of patients with AML receive an allograft18. If the 30% to receive an allograft in CR1 were 

chosen using an optimal knowledge bank rather than current recommendations, we estimate 

survival rates across the cohort would increase ~1.3 percentage points (60% to 61.3%).

Alternatively, personally tailored management decisions could reduce the number of 

hematopoietic cell transplants in AML by 20–25%, while maintaining overall survival rates. 

Under current practice, 44% young adult patients would receive a transplant, broken down 

as 30% in CR1 plus 14% post-relapse. In contrast, using a knowledge bank approach to 

choose when and whom to transplant, 35% patients overall would receive an allograft, as 

16% in CR1 plus 19% post-relapse, achieving the same overall survival rate of 60%. Similar 

overall gains from a knowledge bank approach were found across a range of assumptions for 

risks and benefits of transplant (Supplementary Figure 4).

We can express the impact of a knowledge bank at the population level in terms of quality-

adjusted life years (QALYs). Health utilities for AML survival with and without stem cell 

transplants have previously been estimated as 0.74 and 0.83, respectively19, and the cost of 

an allograft as US$100,000–200,00020. Thus an increase of 1.3 percentage points in long-

term survival while maintaining a 30% allograft rate in CR1 corresponds to ~0.1 QALYs 

gained per patient over ten years. Alternatively, reducing the number of allografts by better 

resource allocation, while maintaining overall survival rates, would gain ~0.05 QALYs per 

patient over ten years as well as saving approximately US$10,000 per patient.

Portals for exploring decision support predictions

The preceding sections demonstrate that the complex and multifactorial inter-relationships 

among genomic variables, clinical predictors and cancer outcomes can be learnt with a 

sufficiently comprehensive knowledge bank. Since the underlying survival models are 
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complex, diagnostic laboratories may need to provide personalized portals into a given 

patient’s cancer genome.

Our dataset is not appropriate for direct clinical use, as the algorithm has not yet been 

prospectively validated and sequencing was performed using a research pipeline. 

Nonetheless, as a research tool, we have created a prototype portal within our website21 (see 

URLs section below) that allows outcome predictions to be generated based on this dataset 

for user-defined constellations of genomic features, clinical variables and treatment 

strategies (Supplementary Figure 5). The underlying algorithm is capable of imputing 

missing variables and computes confidence intervals for each prediction.

The knowledge bank

We explored how both the breadth of genomic profiling and the sample size of the 

knowledge bank impact on the accuracy of outcome predictions for individual patients. The 

explained risk grows linearly with the average number of driver mutations present in each 
patient (Supplementary Figure 6a), a relationship underpinned by theoretical arguments 

(Supplementary Note S5.3.2). Some genes, by virtue of their frequency and/or the 

magnitude of their prognostic effect, are more informative than others. We have ranked 

AML genes by their predictive utility (Supplementary Figure 6b) to address the question of 

how much improvement in prognostic information comes from increasing the number of 

genes interrogated. The effects of missing mutation data on confidence intervals of patient 

prediction can be explored in the web portal.

The other critical factor to accurate risk profiling is the sample size of the knowledge bank. 

Using subsampling analyses and simulations from the AML data, we found that prognostic 

accuracy steadily increases with larger sample sizes, albeit following a law of diminishing 

returns (Figure 6a). As a rule of thumb, to detect a moderate-sized prognostic effect of a 

given cancer gene, say an increase of 50% in relative risk, the knowledge bank needs ~50–

100 patients with that mutation (Figure 6b; Supplementary Figure 7a). Thus, for a gene 

mutated in 10% of patients, a training set of 500–1000 patients would suffice, but for a 1% 

gene, a cohort of 5,000–10,000 would be needed. These simulations match theoretical 

expectations22,23 (Supplementary Note S5.4.2; Supplementary Figure 7b).

The standard error of individual survival predictions 3 years after CR is about 6%. When 

using predictions for supporting therapeutic decisions about a specific patient, this 

uncertainty limits the ability to confidently discriminate small differences in survival. With 

1,000 cases, we could achieve an average absolute prediction error for an individual patient 

of approximately 5 percentage points, which could be brought down to 2 percentage points 

with 10,000 cases (Figure 6c).

DISCUSSION

Here, we have evaluated the promise of precision medicine, building statistical models that 

can generate personally tailored clinical decision support from all available prognostic 

information in a knowledge bank. From a database of 1540 patients, we can make 

considerably more informative and more accurate statements about an individual’s likely 
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journey through AML therapy than the current standards in clinical practice. Our approach 

enables us to compare the likelihood of favorable outcomes under different treatment 

scenarios, providing information that can support genuinely personalized decision-making.

While we have focused on AML in this analysis, we believe that the same logic applies to 

knowledge banks from other cancer types, which will be generated as genomics enters 

healthcare and healthcare becomes digitized. Most cancer types are lethal, and most 

currently available treatment options are either invasive or toxic, burdening the patient with 

severe side-effects. Therefore a quantitative risk assessment is important in any cancer type 

in order to reserve the most aggressive treatments for the patients at the highest risk of dying 

from the disease. All cancers are caused by genetic changes, with considerable heterogeneity 

among patients, and it is therefore likely that these genetic differences also correlate with 

differences in outcome, although the details of the logic and strength of association may vary 

among cancer types. Once knowledge banks are established and ideally populated with 

information about different treatment options, whether these be chemotherapy, targeted 

inhibitors or immunotherapies, one can apply the logic outlined here to assess the benefit of 

these treatments, contrasted with the patient’s baseline risk.

Building and maintaining clinical-genomic knowledge banks is a formidable challenge, 

especially for solid tumors where the genome can be considerably more complex than AML. 

Initially, knowledge banks could be seeded from clinical trials cohorts, as we did here, since 

these will have high quality clinical data and state-of-the-art therapies. Our power 

calculations suggest, however, that most clinical trials would not be powered to detect gene-

drug interactions involving genes mutated in <20% patients. Additionally, knowledge banks 

will need to include patients who are representative of the wider cancer population to enable 

meaningful extrapolation to real-world clinical practice. This suggests that building systems 

to incorporate data from patients undergoing routine clinical care into the knowledge bank 

will be important.

Whether the returns justify this investment will be contentious. Here, we have illustrated that 

a reallocation of allografts could increase survival by 1.3 percentage points. We should not 

be surprised at how modest the gain is – for the bulk of patients, we predict only small 

improvements in survival with early allografts (Figure 5b). What may be more important is 

the more accurate use of a precious resource, since we can potentially reduce the number of 

allografts performed in AML by 20–25% while maintaining the same overall survival as for 

current treatment recommendations. Hence a knowledge bank would not only increase the 

quality of life by reducing morbidity from chronic graft-versus-host disease; at US

$100,000–200,000 per allograft20, the potential monetary savings would far outstrip the 

costs of the genomic screens. Moreover, the utility of a knowledge bank likely goes beyond 

this, informing potential drug targets, identifying patients not benefitting from current 

treatments and providing insights into the relationships between genetic and clinical 

features.

There is a tension between maintaining the precepts of evidence-based medicine while 

sharpening the focus on the individual with precision medicine24. Here, we have 

demonstrated how knowledge banks can resolve this tension, using the evidence base of 

Gerstung et al. Page 9

Nat Genet. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thousands of patients to inform outcomes for the individual. The therapeutic choice we 

exemplified is binary: transplant versus chemotherapy in AML. The success of FLT3 

inhibitors25 potentially squares the number of available treatment options, and other novel 

agents will add further complexity. Knowledge banks could be a useful tool for clinicians 

navigating this complexity, but must remain evergreen as the therapeutic armamentarium 

expands and as our molecular understanding of cancer deepens. The logistic and regulatory 

hurdles, the scale needed and the costs of such an undertaking are daunting but not 

insurmountable.

ONLINE METHODS

Patient cohort

Here we reanalyze data first reported and described in detail in Ref.10. Briefly, we performed 

targeted gene sequencing of 111 myeloid cancer genes11,26–28 on DNA from leukemic cells 

in a cohort of 1,540 adults with AML who were treated with intensive therapies in three 

clinical trials run by the German-Austrian AML Study Group29–31. In AML-HD98A, 

patients aged 18–61 years received induction chemotherapy with idarubicin, cytarabine and 

etoposide (ICE), followed by allogeneic transplants for intermediate-risk patients with 

matched related donor and high-risk patients; intensive consolidation chemotherapy for the 

remainder. Treatments were similar in AMLSG-07-04 but included randomization for all-

trans retinoic acid therapy (ATRA) or not in induction. In AML-HD98B, patients ≥61 years 

received ICE±ATRA, with further therapy dictated by response. Median follow-up was 5.94 

years. All patients gave written informed consent for enrolment in the multicentre trials, 

which were approved by the local research ethics committees in participating sites 

(ClinicalTrials.gov number: NCT00146120).

Statistical Methods

We explored a range of statistical methods to build models of overall survival32,33, including 

random survival forest regression; stepwise Cox proportional hazards model selection with 

either AIC or BIC penalty; complementary pairs stability selection based on LASSO 

penalized Cox proportional hazards models; random effects models with Gaussian random 

effects/ridge penalties; and random effects multistage models (Supplementary Methods S2–

4). We found little prognostic significance to whether mutations were subclonal or clonal 

(Figure S8), and therefore do not consider this information in the multivariate models. All 

predictions shown are based on a leave-one-out basis; it is therefore informative to compare 

each prediction with the observed outcome in a given patient. All predictions for individual 

patients reported here were made using models excluding that patient.

For estimating the population-level impact of the knowledge bank approach, we divide 

patients into two groups based on whether they are expected to derive more or less than 10 

percentage points improvement in survival with allograft in CR1 compared to chemotherapy 

in CR1, allograft at relapse. In each group, the observed outcomes are then determined 

separately for those who actually received an allograft in CR1 and those who proceeded with 

standard chemotherapy in CR1. In the ideal knowledge bank, the treatments used would be 

randomized, since this ensures they are not confounded with the predictor variables we use. 

Gerstung et al. Page 10

Nat Genet. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov


Here, 711/1540 (46%) patients received an allograft, with the decision to perform a 

transplant in intermediate-risk patients based on whether a matched related donor was 

available31. This introduces a quasi-randomization, since HLA-matching between siblings 

derives from Mendelian assortment of parental alleles, but this cannot substitute for 

prospective validation of the decision support tools we develop.

All predictions for individual patients reported here were made using models excluding that 

patient. To maximize reproducibility, details of statistical methods and all analysis code used 

are provided in Supplementary Methods and as a git repository online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Systematic model comparison
a. Top panel: Concordance C of different model predictions for overall survival. For cross-

validation analyses (grey), we generated 100 training and test sets by randomly splitting the 

full dataset. The distribution of concordance values across the 100 random sets is shown as a 

box-and-whisker plot. Also shown are point estimates with error bars for predictions 

evaluated on pre-specified splits of the dataset, where the training set represented 2 of the 3 

trials in the study and the test set was the third trial (red, blue, green) or where the training 

set was the full AMLSG dataset with the test set being the TCGA cohort (purple). 

Predictions for the multistage model are evaluated 3yrs after diagnosis.

Lower panel: Using the 100 random cross-validation splits, each of the 10 classes of 

predictive model was built on the training set and evaluated on the test set. The 10 models 

were ranked based on their relative performance on the test set and the ranks across the 100 

cross-validation splits aggregated, indicating how often each model scored best (1st) to worst 

(10th). Time-dependent models include allogeneic hematopoietic stem cell transplants, 

which is treated as a time-dependent covariate to avoid bias.

b. Coefficient of determination R2 for leave-one-out predictions using time-dependent 

random effects and multistage predictions of the AMLSG cohort, evaluated at each time (x-

axis).

c. Same as b, evaluated on TCGA data.
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Figure 2. Multistage modeling of patient fate
a. Multistage model of patient trajectories. The six colored boxes indicate different stages 

during treatment, with five possible transitions indicated by solid arrows. Numbers in each 

box indicate the total number of patients that have entered a given stage in during follow-up.

b. Sediment plot showing the fraction of patients in a given stage at a given time after 

diagnosis. The thick black line denotes overall survival, which is the sum of the deaths 

without complete remission (red), non-relapse mortality (blue) and mortality after relapse 

(green).
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c. Schematic overview of multistage regression. The model estimates the log-additive effect 

of each of 231 prognostic variables on the transition rates for all 5 possible time-dependent 

transitions shown in (a). Rate changes are modelled by Cox proportional hazards models 

with random effects.

d. Concordance, C, indicates the survival times at 3 years after diagnosis were correctly 

ranked by the model. Similarly, at three years after diagnosis only 28% of patients were 

incorrectly predicted to be alive or dead.

e. Mosaic plot of predicted 3-year survival across ELN categories. The height of each bar 

denotes the fraction of patients in each quarter of survival for each ELN group, and the 

width of each bar is proportional to the percentage of patients in each ELN group.

f. Relative importance of risk factors for different transitions. The concordance C, is shown 

as percentages across the top of the bar chart.
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Figure 3. Multistage outcome predictions for 1024 patients
Cross-validated risk predictions and observed statuses for 1024 patients, arranged along a 

Hilbert curve. This has the property that patients with similar AML subtype and risk 

constellation are grouped together in the 2-dimensional space (compare Supplementary 

Figure 1 for constellations of risk factors). For each individual patient, the survival curves 

predicted by the multistage model are shown, with the competing outcomes colored as in the 

legend and Figure 2b. What actually happened to the patient is shown as a line across the 

base of the graph, with a filled circle indicating the patient died, its color indicating the 

mode of death. Note that there are many patients for whom one color dominates the 
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diagram, indicating that the probability that a particular event occurs is very high. 

Reassuringly, for such patients the observed outcomes are highly concordant with the cross-

validated predictions and occur at frequencies matching the predicted probabilities.
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Figure 4. Individualized risk exemplified for 2 patients
a. Sediment plot showing predicted multistage probability after remission for patient 

PD11104a under a management strategy of standard chemotherapy in CR1 with intended 

allograft after relapse. Predictions shown are based on models where the given patients were 

excluded for training; the bar at the bottom denotes the observed outcome (as for Figure 3). 

The patient was alive at the last follow-up 3.5 years after achieving first complete remission. 

Numbers at the bottom indicate the probabilities of non-relapse death (NRD), post-relapse 

death (PRD) and being alive after relapse (AAR) at years 1 to 5 from achieving complete 

remission.

b. Multistage probability for PD11104a in the scenario of an allograft in first complete 

remission.

c. Same as a for patient PD8314a. The patient relapsed after 1.2 years and died soon after.
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d. Same as b for patient PD8314a.

Details of these calculations are presented in Supplementary Note, section 3.5.5.8; additional 

patients shown in Supplementary Figure S2.
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Figure 5. Benefit of allograft in CR1 vs after relapse
a. Predicted three-year absolute mortality reduction by allografts in CR1 over standard 

chemotherapy in CR1 and allograft after relapse (y-axis). Calculations are based on patients 

<60yr in CR1 (n=995), who would be eligible for allogeneic transplants. The black curve 

represents the population average, with 95% confidence intervals in grey. Points denote 

individual patients in the cohort, colored by ELN risk category.

b. Mosaic plot of absolute survival benefit at 3 years by an allograft in CR1 over standard 

chemotherapy after CR1 versus ELN risk category. The predicted benefit was discretized 

into four groups, indicated by colors, with intervals of 5%.

c. Kaplan-Meier curves for patients with high (>10%, blue) and low (<10%, grey) predicted 

benefit of early allograft (cross-validated), each with and without allograft in CR1. Patients 

with favorable ELN risk were excluded.

d. Predicted overall survival at 3yrs as a function of total number of allografts (in CR1 + 

after relapse). Patients are first ranked from those most likely to benefit from transplant to 

those least likely to benefit, as judged by current guidelines (solid blue line) or our current 

knowledge bank (solid red line). The curves show expected survival if allografts in CR1 

increased from 0% to 100%, starting with the patient with the greatest and ending with the 

lowest predicted benefit. The x-axis starts at ~0.25, since about half of patients will relapse 
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without an allograft in CR1, with a further half managing to undergo post-relapse 

transplantation.
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Figure 6. Extrapolations and power calculations
a. Subsampling the number of patients reveals a steady, but saturating increase in prognostic 

concordance C for a random effects model for overall survival. Error bars show the 95% 

confidence intervals for the concordance obtained from multiple independent subsamples of 

the dataset.

b. Graph relating the effect size (hazard ratio) of a prognostic variable to the absolute 

number of patients with the given factor required to reach significance in a random effects 

model for overall survival (solid line: P < 0.05; dotted P < 0.001).

c. Average prediction error between simulated and estimated survival a random effects 

model for overall survival as a function of survival time (x-axis) and training cohort size (y-

axis).
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