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Promyelocytic leukemia (PML) proteins have been implicated in antiviral responses but PML and

associated proteins are also suggested to support virus replication. One isoform, PML-II, is

required for efficient transcription of interferon and interferon-responsive genes. We therefore

investigated the PML-II contribution to human adenovirus 5 (Ad5) infection, using shRNA-

mediated knockdown. HelaDII cells showed a 2–3-fold elevation in Ad5 yield, reflecting an

increase in late gene expression. This increase was found to be due in part to the reduced innate

immune response consequent upon PML-II depletion. However, the effect was minor because

the viral E4 Orf3 protein targets and inactivates this PML-II function. The major benefit to Ad5 in

HelaDII cells was exerted via an increase in HSP70; depletion of HSP70 completely reversed

this replicative advantage. Increased Ad5 late gene expression was not due either to the

previously described inhibition of inflammatory responses by HSP70 or to effects of HSP70 on

major late promoter or L4 promoter activity, but might be linked to an observed increase in E1B

55K, as this protein is known to be required for efficient late gene expression. The induction of

HSP70 by PML-II removal was specific for the HSPA1B gene among the HSP70 gene family

and thus was not the consequence of a general stress response. Taken together, these data

show that PML-II, through its various actions, has an overall negative effect on the Ad5 lifecycle.

INTRODUCTION

The promyelocytic leukemia (PML) gene encodes a series of
protein isoforms via alternative splicing (Jensen et al.,
2001). Most of these contribute to the formation of PML
nuclear bodies (PML-NB) that also transiently or perma-
nently include many other proteins (Van Damme et al.,
2010). PML proteins and/or PML-NB are implicated in a
wide range of cellular functions, including innate and
intrinsic immune responses (Bernardi & Pandolfi, 2007;
Geoffroy & Chelbi-Alix, 2011). The PML gene itself is an
interferon-stimulated gene (ISG) (Chelbi-Alix et al., 1995;
Stadler et al., 1995), which suggests PML might be an effec-
tor of IFN responses. PML isoform II (PML-II) in particular
is also required for the effective induction of IFNb and ISG
expression, which it achieves by promoting the assembly of
functional transcription complexes at target promoters
(Chen et al., 2015; Kim & Ahn, 2015). Thus this PML

isoform can act upstream of IFN production to create a
feed-forward loop that potentiates type I IFN responses.

PML-NBs are intimately associated with the replication
cycles of nucleus-replicating DNA viruses. Incoming viral
genomes are found located in close proximity to PML-NBs
(Ishov & Maul, 1996) and, for herpes simplex virus type 1
(HSV-1), PML-NBs have been shown to disassemble and
reform close to the site of virus entry into the nucleus
(Everett & Murray, 2005), suggestive of an early response
by the cell to infection. During infection, PML-NBs are
then targeted by proteins encoded by a wide variety of
viruses (Leppard & Dimmock, 2006; Leppard & Wright,
2012). These findings fit a model in which PML-NBs or
their components are broadly antiviral and hence viruses
have evolved functions to disrupt these activities in order to
favour virus replication. Alternatively, and not mutually
exclusively, the interaction of viruses with PML-NB may
have been selected to favour the virus, with disruption of
PML-NBs liberating proteins that act to increase virus pro-
duction (Berscheminski et al., 2014).

One well-characterized example of PML-NB disruption is
the action of HSV1 ICP0 protein (Maul & Everett, 1994).
Supporting an involvement of PML in IFN responses,
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HSV1 ICP0 mutants have a significant growth defect and
attenuated pathogenicity in mice, and both of these proper-
ties are substantially recovered in animals that are deficient
in IFN responses (Halford et al., 2006; Leib et al., 1999); the
ability of IFN to inhibit growth of ICP0 mutants in cell cul-
ture is also greatly reduced when PML-null or knockdown
cells are used (Chee et al., 2003; Everett et al., 2008b). How-
ever, PML and other PML-NB components are also directly
inhibitory to HSV1 independent of IFN (Everett et al.,
2008a, b), with PML-I and PML-II being particularly impli-
cated (Cuchet et al., 2011). More recently, PML-II was also
found to be the most potent inhibitor, among the six
nuclear PML isoforms, of transduction by a recombinant
parvovirus AAV-2 vector (Mitchell et al., 2014).

Human adenovirus type 5 (HAdV-C5, Ad5) infection also
targets PML, rearranging it from PML-NB into track-like

structures (Carvalho et al., 1995; Doucas et al., 1996); other
PML-NB components are also redistributed, including some
into virus replication centres (Berscheminski et al., 2014;
Doucas et al., 1996). The Ad5 E4 Orf3 protein, which forms
nuclear tracks by self-association (Ou et al., 2012; Patsalo
et al., 2012), acts directly on PML-II, binding to its unique
C-terminal domain to cause the redistribution of all PML
isoforms (Hoppe et al., 2006; Leppard et al., 2009). Func-
tionally, E4 Orf3 is necessary for Ad5 to replicate in the face
of a pre-established IFN response (Ullman et al., 2007) and
E4 Orf3 also disrupts the intrinsic antiviral effects of PML
and another PML-NB component, Daxx (Ullman & Hear-
ing, 2008). Taken together, these observations support the
idea that the E4 Orf3 interaction with PML-II opposes anti-
viral responses so as to favour productive viral infection,
which fits well with the more recent finding that PML-II is
needed for a robust type 1 IFN response (Chen et al., 2015).
However, it has also been reported that PML-II serves a pos-
itive function during Ad5 infection (Berscheminski et al.,
2013).

In light of these findings, we investigated the circumstances
under which PML-II could provide a positive or negative
influence on Ad5 infection, and the mechanisms underlying
these influences. Viral gene expression and replication were
increased by the removal of PML-II within a background of
ongoing expression of other PML isoforms, leading to an
increase in virus yield. One factor in this increase was the
reduction in the interferon type I response in PML-II
depleted cells. The other more significant factor was the
increased level of HSP70 protein in PML-II depleted cells,
which was found to support elevated Ad5 gene expression.

RESULTS

Stable knockdown of PML-II in Hela cells

To investigate the effect of PML-II on the well-character-
ized Ad5 productive infection of Hela cells, we first gen-
erated PML-II knockdown Hela cells (HelaDII) by
lentiviral shRNA transduction, along with matched empty
vector cells (HelaEV). HelaDII cells were fully viable in
long-term culture, showed similar morphology to both
parental Hela cells and HelaEV cells (Fig. 1a) and grew at
only a slightly slower rate than HelaEV cells under puro-
mycin selection. HelaDII cells showed significant reduc-
tions in PML-II mRNA (Fig. 1b) and protein (Fig. 1c).
These cells also displayed functional knockdown of PML-
II based on their reduced ability to express IL-6 and
ISG56 (Fig. 1d), which was shown previously to depend
on the presence of PML-II (Chen et al., 2015).

Depletion of PML-II increases the productivity of

Ad5 infection

To establish the effect of PML-II on Ad5 infection, HelaDII
and HelaEV cells were infected in parallel with wild-type
(wt) Ad5. Looking at protein expression over a time course,
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Fig. 1. HelaDII cells show physical and functional knockdown of
PML-II. (a) Phase-contrast microscopic images of control Hela

and shRNA Hela cells; bar, 100 µm. (b, c, d) HelaEV and HelaDII
cells were plated for 24 h, then RNA or protein samples were har-
vested. (b) PML-II mRNA was detected by RT-qPCR; results are

normalized to the level detected in HelaEV cells and are the
means and standard deviation of three technical replicates. (c)
PML-II protein was detected by Western blotting. (d) IL-6 and
ISG56 mRNAs were analysed as in (b).
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there was a strikingly higher level of late protein expression
in HelaDII cells (Fig. 2a); with an exposure selected to avoid
grossly overexposing the HelaDII lane, late proteins in the
HelaEV cells were barely detectable. In contrast, expression
of the early protein E2A 72K DNA binding protein (DBP)
was much less affected by the removal of PML-II though
the E1B 55K protein was, by the late stage of infection (24 h
post-infection), significantly increased (Fig. 2a). The
expression of late proteins in HelaEV cells was similar to
that in untransduced standard Hela cells (Fig. 2b), confirm-
ing that the difference between HelaDII and HelaEV infec-
tions was not due to any unexpected negative effect of
introducing the retroviral vector alone in HelaEV cells. The
effect of PML-II depletion on viral gene expression was con-
firmed and quantified by flow cytometry (Fig. 2c); both the
proportion of cells positive for late proteins and their mean
fluorescence intensity were increased in HelaDII cells. The
increased late protein expression in HelaDII cells was
reflected in a 2–3-fold higher virus yield/cell as compared
with HelaEV cells, measured at 24 h and 48 h post-infection
(Fig. 2d).

Lack of IFN response partially explains the

beneficial effect of PML-II depletion

Infection by Ad5 is intrinsically an IFN response-inducing
event, with both virus entry itself and later gene expression
events triggering interferon and inflammatory signalling
(Hartman et al., 2007; Hendrickx et al., 2014; Zhu et al.,
2007). Since PML-II plays an important role in the activa-
tion of an IFN response (Chen et al., 2015), we considered
the possibility that, even though Ad5 encodes functions that
inhibit the IFN response in various ways, the beneficial
effect of PML-II removal on Ad5 infection might nonethe-
less arise because of the consequent further defect in the
IFN response. To test this, we directly disabled the IFN
response by knockdown of IRF3, which is a key tran-
scription factor in the induction of type 1 IFN responses
(Au et al., 1995). Physical and functional depletion of IRF3
from HelaEV cells (Fig. 3a, b) increased Ad5 wt300 late
gene expression by a modest amount (Fig. 3c), indicating
that the Ad5 functions deployed to inhibit IFN responses
are not 100% effective. However, hexon expression under
IRF3 knockdown in HelaEV cells was still very substantially
lower than seen in HelaDII cells, in which IRF3 knockdown
had little additional effect. Thus, while some part of the
benefit to Ad5 of PML-II removal reflects the loss of the
IFN response, there is a significant additional component to
be accounted for; this is considered further below.

Ad5 E4 Orf3 inhibits PML-II function in the IFN

response

Ad5 E4 Orf3 binds PML-II directly (Hoppe et al., 2006)
and is necessary for Ad5 replication in IFN-treated cells,
dependent on the presence of PML (Ullman & Hearing,
2008; Ullman et al., 2007), so we asked whether this inter-
action also inhibited the natural IFN response to Ad5

infection. To determine whether viral expression of E4
Orf3 had any measurable effect on induction of type 1
IFN during infection, culture media from Ad5-infected
HEK293 cells (Fig. 4a) or MRC5 normal human fibro-
blasts (Fig. 4b) were tested in plaque-reduction assays
using Semliki Forest virus, an IFN-sensitive alphavirus. In
both cell types, IFN activity was detected from an Orf3-
deficient virus infection (inOrf3) while none was detected
from wt300 or mock infections. Based on a calibration of
the assay with recombinant IFNa, which showed inhibi-
tion from 0–100% by IFN in the range 0.1–100U ml�1,
inOrf3 medium contained ~50U ml�1 IFN. In separate
experiments, IFN levels in infected HEK293 cell culture
media were determined using an IFN-responsive reporter
assay (Chen et al., 2015). Again, IFN accumulation was
detected only in inOrf3-infected cultures (Fig. 4c):
amounts were equivalent to about 60U ml�1, in line with
the estimate from the plaque-reduction assay. Thus, the
presence of E4 Orf3 causes a measurable reduction in IFN
production and secretion stimulated by Ad5 infection.

To test whether E4 Orf3 protein alone was sufficient to
inhibit IFN responses, we employed transient expression
IFNb promoter reporter assays. PML-IIDRBCC is an arti-
ficially truncated form of PML-II that does not associate
with PML-NB but retains E4 Orf3 binding (Leppard et al.,
2009) and has increased ability to potentiate IFNb pro-
moter activation by inducers such as poly(I : C) (Chen
et al., 2015). E4 Orf3 fully reversed the increased response
of the IFNb promoter to poly(I : C) due to PML-IIDRBCC
and further reduced reporter activity to levels below that
of poly(I : C) stimulation in the absence of exogenous
PML (Fig. 4d). This reduction below baseline reflected the
contribution of endogenous PML-II, also an E4 Orf3 tar-
get, to the observed IFNb promoter activation as, in the
presence only of endogenous PML, added Orf3 also gave a
dose-dependent inhibition of poly(I : C)-stimulated
reporter activity (Fig. 4e).

To correlate the activity of E4 Orf3 in regulating IFNb
expression with its ability to bind PML-II, we compared the
inhibitory effect of wild-type E4 Orf3 with that of selected
Orf3 mutants (Hoppe et al., 2006). Those mutants unable
to bind PML-II (N82A, L103A) also failed to inhibit activa-
tion of the IFNb promoter while mutants that retained
PML-II binding (R100A, D105-L106A) had inhibitory
activity similar to wild-type (Fig. 4e–i). Importantly, mutant
D105-L106A uniquely retains PML-NB rearrangement
activity whilst lacking the ability to disrupt the location of
the MRN protein complex involved in DNA damage repair
(Evans & Hearing, 2005). The retention of activity by this
mutant thus clearly links the inhibitory effect of E4 Orf3 on
IFN induction to its interaction with PML-II.

The inhibitory effect of E4 Orf3 on PML-II function sug-
gested that an Orf3-deficient virus should benefit more
from the lack of PML-II in HelaDII cells than a virus that
was able to make Orf3. When wt300 and inOrf3 late protein
expression was compared in HelaEV cells (Fig. 5, lanes 2,
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4), amounts were very similar, as expected (Huang & Hear-

ing, 1989). As also shown previously, in Vero cells and

human fibroblasts (Ullman et al., 2007), IFNa pre-treat-

ment more severely inhibited inOrf3 than wt300 late protein

synthesis in HelaEV cells (Fig. 5, lanes 3, 5). Importantly,

removal of PML-II in HelaDII cells largely abolished this

difference in viral gene expression (Fig. 5, lanes 8, 10), con-

firming that PML-II is a significant functional target of E4

Orf3 during infection. However, contrary to expectation,

wt300 gene expression benefited more than that of mutant

virus inOrf3 from PML-II removal (Fig. 5, lanes 2, 7 and 4,

9), see below. Collectively, our results show that PML-II is

inhibitory to Ad5 infection in part through its role in the

development of an IFN response and that E4 Orf3 inhibits

this function of PML-II.

Enhanced growth of Ad5 in HelaDII cells reflects

overexpression of HSP70

A significant part of the benefit to Ad5 of PML-II depletion
was independent of IRF3 and hence was not directly related
to the IFN response (Fig. 3). Hence, late protein expression
by either wt300 or inOrf3 was greater in HelaDII cells than
in equivalently treated HelaEV cells (Fig. 5). When studying
stress responses in HelaDII cells, we fortuitously observed
that they displayed elevated levels of HSP70 mRNA and
protein under normal growth conditions in comparison
with HelaEV cells (Fig. 6a). HSP70 was also induced to a
lower level by transient knockdown of PML-II in standard
Hela cells (Fig. 6b), suggesting a direct link between loss of
PML-II and HSP70 expression. Ad5 infection also induces
HSP70 expression (Nevins, 1982) and, since it inhibits
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many other host genes whose activity is detrimental to
infection (Zhao et al., 2003) and pre-existing HSP70 levels
correlate with permissivity to Ad infection (Imperiale et al.,
1984), we inferred that HSP70 might be the relevant posi-
tive factor for Ad5 growth in HelaDII cells. To test this,
hexon expression was compared in cells infected with or
without HSP70 knockdown (Fig. 6c, d). Whilst HelaDII
cells showed substantially more hexon mRNA and protein
than HelaEV cells when treated with a control siRNA, this
difference was abolished by HSP70 siRNA treatment. More-
over, HSP70 siRNA also reduced hexon expression further
from its lower base level in HelaEV cells. Thus, HSP70 con-
tributes positively to Ad5 gene expression and the elevated
expression of HSP70 in HelaDII cells is a major factor in the
increased efficiency of infection in these cells. The fact that
wt300 gene expression benefited more than that of mutant
virus inOrf3 from the high HSP70 environment in HelaDII
cells suggests that E4 Orf3 might be involved in the benefi-
cial action of HSP70.

The assay of HSP70 mRNA shown in Fig. 6a detects tran-
scripts only from the two major heat-inducible loci,
HSPA1A and HSPA1B. However, HSP70 encompasses a
number of related proteins encoded by the HSPA gene fam-
ily, only some of which are heat-inducible(Brocchieri et al.,
2008). To determine the specificity of HSP70 induction in
HelaDII cells, mRNA levels from several HSPA genes were
assessed alongside HSP60 (HSPD gene family). As before,
the HSP70 assay detected elevated mRNA levels in HelaDII
cells (Fig. 6e). Interestingly, despite the high level of similar-
ity between the HSPA1A and HSPA1B genes (they encode
identical 641 amino acid proteins), elevated HSP70 expres-
sion was accounted for almost entirely by HSPA1B mRNA;

there was little difference in expression of HSPA1A between
the two cell types. In contrast to HSPA1, expression of
HSPA5 mRNA, which encodes the endoplasmic reticulum
chaperone GRP78 also known as BiP, was if anything
slightly reduced by removing PML-II. Another HSP70 fam-
ily member, HSPA6, which shows no basal expression but
is induced by heat stress (Brocchieri et al., 2008), was
detected only at low levels and was not induced by removal
of PML-II; expression of HSP60 was also unaltered. Thus,
the loss of PML-II leads to highly specific induction of the
HSPA1B gene, providing HSP70 protein that supports
enhanced Ad5 gene expression.

Possible roles of HSP70 during Ad5 infection

HSP70 has been shown previously to inhibit pro-inflam-
matory NF-kB signalling and hence both the production
and the effect of TNF-a (Meng & Harken, 2002). Con-
firming that HSP70 had this effect in our system, we
found that HSP70 knockdown significantly increased the
expression of ISG56 in wt300-infected HelaEV cells
(Fig. 7a). This suggested that HSP70 might favour Ad5
replication by limiting the induction of innate and
inflammatory responses through NF-kB. TNFa is a
known activator of NF-kB signalling and is considered to
be inhibitory to virus infection (McFadden et al., 2009).
Ad5 infection can stimulate NF-kB signalling in several
ways (Higginbotham et al., 2002; Pahl et al., 1996;
Schmitz et al., 1996) while several viral E3 gene products
counteract TNFa activity (Gooding et al., 1988), suggest-
ing NF-kB activation might be inhibitory to Ad5 infec-
tion. We therefore tested whether elevated HSP70 in
HelaDII cells enhanced Ad5 infection by inhibiting NF-
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kB. Reasoning that exogenous TNFa would oppose such
an effect and so reduce the benefit of PML-II removal,
we analysed Ad5 late gene expression in HelaDII cells
with or without TNFa treatment (Fig. 7b). However,
TNFa actually modestly enhanced Ad5 late protein

expression in both HelaDII cells and HelaEV cells. The
same effect was seen on hexon mRNA in HelaEV cells
and this was potentiated by HSP70 knockdown (Fig. 7c),
as expected if HSP70 limits pro-inflammatory signalling
that is beneficial to the virus. We also tested the effect of
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QNZ, an inhibitor of NF-kB activation (Tobe et al.,
2003) and found that, consistent with the effect of TNFa
treatment, QNZ reduced Ad5 late gene expression in
both cell types (Fig. 7d). These data indicate that NF-kB
signalling increases rather than inhibits Ad5 gene expres-
sion in our system and that HSP70 limits rather than
increases this effect. The beneficial effect on Ad5 infection
of the high levels of HSP70 in HelaDII cells must there-
fore be due to some other function of HSP70.

The principal role of HSP70 is as a chaperone: during heat-
stress it stabilizes partially denatured proteins to prevent
aggregation and facilitate re-folding (Clerico et al., 2015).
The Ad5 replication cycle involves both the disassembly and
assembly of protein complexes, processes which might be
facilitated by HSP70. Indeed, HSP70 interacts both with the
hexon shell of Ad2 particles shortly after infection (Niewiar-
owska et al., 1992) and with fibre protein during the late
phase of Ad5 infection (Macejak & Luftig, 1991), and has
been implicated in uncoating and import of the genome
into the nucleus (Saphire et al., 2000). We therefore exam-
ined whether increased HSP70 present in HelaDII cells
altered the subcellular location of hexon protein, as an indi-
cator of possible effects on particle assembly. Prior deple-
tion of HSP70 from these cells, as well as decreasing the
overall level of hexon protein as already described, increased
more than 2-fold the cytoplasmic : nuclear ratio of hexon

(Fig. 8a; quantitation under right panels) whereas it had lit-
tle effect on the distribution of E1A or E2A DBP. This result
suggests that HSP70 overexpression consequent on PML-II
depletion may positively affect the assembly of progeny par-
ticles in the nuclear compartment and hence could contrib-
ute to the increased yield of virus.
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Any impact of HSP70 level on assembly cannot explain the
effect of HSP70 on hexon mRNA levels (Fig. 6). This
mRNA is produced by processing of transcripts from the
major late promoter (MLP), which itself is positively influ-
enced by L4-22K protein expressed from L4P which is acti-
vated at the onset of the late phase (Morris et al., 2010). We
therefore tested the effect of HSP70 depletion on the activity
of MLP and L4P luciferase reporters in Hela cells (Fig. 8b),
but found that neither was significantly affected. Thus
HSP70 does not increase directly the intrinsic activity of
either promoter when taken out of the context of viral
infection and must therefore affect late gene expression
post-transcriptionally or dependent on the infected cell
environment. In this regard, we noted the increase in E1B
55K protein upon PML-II depletion in HelaDII cells
(Fig. 8c), a protein which is known to positively regulate

Ad5 late mRNA nucleo-cytoplasmic transport and accumu-
lation (Leppard, 1998). HSP70 depletion in HelaDII cells
reversed this increase in E1B 55K (Fig. 8a), further suggest-
ing that it could be significant in the elevation of late gene
expression.

DISCUSSION

Depletion of PML-II from Hela cells, a standard permissive
cell line for Ad5, led to a substantial 2–3-fold enhancement
in virus yield. This was attributed largely to a general
increase in late gene expression, our experiments focusing
mainly on the major capsid protein hexon and its mRNA as
an example. Thus, PML-II has an overall inhibitory effect
on Ad5 infection. Two factors were identified that contrib-
uted to the increased infectious productivity upon PML-II
depletion: a reduction in IFN response and an increase in
HSP70 expression, the latter being the predominant factor.
Depletion of HSP70 from HelaDII cells completely elimi-
nated the advantage to hexon expression of PML-II
removal, whilst blocking the IFN response in HelaEV cells
by a means other than PML-II depletion only somewhat
increased the levels of viral late gene expression.

Previously, Berscheminski and colleagues reported that
PML-II was beneficial to Ad5 infection, in apparent con-
tradiction to our findings (Berscheminski et al., 2013).
They showed that PML-II potentiated transcriptional acti-
vation of a viral early promoter by the E1A 13S protein
and that, in a cellular context where all PML proteins were
depleted, the addition of exogenous PML-II enhanced
virus yield about 3-fold. Comparing these findings with
our own, it is important to note the differences in cell
environment employed. PML-II function will be a com-
posite of its free and PML-NB associated activities. PML-V
is the stable base of PML-NBs (Weidtkamp-Peters et al.,
2008), with other isoforms and many other proteins asso-
ciating with these bodies by protein–protein interactions
including SUMO-SIM interactions (Bernardi & Pandolfi,
2007). In a PML-null cell, functions observed for added
PML-II will be essentially those of its soluble nuclear form.
Indeed, a mutated form of PML-II with reduced ability to
associate with PML-NBs was more active than the wild-
type in cooperating with E1A in the presence of endoge-
nous PML (Berscheminski et al., 2013), suggesting that
interactions with other PML isoforms limit this activity.
The overexpressed PML-II will also potentially exceed the
capacity of E4 Orf3 expressed upon infection to bind and
inactivate it. In contrast, specific depletion of PML-II in an
otherwise normal PML background demonstrates the com-
bined net contribution of this protein to the Ad5 lifecycle
in all its cellular contexts. Our finding that PML-II
removal exerts an overall positive effect on Ad5 growth is
therefore not in disagreement with this prior study but
instead reveals a new aspect of the functional interaction
of PML-II with the virus. Our findings are also consistent
with an earlier study showing the importance of PML
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proteins generally in the inhibition of Ad5 by an estab-
lished IFN response (Ullman & Hearing, 2008).

Although PML-II is necessary for an efficient IFN response

(Chen et al., 2015), Ad5 gained only modest benefit from

the loss of this response in HelaDII cells. This finding is

expected since the virus possesses several functions that col-

lectively oppose IFN responses, so allowing infection to suc-

ceed even when the cell is capable of launching a response.

First, E1A proteins inhibit both the expression of ISGs and

the activation of IFNb transcription (Ackrill et al., 1991;

Reich et al., 1988). Second, E1B 55K protein blocks the

induction of a number of IFN-inducible genes and is

required for efficient replication in normal fibroblasts

(Chahal et al., 2012). Third, E4 Orf3 protein is necessary for

replication to proceed in permanent cell lines in the face of

an established IFN response (Ullman et al., 2007), implying

it negatively regulates that response. Fourth, VA RNA I

inhibits the induction of an IFN-induced antiviral state by

inhibiting protein kinase R (Kitajewski et al., 1986). Finally,

activated STAT1 is sequestered in Ad replication centres

(Sohn & Hearing, 2011). The further advantage to Ad5 of
an inherent lack of IFN response may arise because of the
time it otherwise takes for virus-encoded anti-IFN functions
to become active. We directly tested the idea that E4 Orf3
would inhibit the IFN response via its targeting of PML-II,
and showed that this was the case: wild-type E4 Orf3 inhib-
ited type 1 IFN induction whilst mutant forms unable to
bind PML-II could not; E4 Orf3 mutant virus infection eli-
cited more IFN than wild-type; and E4 Orf3 mutant virus
late protein expression was more strongly inhibited by prior
IFN treatment in cells with functional PML-II. E4 Orf3 is
expressed in the early phase but takes time to accumulate.
In the period prior to this, our data suggest that inhibition
of IFN induction is incomplete.

The principal factor in the enhanced growth of Ad5 in
HelaDII cells was the elevated level of HSP70. Investigating
this, we observed a modest effect of HSP70 on Ad5 late pro-
tein nuclear accumulation that would favour progeny virus
formation but this could not account for the significant
enhancement of late gene expression. HSP70 expression/
depletion in HelaDII cells did however also affect the accu-
mulation of the viral E1B 55K protein, which is known to
regulate late mRNA accumulation and hence to increase
late gene expression (Leppard, 1998). This increased
amount of E1B 55K in the presence of elevated HSP70 may
contribute to the observed elevation in late gene expression
and virus yield under these conditions. HSP70 also opposes
inflammatory responses (Meng & Harken, 2002); given the
role of PML-II in regulating inflammatory gene expression
we considered this to be a plausible basis for the positive
effect of HSP70 on Ad5 growth. However, NF-kB activation
was actually modestly beneficial to late gene expression.
Since, as reported, HSP70 opposed this activation, HSP70
elevation cannot be benefitting Ad5 via effects on NF-kB.
The positive effect of NF-kB on Ad5 was unexpected given
that the virus encodes functions in its E3 region that inhibit
TNFa signalling and hence NF-kB activation (Burgert et al.,
2002). However, although these functions will be important
in vivo they are known to be dispensable for growth in cul-
ture. Thus the small increase in Ad5 gene expression when
NF-kB is activated in cell culture should not imply that this
response benefits the virus in vivo.

The elevated level of HSP70 in PML-II depleted cells
reflected a highly specific increase in mRNA derived from
the HSPA1B gene, one of two intronless genes that are
strongly heat-inducible members of the HSPA gene family.
HSPA1A and HSPA1B are very similar even in their pro-
moter sequences (Brocchieri et al., 2008); their products are
not normally distinguished in analyses of heat-induced
HSP70 expression. The specific upregulation of HSPA1B by
PML-II depletion cannot be due to a general cell stress
response, and in particular cannot be attributed to activa-
tion of the heat shock transcription factor, HSF, which reg-
ulates transcription of HSPA1A and HSPA1B as well as
other classes of HSP (Singh et al., 2010). Thus, these results
indicate a novel mechanism whereby the HSPA1B promoter
is selectively activated. Interestingly, HSPA1A and HSPA1B
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are located within the MHC III region, between the gene
clusters encoding MHC class I and II antigen where specific
depletion of individual PML isoforms has been shown to
have effects on chromatin architecture and gene expression
(Kumar et al., 2007). Further work is needed to test whether
HSPA1B induction by PML-II removal reflects a similar
mechanism.

HSP70 is also induced during Ad5 infection (Nevins, 1982)
and, whilst virus infection might be considered a stress that
would lead to generalized activation of HSP expression, this
induction is actually specific to HSP70 (Phillips et al.,
1991). These studies did not distinguish between HSPA1A
and HSPA1B, which were not separately recognized at the
time. HSP70 transcription is induced by the virus-coded
transactivator, E1A 13S (Wu et al., 1986), which acts via the
cellular CCAAT-box factor (CBF) and its binding site in the
context of a specific TATA box (Lum et al., 1992; Simon
et al., 1988). In this way, induction is independent of HSF.
The CBF site is also a target for p53-mediated inhibition of
the HSP70 genes (Agoff et al., 1993), suggesting that E1A
might disrupt this inhibition. HSP70 expression is also fav-
oured by the viral E1B 55K/E4 Orf6 complex promoting
HSP70 mRNA export to the cytoplasm (Moore et al., 1987).
Since, as discussed, our study shows that HSP70 levels are
also positively linked to E1B 55K accumulation, a feed-for-
ward loop may be established that promotes efficient late
gene expression.

The induction of HSP70 during Ad infection may be linked
with positive roles for this protein in the virus lifecycle. The
best documented of these, in viral uncoating (Saphire et al.,
2000), may account for the modest increase in early gene
expression seen in HelaDII cells. However, this action must
precede E1A-induced activation of HSP70 synthesis, sug-
gesting that other roles may exist to justify this mechanism.
This role also cannot account for the predominant effect on
late rather than early gene expression that we observed. A
study by White et al. (1988) suggested an involvement of
HSP70 in nuclear events linked with PML during Ad2 infec-
tion. HSP70 was recruited from the cytoplasm into discrete
nuclear structures that co-localized with E1A and which
appeared similar to the reorganized PML tracks that are
formed by E4 Orf3 (Carvalho et al., 1995; Doucas et al.,
1996). Indeed, Carvalho et al. (1995) found a small fraction
of E1A and, in a few infected cells, HSP70 located in these
Orf3/PML structures, evidence of a physical and/or func-
tional link between HSP70 and PML that might be related
to our observations. Interestingly, our work suggests that
the presence of E4 Orf3 is required in order for Ad5 to ben-
efit from the elevation of HSP70 that occurs in HelaDII
cells.

Many other viruses induce and/or functionally interact
with HSP70 (Santoro et al., 2010) suggesting a general
importance of this protein to infection. The avian adeno-
virus CELO Gam1 protein causes an increase in both
HSP70 and HSP40 that is needed for replication, and loss
of Gam1 can be complemented by heat shock (Glotzer

et al., 2000). Gam1 is also responsible for the loss of PML
from infected cells through an inhibition of sumoylation
(Colombo et al., 2002), raising the possibility that HSP
induction and PML loss are also linked in this system.
Human cytomegalovirus, HSV1, vaccinia virus and some
paramyxoviruses all induce HSP70 expression (Santoro
et al., 2010). For HSV1, heat shock can complement defi-
ciency in ICP0, the protein responsible for PML body dis-
ruption and PML degradation (Bringhurst & Schaffer,
2006), while the same is true for E1A deficiency in Ad
(Imperiale et al., 1984; Madara et al., 2005).

In conclusion, we have shown that PML-II opposes produc-
tive Ad5 infection, in part by supporting innate immune
responses but mainly due to a suppressive effect on HSP70
expression. Our study reveals a previously undefined activ-
ity for HSP70 in supporting Ad5 late gene expression and
demonstrates an inhibitory effect of PML-II on HSP70
expression.

METHODS

Generation of HelaDII and HelaEV cell lines. Hela cells were trans-
duced with either lentiviral particles encoding an shRNA specific for
PML-II or equivalent particles with no shRNA insert. The PML-II
shRNA incorporated the active siRNA sequence described by Kumar
et al. (2007) which was used previously by our laboratory to achieve
functional knockdown of PML-II (Chen et al., 2015). Lentiviral particles
were generated using pLKO.1 (Moffat et al., 2006) following protocols
supplied by the RNAi consortium (Addgene). Briefly, a double-stranded
synthetic oligonucleotide corresponding to the shRNA was cloned into
pLKO.1. Specific plasmid clones were verified by sequencing, then trans-
fected with psPAX2 and pMD2.G packaging plasmids into HEK-293T
cells using Transit LT-1 (Mirus) to produce VSV-G-pseudotyped par-
ticles. Particle stocks were then used to infect Hela cells and transduced
cells were selected with 3 µg ml�1 puromycin.

Antibodies and reagents. Specific primary antibodies were: AdJLB1
rabbit antiserum to Ad5 late proteins (Farley et al., 2004); mouse mono-
clonal antibodies 2HX-2 to Ad5 hexon (Cepko et al., 1983), B6-8 to Ad5
E2A DNA binding protein (DBP) (Reich et al., 1983), and 2A6 to Ad5
E1B 55K (Sarnow et al., 1982); monospecific anti-peptide sera reactive
against PML-II (Xu et al., 2005), kindly provided by Professor K.-S.
Chang, M.D. Anderson Cancer Center, University of Texas; FL-425 rab-
bit anti-IRF3 (SantaCruz); rabbit anti-HSP70 (StressMarq SPC-103C/
D); and GA1R mouse anti-GAPDH (Thermo Scientific). Secondary
antibodies were: Alexa488-conjugated goat anti-mouse Ig (Life Technol-
ogies); horseradish peroxidase (HRP)-conjugated goat anti-mouse Ig
(Sigma); and HRP-conjugated goat anti-rabbit Ig (SantaCruz). IFNa
was from PBL Assay Science, TNFa from Invitrogen, poly(I : C) from
Sigma and 6-amino-4-(phenoxyphenylethylamino)quinazolin (QNZ)
from Santa Cruz. siRNAs were: IRF3 (ID 3661; Qiagen); HSP70 (targets
HSPA1A and HSPA1B; Ambion); and control B (Chen et al., 2015).

Cell culture and virus infection. HEK293, HEK293T, Hela and
knockdown cell lines were maintained at 37

�

C, 5% CO2 in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% foetal
bovine serum (FBS); for maintenance purposes, HelaEV and HelaDII
cells were alternated between media containing or not containing
3 µg ml�1 puromycin. Vero cells were maintained in DMEM supple-
mented with 5% FBS and MRC5 cells in 10% Eagle’s minimal essential
medium supplemented with 10% FBS, 2mM L-glutamine and 1% non-
essential amino acids. Cells were seeded at the appropriate density 24h
prior to the respective procedure. Light microscope images were
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recorded on an inverted microscope using a 5� objective. Virus stocks
and experimental samples were titred in a fluorescent focus assay. Hela
cell monolayers were infected in duplicate with serial dilutions of each
stock, incubated at 37

�

C, 5% CO2 for 16h, then fixed and stained with
antibody to E2A DBP to visualize fluorescent cells for counting. Experi-
mental infections were carried out with wild-type Ad5 wt300 or E4 Orf3
mutant inOrf3 (Huang & Hearing, 1989) at a multiplicity of 5 fluores-
cence focus units (f.f.u.) per cell unless otherwise indicated. siRNA
transfections were performed with Lipofectamine 2000 (Invitrogen),
using a ratio of 1 µl reagent per 25pmol siRNA.

Protein and RNA analysis. For total protein analysis, cells were lysed
directly in SDS gel sample buffer. Cytoplasmic and nuclear fractions
were generated by lysing cells in 0.67% (v/v) NP40, 10mM NaCl,
1.5mM MgCl2, 10mM Tris.HCl pH7.5 for 10min on ice, then nuclei
were pelleted by low speed centrifugation; an equal volume of 2� SDS
gel sample buffer was added to the supernatant (cytoplasmic fraction).
Crude nuclei were washed once in PBS, pelleted as before and then lysed
in SDS gel sample buffer (nuclear fraction). Proteins were separated by
electrophoresis on 10% SDS polyacrylamide gels and detected by West-
ern blotting as previously described (Lethbridge et al., 2003). For flow
cytometry analysis, single cell suspensions produced by trypsinization
were fixed on ice with 10% (v/v) formalin in PBS for 20min, permeabl-
ized with 0.5% (v/v) NP40 in PBS for 10min and then incubated with
1% (w/v) bovine serum albumin in PBS for 45min to block nonspecific
protein binding. Cells were resuspended in FACS buffer (PBS containing
3% v/v FBS, 0.07% w/v NaN3), then incubated with specific primary
antibodies to hexon or E2A DBP followed by Alexa488-conjugated sec-
ondary antibody. Washed cells in FACS buffer were analysed using a
FACSCAN (BectonDickinson) and WinMDI software. Immunofluores-
cence analysis was performed as previously described (Leppard & Ever-
ett, 1999); images were collected with a Leica SP5 confocal microscope
system and processed using Leica confocal software. Total RNA was iso-
lated and mRNA quantified by RT-qPCR as previously described (Chen
et al., 2015) using the following primers and amplicons: ISG56 and IL-6
(Chen et al., 2015); E1A (113 bp, Ad genome 1422–1534) and hexon
(137 bp, 21540–21576) (Schreiner et al., 2013); PML-II
5¢AGGCAGAGGAACGCGTTGT-3¢ and 5¢GGCTCCATGCACGAG
TTTTC-3¢ (70 bp); HSP70 (Tanaka et al., 2007); HSPA1A, HSPA1B,
HSPA5, HSPA6, and HSP60 (www.rtprimerdb.org).

Interferon activity and luciferase reporter assays. MLP and L4P
activity was determined in luciferase reporter assays as described (Morris
& Leppard, 2009; Wright et al., 2015). IFNb promoter activity was mea-
sured by transfecting IFNb-Luc (King & Goodbourn, 1994) in the pres-
ence of either wild-type or mutant E4 Orf3 expression plasmids (Hoppe
et al., 2006) and pcDNAHisLacZ as an internal control for 24h and
stimulating by transfection with poly(I : C) for a further 8 h, otherwise as
previously described (Chen et al., 2015; Morris & Leppard, 2009). IFN
activity in cell culture fluids was measured by plaque-reduction assay
using infection of Vero cells by Semliki Forest virus (SFV). Subconfluent
12-well cultures were incubated for 24h with either standard IFNa or
with an unknown sample at 1 in 10 dilution, both in normal growth
medium. After 24h, cells were infected with 25 plaque-forming units of
SFV, overlaid with agar-solidified medium and then fixed after 48h
incubation and plaques detected with crystal violet. All determinations
were made in triplicate. Alternatively, IFN activity was determined by
measuring the stimulation of pISRE-Luc by IFN-containing samples for
20h in a luciferase reporter assay (Chen et al., 2015).
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