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Abstract

Accurate modeling of protein ligand binding is an important step in structure-based drug design, is 

a useful starting point for finding new lead compounds or drug candidates. The ‘Lock and Key’ 

concept of protein-ligand binding has dominated descriptions of these interactions, and has been 

effectively translated to computational molecular docking approaches. In turn, molecular docking 

can reveal key elements in protein-ligand interactions-thereby enabling design of potent small 

molecule inhibitors directed against specific targets. However, accurate predictions of binding pose 

and energetic remain challenging problems. The last decade has witnessed more sophisticated 

molecular docking approaches to modeling protein-ligand binding and energetics. However, the 

complexities that confront accurate modeling of binding phenomena remain formidable. Subtle 

recognition and discrimination patterns governed by three-dimensional features and 

microenvironments of the active site play vital roles in consolidating the key intermolecular 

interactions that mediates ligand binding. Herein, we briefly review contemporary approaches and 

suggest that future approaches treat protein-ligand docking problems in the context of a 

‘combination lock’ system.
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Introduction

In 1894, Emil Fischer suggested that the specificity of an enzyme towards its substrate is 

based on the two components exhibiting complementary geometric shapes that fit perfectly 

like a ‘key in a lock’. This simple ‘lock and key’ analogy succinctly conceptualized the 

essence of enzyme substrate interaction where the ‘lock’ describes the enzyme and the ‘key’ 

describes the substrate or some other small molecule ligand (e.g. a small molecule inhibitor). 
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In such systems, it is a requirement that the ‘key’ (substrate) fit appropriately into the key 

hole (active site/binding pocket) of the ‘lock’ (enzyme/receptor) for productive biochemistry 

to take place. Keys that are too small, too large, or with incorrectly positioned notches and 

grooves, will not fit into the lock (Figure 1).

But, enzymes show conformational flexibility and, on that basis, Daniel Koshland proposed 

a modification to the ‘lock and key’ model. Koshland’s suggestion was that active sites of 

enzymes are reshaped during interactions with substrate. This ‘induced fit’ model 

conceptualizes the ‘lock’ (enzyme) as a dynamic entity and that the ‘key’ (substrate) 

modulates the shape of the ‘key hole’. This concept paints a picture of an enzyme∷ligand 

interaction that is more akin to that of a ‘pin tumbler lock’. That is, a device where the 

pointed teeth and notches on the key allow the pins and wafers in the lock to move up and 

down until they align with the shear line of the cylindrical grooves of the key. The cylinder 

moves or rotates within the lock until that fit configuration is reached and the ‘lock’ opens. 

In an analogous manner, a ‘correct’ substrate aligns with active site residues of the enzyme 

to induce the appropriate conformational changes required for the desired outcome. ‘Induced 

fit’ is an attractive hypothesis as it accounts for why certain ligands are not substrates for an 

enzyme – even though they seemingly satisfy the specific shape requirements to bind to the 

active site (Figure 1). Computational chemists are now using these basic ideas to model 

protein-substrate interactions. For reasons of its greater tract ability, the ‘lock and key’ 

paradigm has, for better or for worse, dominated the philosophical underpinnings of 

molecular docking approaches. In many respects, ‘induced fit’ approaches are more 

powerful-albeit more complicated. Below, we review these issues as these apply to 

molecular docking.

Molecular docking reaches for two major goals. The first is to correctly predict and identify 

the most favorable binding mode of a given ligand in the active site or binding pocket of a 

given protein. The second is to correctly rank a family of ligands in accordance to their 

corresponding experimentally-determined binding affinities [1,2]. The high-throughput 

version of docking, often referred to as virtual screening or in silico screening, aims to 

harvest small lists of potential active compounds for downstream experimental testing from 

a database of millions of compounds [3]. All docking protocols have two essential 

components: (1) a good positioning algorithm, and (2) a robust ranking or scoring system. 

Docking requires extensive sampling of conformational space for a ligand in the binding 

pocket of a protein and thereby generates large numbers of potential poses that orient a 

ligand within the active site. A good positioning algorithm samples ‘all’ possible binding 

modes, while the scoring system ranks all the solutions and identifies the most likely 

‘binding mode’ of the ligand (Figure 2).

As simple as the process may sound, both components are themselves complex problems 

that pose significant challenges [4,5]. Positioning requires exhaustive exploration of 

accessible conformational space and binding orientations within the active site so as to 

extensively map interactions between active site residues and ligand. This requires that the 

process for generating binding modes respect a fine balance between speed and accuracy. 

That is, the process must not miss valuable solutions while maintaining sufficient 

computational efficiency to triage nonsensical binding modes. The ability to correctly score 
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and rank the binding modes generated for a ligand presents an even bigger challenge. In 

cases where a number of different ligands are being interrogated, the scoring function aims 

to generate a rank list that corresponds to the binding affinity. This is a challenging task as 

many scoring functions fail to accurately predict binding affinity and often simply report a 

score which may or may not be at all congruent with experimentally measured binding 

affinities [6].

Considering the vast conformational sampling space that must often be negotiated in 

docking experiments, it is not computationally feasible to explore all the degrees of 

translational and rotational freedom of the ligand along with the internal conformational 

degree of freedom for protein-ligand complex. Therefore, docking experiments are typically 

coarse-grained so that only a restricted sampling space is covered, and a limited number of 

the possible binding modes are sampled. To optimize docking and scoring functions, several 

methods have recently been developed to add layers of sophistication to simple ‘key into 

lock’ ideas.

Defining the ‘Lock’

The identification and mapping of a binding site from crystal structure data can reveal key 

elements in protein-ligand binding [7]. Such knowledge is indispensable for docking and 

rational drug design since, in the majority of cases, receptor-drug interactions are specific in 

nature. However, this is not as trivial an undertaking as it may initially seem. The first 

requirement for any successful docking simulation is to define an active site or binding 

pocket as this is a critical step in structure-based drug design, and provides a starting point 

for finding new lead compounds or drug candidates [8]. A broad suite of cavity detection 

methods has been developed to address these issues in docking and virtual screening 

simulations [9,10].

The success of docking and structure-based design of a drug molecule for a specific target 

site depended largely on the quality of information regarding active site architecture because 

it is the size and shape of active site or binding cavity that dictates the three-dimensional 

geometry of ligands that will bind within. Pocket architecture also governs the directional 

and non-directional intermolecular interactions that mediate protein-ligand binding. Thus, 

clear definition of a binding pocket surface, coupled with identification of protein∷ligand 

interaction sites, provides a feature set for ligand orientation within a binding substructure. 

A target protein may have several pockets or cavities for a ligand to bind. Some might be 

deeply buried in the protein interior, while some might be displayed on the protein surface. 

However, the precise architecture of these pockets may not be absolutely clear from standard 

inspection of structural data as these cavities and protrusions are frequently interconnected 

via small and narrow channels, or are interspersed with numerous holes or voids [9]. The 

shape and size of binding pockets are also potentially subject to significant variations 

brought on by rotation of amino acid side-chains, backbone movements, loop motions, 

and/or ligand-induced conformational changes [9]. Fundamental uncertainties of this nature 

conspire to make identification of optimal dock solutions more difficult.

After defining the binding site surface, the next crucial step is to locate the interaction sites 

or “hot spots” within the binding site [11,12]. The primary goal of interaction mapping is to 
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understand the chemical microenvironment of binding so that interaction points can be used 

to constrain pose possibilities and thereby restrict sampling space to a manageable size. 

Thus, binding site mapping is a critical step as it defines ‘lock’ parameters and sets the 

constraints for positioning the ligand in the defined binding region. In addition to preparing 

the active site for docking, the physicochemical properties and/or interaction can be 

represented as fields that can be mapped and visualized, interactively, in three dimensions. 

Using interaction maps, the spatial distributions of properties such as charge, 

hydrophobicity, etc. can be qualitatively analyzed [12–15]. Points of interaction between the 

ligand and active site might be elucidated and assessed qualitatively and, in some cases, 

semi-quantitatively. The importance of mapping interacting features is a critical endeavor 

since the number of ‘hot spots’ and their contributions to the larger binding process are 

essential for hypothesis generation. Quality interaction mapping also facilitates the docking 

process by defining a set of constraints that can be quantified in terms of how many, and 

which, interaction points might be matched by a ligand or a library of compounds. However, 

the harsh reality is that, even after defining the binding region for docking and extracting 

interaction sites, the docking process remains fraught with uncertainties that stem from the 

inherently dynamic physicochemical properties of the protein-ligand system.

Protein flexibility

Proteins leverage their intrinsic conformational flexibilities to carry out a wide range of 

biochemical processes in catalysis, protein-protein interaction and functional regulation [16]. 

In many cases, subtle motions in domains, flexibilities in the protein main chain, or re-

orientation of side chains, changes the shape and size of the ligand binding envelope [17]. 

Ligand binding itself can also effect a change in the topography of binding pocket by 

inducing loop movements and other conformational shifts. These range from hinge 

movements of entire domains, to small side-chain rearrangements in residues of the binding 

pocket [18,19], and even structural transitions that involve opening/closing of otherwise 

rigid structural elements of the protein about flexible joints. For these reasons, it is always 

useful to compare holo- and apo-structures of a protein of interest whenever possible. 

Although most contemporary docking approaches treat ligands as flexible, it remains a 

challenging task to incorporate protein flexibility into the docking regime. A thorough 

analysis of side chain flexibility may provide invaluable insights for improving docking run 

and for optimizing protein-ligand interactions. Despite some recent advancements in 

considering protein side-chain flexibility in optimizing simulation of protein-ligand 

interactions, protein flexibility remains one of the most important factors in improvement of 

methods for docking ligands to their flexible protein partner [20].

Considering the role of water

H2O molecules play myriad roles in biological structure and functions. The importance of 

structured water molecules in biological systems cannot be overstated given their critical 

roles in modulating protein–ligand interactions, and these considerations take center stage in 

the context of drug design and discovery [21]. When a structured water molecule is 

displaced by a ligand and banished to “bulk” solvent, the act of displacement increases 

system entropy and helps drive ligand binding. That is, ligand binding is thermodynamically 

more favorable if the ligand displaces a tightly bound water molecule by replicating its 
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interaction with protein [22]. For protein-ligand complexes, many water molecules are 

retained in the active site and contribute to the energetics of protein∷ligand interactions 

independent of entropic considerations. For example, waters can bridge protein and ligand 

and license what would otherwise represent unfavorable interactions between two 

chemically incompatible groups (e.g. two bases). Water molecules can also alter the “shape” 

and microenvironment of the active site by tightly associating with specific residues and 

thereby present a steric and electrostatic binding pocket profile that is different to the one 

presented by an anhydrous active site [23,24]. These varied functional involvements of water 

define yet another set of important considerations that must be respected in quality docking 

experiments and in rational design of high affinity lead molecules. Accessible surface areas 

of water molecules, the hydrogen bonds that involve water, the conservation and/or 

displacement of water, as well as the interaction energetics of water molecules are some of 

the factors that must be considered in docking simulations. The reality is that contemporary 

state-of-the art docking algorithms, and the scoring functions that accompany them, do not 

adequately consider all the explicit and implicit contributions of water molecules to the 

binding equation. Nonetheless, several docking routines include methods for identifying 

relevant water molecules and including those contributions in pose generation and in 

calculating free energies of ligand binding [25].

Protonation and ionization states of binding site residues

In addition to managing issues associated with protein flexibility and solvent, both the 

computational intensities and uncertainties of the docking problem are compounded for 

protein∷ligand systems with variable ionization states, and contributions of metals and 

counter ions [26]. Protein ligand interactions are sensitive to subtle changes in 

microenvironment of the binding site. Change in pH, buffer, ionic strength, and temperature 

conditions under which the data are collected also affect the microenvironment of an active 

site [27]. Protonation states of active site residues are typically not well-assigned, even in 

high resolution X-ray crystal structures, and therefore present little information to prepare 

the structure for docking [28]. Moreover, protein crystals are typically solvent rich (30–

70%)-values that often include the crystallization buffer [29]. The accompanying ions and 

solvent molecules are distributed throughout the protein molecule in accord with the 

electrostatic properties of the solvent-accessible pockets. Altering ambient pH often alters 

the ionization states of residues and thereby influences the shape and electrostatic properties 

of the binding pocket, and ultimately the set of ligand-binding solutions [30]. Multiplicity of 

protonation states in ligand–protein complexes is an often overlooked aspect in protein 

structure preparation as emphasized by the fact that current modeling techniques frequently 

ignore the possibility of multiple protonation states.

There is recent progress on this front, however. New algorithms such as the computational 

titration protocol implemented in Hydropathic Interaction (HINT) seek to identify and 

optimize all possible protonation states so that rational models with atomic details can be 

constructed and applied to model ligand-binding energetic [26,30,31]. By modeling all 

ionizable residues in the binding pocket, and calculating all the possible protonation states of 

residues and functional groups within the active site, the computational-titration 

methodology realistically samples the dynamic behavior of labile H-atoms in the active site 
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microenvironment. In particular, an important aspect of the active site microenvironment that 

is often ignored is the dielectric constant within the active site [32,33]. While comprehensive 

estimations of polarizability and binding energies are computationally expensive endeavors, 

simplified models that use macroscopic dielectric models, either uniform or distance-

dependent, are being productively applied to descriptions of binding site microenvironments 

[34,35]. The message is that accurate prediction of binding free energies requires that pH, 

ionization and entropic contributions be taken into account in docking and virtual screening 

experiments.

Entropy

Entropic considerations, as well as the contributions of hydrophobicity, in ligand binding 

cannot be overstated but are often poorly characterized and poorly quantified [36,37]. 

Entropy and hydrophobicity are difficult to measure and therefore difficult to 

computationally model. It is for this reason that these parameters are sacrificed in favor of 

computational efficiency. Most approaches consider enthalpic and entropic contributions 

separately and sum these interactions to a cumulative score [38]. However, protein-ligand 

binding is a concerted event, and entropy and hydrophobicity are thermodynamic quantities 

which cannot be accurately described by a simple summation. Solvation and desolvation 

effects that involve hydrophobic interactions are significant factors in protein∷ligand 

interactions but are particularly difficult to model computationally. But, the effort is 

worthwhile. Docking simulations that adequately consider the entropic, solvation/

desolvation, and thermodynamic components of a binding reaction yield information 

whether the binding is enthalpy- or entropy driven and provide vital insights into the free-

energy changes in the system [39–43].

Finding the right ‘key’

Once the ‘lock’ is defined (i.e boundary and interacting features within the binding pocket 

are delineated) the next core issue is to find a suitable key for the lock. To accomplish this 

task, the first step is fitting the ligand (key) into the binding pocket (key hole) and finding 

the best fit. That effort involves sampling different ligand conformations and orientations 

within the binding pocket and measuring the fitness of different alternative poses to identify 

the most favorable fit. Thus, docking approaches share two components: (i) a search 

algorithm that generates a sufficient set of different poses so that it exhaustively samples 

nearly all possible conformations and orientations for a ligand, and (ii) a scoring algorithm 

which evaluates the generated poses, approximates their binding energies, and identifies an 

optimal binding pose(s). Several different search algorithms have evolved over the past 

decades that were based on a variety of computational approaches [44–47]. Interestingly, the 

evolution of computational docking approaches offers interesting parallels to the evolution 

of thought from ‘lock and key’ to ‘induced fit’ hypotheses. Several approaches, with 

different degrees of sophistication, evolved from ‘rigid body’ considerations to ‘flexible 

ligand’ docking methods, and are still evolving into ever more sophisticated and 

computationally intensive ‘flexible-ligand and flexible receptor’ methods [48–51]. In rigid 

body approaches both the receptor and ligand are treated as static units and search algorithm 

tries to orient a rigid ligand within a rigid binding pocket [52–54]. Flexible-ligand methods 

treat the receptor (protein) as a rigid entity, but impart flexibility to the ligand and explore 
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different conformations in systematic or random stochastic manners [48–51,55]. By contrast, 

‘flexible-ligand and flexible-receptor’ approaches treat both receptor and ligand as flexible 

entities [56–59]. Despite the significant progress made in flexible protein-ligand docking, 

significant improvement is still needed.

One of the earliest docking approaches involved systematic search logic [60,61]. However, 

the search becomes ever more complex with increasing ligand flexibility as the number of 

degree of freedom of the ligand molecule obviously increases. Such an approach was 

implemented in methods where ligand and binding pocket were considered to be rigid and 

ligand was fitted using shape complementarity as determined by point complementarity or 

distance geometry approaches [62,63]. In such docking methods, the shape of both the 

receptor site and the ligand is interrogated based on criteria of shape and pharmacophoric 

points. Orientations are generated through various alignment procedures in order to 

maximize the pharmacophoric constraints and shape complementarity. However, it is not 

feasible to exhaustively explore available conformational space, and an acceptable balance 

has to be struck between speed and accuracy so that as many binding modes can be explored 

as is feasible. Fragment-based approaches that involve either incremental construction of 

ligand in the binding pocket, or by simply placing and joining the fragment, circumvent 

problems associated with combinatorial explosion of conformers generated by the previous 

approaches [64–66].

Stochastic methods involving random sampling of conformational space of ligand in the 

binding pocket are also being widely applied in many docking algorithms. Algorithms using 

Monte Carlo sampling, coupled with Metropolis criterion, are applied to exhaustively 

interrogate the conformational space [67]. Simulated annealing protocols, combined with 

grid-based energy evaluations, can be coupled with such an approach to overcome high 

conformational energy barriers in the sampling regime [68]. Another such stochastic 

approach that has been successfully implemented in docking algorithm is the genetic 

algorithm-based sampling of conformational space [69–71]. In this approach, multi-

conformers referred as chromosomes are evaluated, crossed and mutated and the best 

possible solution is selected based on a fitness function. The ultimate solution is represented 

by the best scored conformation of the total conformers after a suitable number of 

generations. GOLD (Genetic Optimization for Ligand Docking) is the most widely used 

algorithm of this type for flexible molecular docking [72].

In contrast to systematic and stochastic approaches, molecular dynamics-based and heuristic 

tabu searches are also implemented to explore the sample space [73,74]. However, molecular 

dynamics is computationally expensive which restricts its use in docking. To circumvent the 

problem of exhaustive sampling, tabu search approaches are adopted where a list of already 

explored conformations is maintained and only unexplored spaces are sampled [75]. This 

avoids reinvestigating space already sampled by associating previously sampled 

conformations with a degree of penalty. Apart from these deterministic approaches, hybrid 

consensus logic combine features from other two approaches [76,77]. Although these 

approaches can exhaustively generate and sample all possible conformations within the 

active site, it remains a fact that the success of any docking program is measured by how 

well it reproduces experiment.
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The success of whole molecule docking, de novo construction of molecules into a target site, 

or screening large virtual combinatorial libraries is ultimately dependent on the accuracy of 

the scoring function that ranks the compounds. Ligand orientations can be evaluated on the 

fly as the ligand or fragment is positioned within the cavity, or all the generated poses can be 

scored in the end. The scoring methods that are used in high throughput settings i.e. that deal 

with thousands of diverse compounds, can be evaluated by how well the corresponding 

relative binding affinities can be predicted. That need has spurred development of multiple 

methods which can be subdivided in four major approaches: force field-based methods, 

semi-empirical approaches, empirical scoring methods, knowledge-based potentials, and 

consensus scoring functions that are a combination of multiple scoring functions [78–80].

Force field-based methods

Force field-based scoring methods generally use a molecular mechanics force field. This 

parameter contains terms for intramolecular forces (e.g. bond, angle and dihedral terms) 

between atoms bonded to each other, plus energy terms for intermolecular forces that 

describe the forces between non-bonded atoms (e.g. Van der Waals and Coulombic terms). 

There are also a number of widely and successfully applied molecular mechanics-based 

scoring functions [81–84]. Their popularity in virtual screening programs is a reflection of 

their simplicity. Though faster and simpler, these functions are not ideal for simulating 

biomolecular interactions as those methods were developed for calculating gas phase 

enthalpy of binding. Thus, this class of scoring approaches has many drawbacks, primarily 

that these ignore hydrophobic interactions, and solvation and entropic effects.

Empirical scoring methods

Empirical scoring methods offer an alternative approach to pure molecular mechanics-based 

force field scoring methods [85]. The principle is that the binding free energy of a non-

covalent protein-ligand complex can be factorized into a sum of localized and chemically 

intuitive interactions. The terms accounting for different contributions such as hydrogen 

bonds, hydrophobic interactions, entropic effects are normalized by weighting factors 

derived from regression analyses of data from training sets comprised of well characterized 

protein-ligand complexes. Based on the assumption of additivity, the binding affinity is 

estimated as a sum of interactions multiplied by weighting factors and solved by equation of 

the type (1):

(1)

Where fi is a simple geometrical function of the ligand (rl) and receptor (rp) coordinates [6]. 

However, accuracy of these methods depends upon the quality of the experimental binding 

data and of the crystallographic structural data of the training set.

Semi-empirical approaches

Semi-empirical scoring functions combine the above two approaches and incorporate 

empirical, or empirically calibrated, energetic terms for interactions that cannot be computed 

by pure molecular mechanics-based methods. Thus, implicit binding energy terms such as 
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hydrogen bonding, solvent effects, hydrophobicity and entropic terms are included in the 

scoring functions. In contrast to force field-based scoring functions, semi-empirical scoring 

terms also more accurately estimate binding energies by accounting for entropic and 

solvation effects known to significantly affect biological interactions in aqueous medium 

[86–89].

Knowledge-based scoring

Knowledge-based scoring functions [90] are rule-based regimes where rules are derived 

from the analysis of structural data of known and well characterized receptor-ligand 

interactions. The exponential growth and availability of protein-ligand crystal structures is 

enabling derivation and formulation of rule sets based on frequencies of chemical 

interactions. Scoring functions of this type seek to capture the knowledge about protein-

ligand binding that is implicitly stored in the protein data bank by means of statistical 

analysis of structural data. That is, potentials are obtained by statistical analysis of atom-

pairing frequencies observed in crystal structures of protein-ligand complexes [91]. Again, 

the accuracy of knowledge-based scoring function depends on the quality of experimental 

data, as it incorporates structural knowledge without considering inconsistencies in 

experimental and structural data.

Consensus scoring

Although multiple approaches have been implemented for derivation of a robust scoring 

function, none of the scoring functions are ideal. Invariably, various approximations are 

made to strike a balance between speed and accuracy. Taking into consideration the 

limitations of anyone scoring function, the concept of consensus scoring evolved from the 

base premise that a combination of different scoring functions will buffer inherent 

weaknesses in individual functions and offer better performance [92]. A consensus between 

a set of scoring functions can be reached either by averaging the rank assigned by each 

scoring function, or averaging the score value calculated by different functions. Ideally, the 

best scoring function should be able to discriminate between native and non-native binding 

modes and be able to calculate the actual free energy of binding.

Combination Lock and Key

Traditional docking approaches largely operate on ‘lock and key’ concepts, and this 

philosophy has enjoyed some successes in estimating the native binding poses of small 

molecule ligands. A variety of sophisticated approaches have come on-line in recent years 

that consider conformational flexibility for both ligand and protein [93]. However, the fact 

remains that both ‘lock and key’ and ‘induced fit’ approaches provide a simplistic views of 

ligand-binding phenomena that in actuality represent intricate molecular recognition/

interaction processes. For this reason, we prefer to view protein-ligand recognition and 

binding reactions in terms of a ‘combination lock’ system (Figure 1). In this scenario, a 

tandem combination of complementary features provided by both the protein and the ligand 

match as in case of a ‘combination lock’. Upon satisfying a suitable combination of features 

a binding event then ensues. For matching to occur, both feature variables on protein and 

ligand fine-tune and adapt in a search for the best complementarity. That is, the better the 
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feature matching the tighter the binding. The questions then come to: (i) what are these 

features, (ii) how are these features encoded in the three-dimensional structure, and (iii) how 

is the three-dimensional feature code decoded by binding partners? The features could be 

geometric properties based on the three-dimensional structure of the molecule (e.g. shape, 

size, volume, surface area, etc.) and/or physicochemical features described by intrinsic 

electronic properties of a molecule (e.g. electrostatic, hydropathic and van der Waals 

energetic components). While the energy-based features are more dynamic in nature, and 

manifest themselves in three-dimensional interaction fields, the geometry-based properties 

are static in character. It is the sum of pharmacophoric chemical features (e.g. hydrogen 

bond donor/acceptors, aromatic centers, etc.), geometric features, and intrinsic electronic 

features of the molecules that define unique interaction fingerprints. The spatial arrangement 

of these various properties is a particularly discriminating property as electronic, 

hydropathic and van der Waals energetic properties have varying intensities in three-

dimensional space and thereby form unique fields the strength of which vary from point to 

point and are distance dependent. The patterning of these feature sets in three-dimensional 

space forms the essence of molecular recognition.

Using the ‘combination lock’ concept, the essential challenge in developing the next 

generation of robust and predictive docking model is to accurately derive the critical 

interaction features and map their arrangement in three-dimensional space. These encoded 

features and properties must first be extracted to define exclusive ‘interaction fingerprints’ 

for both a ligand binding substructure on the receptor and for the ligand. These unique 

features and ‘interaction fingerprints’ can be stored as mathematical representations in two- 

or three-dimensional matrices. Subsequently, machine learning and feature matching 

algorithms can extract the relevant features and simulate the corresponding protein-ligand 

binding interactions [94,95]. Features extracted from physical-chemical properties and 

energies will have broad applicability in deriving target-focused docking and scoring in 

addition to developing regimes for generating target-focused libraries in silico (Figure 3).

The availability of substantially more protein-ligand complex data and robust machine 

learning algorithms suggests that feature matching methodology may now be even more 

effective approach to predict and characterize protein-ligand binding. Recently, a 

combination of structure-based QSAR approach was implemented to generate descriptive 

and predictive models for phosphodiesterase-4 inhibitors [96]. This approach applies 

machine learning methodology to describes protein-ligand binding based on matching of 

ligand pharmacophore feature pairs with those of the target binding pocket. The method 

takes advantage of structure of binding pocket to derive feature sets or descriptors which is 

used as a reference for matching and makes it unique and target specific. Similar feature sets 

are generated for ligands followed by generation of structure-based pharmacophore key 

(SBPPK) from the protein-ligand complex based on their feature matching patterns with the 

binding pocket. Once the feature pairs are generated for both the receptor and ligands 

machine learning methods can be employed to determine pattern matches to build 

descriptive and predictive models of protein-ligand interactions. The method was 

successfully applied to study the SAR (Structure Activity Relationship) of 35 PDE-4 

inhibitors. In another similar approach, atom based Interaction Fingerprint (IF) were applied 

to describe the patterns of ligand pharmacophores that interacted with proteins in complex 
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[97]. These fingerprints are calculated from the distance of pairs of ligand pharmacophore 

features that interact with protein atoms delineating important geometrical patterns of ligand 

pharmacophores. From a physicochemical and pharmacological perspective, the detected 

patterns of ligand features would facilitate an understanding of the structure-activity 

relationship of the protein-ligand interactions. The method further allows a comparison of 

the interaction patterns of a target with those of several other targets and facilitates in sillico 
screening against other homologous proteins. Some of these approaches are applied as a pre-

screen and to filter large databases of small molecules before they are actually docked into 

the protein binding pocket. This database filtering procedure was applied to virtually screen 

HIV protease inhibitors from ZINC database [98]. The method involved identification of 

binding site topology and generating site interaction points based on physicochemical 

property. The resultant functional/interaction properties are saved as a receptor site’s 

distance matrix. Similar to receptor site distance matrix, functional interaction points are 

located in small molecule ligand and a similar topological matrix is generated. The 

methodology can be seen as a comparison and matching of the ligand’s distance matrices 

with receptor’s matrices. Overlay and matching of receptor and ligand site matrices with 

each complementary pair, describes ligand’s functionalities mapped onto receptor’s binding 

pocket. Similar matrices can be generated for small molecules and large databases can be 

screened as comparing the matrices is a simple matter of matching each molecule’s distance 

matrix with the one generated from the protein’s binding pocket. The high proportion of 

known active compounds recovered in the top ranks along with target specificity signifies a 

promising future for the feature matching approaches for virtual screening. Such hybrid 

QSAR, machine learning approach that take into account ligand features as well have been 

applied and benchmarked against traditional rigid body docking methods and affords similar 

or better enrichment ratios in virtual screening [99–102]. We suggest that ‘combination 

lock’-driven approaches better capture the complex inter-relationships between feature 

properties of interacting biomolecules, and that implementation of such approaches will 

herald significant progress in our ability to model protein-ligand binding events with 

superior accuracy.

Conclusion

A primary aim of structure-based drug design is to adequately describe the binding 

interactions between a drug and its target. Traditionally, and perhaps in a tired analogy, 

protein-ligand binding is treated as a ‘Lock and Key’ system. Although pioneering studies in 

flexible docking and free energy calculation are making significant progress towards 

improving the accuracy of docking and virtual screening regimes these technologies remain 

complex, are time consuming and, for a variety of reasons, still suffer errors. Paradigm shifts 

in docking and scoring regimes are being driven by the evolution of artificial intelligence 

and machine learning algorithms for pose scoring and evaluation. With the availability of 

experimental binding data from bioactivity databases the molecular docking field is 

witnessing the emergence of hybrid approaches that combine ligand-based and structure-

based approaches. Some of the current methods extend ligand-based machine learning 

strategies and principles in the direction of structure-based approaches. Based on feature 

extraction and correlation with crystallographic and bioactivity data, robust predictive 
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models can now be generated complementing structure-based approach. Such hybrid 

‘Combination Lock’ approaches are evolving technology and albeit with number of 

limitations, holds great promise for future progress in drug discovery and development.
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Figure 1. 
Illustration of ‘Lock and Key’ (top), Induced fit (middle) and Combination Lock (bottom) 

model of protein-ligand binding interaction.
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Figure 2. 
Illustrates docking and scoring scheme as a two-step process. First step involves generation 

of poses within the binding cavity and second step involves energetic evaluation of poses to 

find best scoring pose that would mimic the native protein-ligand binding.
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Figure 3. 
Schematic of ‘Combination Lock’ hypothesis based on feature matching. Protein and 

Ligand’s physicochemical properties are mapped and relevant binding features are extracted. 

Matching the combination of best complementary features between protein and ligand 

ensues optimal fit.
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