
Computational Membrane Biophysics: From Ion Channels 
Interactions with Drugs to Cellular Function

Williams E. Miranda†, Van A. Ngo†, Laura L. Perissinotti†, and Sergei Yu. Noskov†

Centre for Molecular Simulations, Department of Biological Sciences, University of Calgary, 
Calgary, AB, Canada

Abstract

The rapid development of experimental and computational techniques has changed fundamentally 

our understanding of cellular-membrane transport. The advent of powerful computers and refined 

force-fields for proteins, ions, and lipids has expanded the applicability of Molecular Dynamics 

(MD) simulations. A myriad of cellular responses is modulated through the binding of endogenous 

and exogenous ligands (e.g. neurotransmitters and drugs, respectively) to ion channels. 

Deciphering the thermodynamics and kinetics of the ligand binding processes to these membrane 

proteins is at the heart of modern drug development. The ever-increasing computational power has 

already provided insightful data on the thermodynamics and kinetics of drug-target interactions, 

free energies of solvation, and partitioning into lipid bilayers for drugs. This review aims to 

provide a brief summary about modeling approaches to map out crucial binding pathways with 

intermediate conformations and free-energy surfaces for drug-ion channel binding mechanisms 

that are responsible for multiple effects on cellular functions. We will discuss post-processing 

analysis of simulation-generated data, which are then transformed to kinetic models to better 

understand the molecular underpinning of the experimental observables under the influence of 

drugs or mutations in ion channels. This review highlights crucial mathematical frameworks and 

perspectives on bridging different well-established computational techniques to connect the 

dynamics and timescales from all-atom MD and free energy simulations of ion channels to the 

physiology of action potentials in cellular models.
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1. Introduction

Large families of integral membrane proteins known as ion channels (Fig. 1 A) control the 

flux of ions through cellular membranes to enable many crucial physiological processes such 

as cell-cell communication and signaling, osmotic stress responses, muscle contraction and 

neuron firing. Their dysfunctions is directly implicated in a number of human diseases 

known collectively as channelopathies. Various channellopathies are associated with atrial 

fibrillation, congenital heart failure and potentially lethal heart rhythm aberration known as 

Torsades des Pointes, neonatal epilepsy, several forms of congenital blindness, asthma, 

hypertension, diabetes, and various cancers[1, 2]. Unsurprisingly, ion channels have been 

among the most common drug targets for decades of treatment efforts and novel drug 

development. While many ion channel targets are known (for example pace-maker channels: 

HCNs), the development of drugs that act as highly ion channel specific modulators remains 

challenging[3]. High-throughput technologies, animal models, detailed biochemical and 

biophysical explorations are all dispatched to identify potential leads with high specificity to 

a transmembrane protein. Nevertheless, even novel anti-arrhythmic agents designed 

specifically to block HCN channels were shown to have an overlapping concentration block 

of other channels in the heart (e.g. hERG) leading to the reported cases of drug-induced 

cardiac arrhythmias[4]. Another infamous example of very expensive drug development 

failure could be found in one of the most promising anti-retroviral agents BMS-986094 [5]. 

The lead molecule passed all regulatory stages and made it to the human clinical trials, but 

was discontinued due to severe cardiotoxicity, at least in part owing to highly specific 

interactions with cardiac ion channels[6, 7].

What are the greatest challenges in deciphering the molecular mechanisms of drug-ion 

channel interactions, which may help to further enable high-affinity/high-specificity 

development of ligands targeting ion channels?

The fine balance between drug lipophilicities and binding affinities is one of the greatest 

challenges for formulating a robust rational drug-design. Many drugs target ion channels via 

lipophilic routes, e.g., a ligand partitions first into lipid bilayers and subsequently diffuses to 

binding pockets, which are imbedded in hydrophobic environments (Fig. 1 B). The complex 

interaction mechanisms modulated by the composition of lipid bilayers, gender- and age-

dependent fluctuations in concentration of endogenous substances, and co-therapies are all 

known to impact how drugs interact with ion channels[8–10]. Furthermore, these 

transmembrane proteins adopt multiple intermediate conformational states, one of those 

which might be preferentially targeted by drugs. It is difficult to identify one of the states on 

the physiological scale to understand and simultaneously monitor the effects of drug-binding 

and how ion permeation is altered. Selective ion permeation is fine-controlled by various ion 

channels located in the membranes of excitable cells. The ability to move ions selectively 

from one side of the membrane to another rapidly changing local ionic concentrations and 

hence electrochemical potentials on the surface is central for the generation of specific 

cellular response known as Action Potentials (AP). The APs are membrane-depolarizing 

waves, whose patterns and durations are critical for normal physiology [3]. Therefore, 

various mutations or drug binding that impact selective permeation or gating process may 
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potentially be harmful. For example, drug that stabilize only closed states of a certain ion 

channel is potentially life-threatening because they have a potential to severely alter AP.

A complete ensemble of structures involved in drug association pathways must be sampled 

for retrieving and analyzing the thermodynamics and kinetics of binding. However, only a 

small set of experimental (either closed or open, or very few intermediate) structures is 

available for an ion channel, thus hindering the study of the state-dependence binding of 

drugs. Ion Channels do exist in multiple states with rapid (μs-ms) conformational changes 

triggered by membrane voltage changes and other ligand stimuli[3]. But the interconnections 

among all metastable states, on which specific drug bindings and cellular responses can be 

connected, are missing. In this regard, computational models at different levels of 

complexity can help elucidating missing pieces in the mechanism of drug-ion channel 

interactions and consequently guide rational drug design strategies[11]. Furthermore, many 

drugs often have complex multi-channel interactions, thus creating hurdles to regulate a 

specific channel type by inhibition or activation[11, 12].

The molecular modelling field has been benefited in the last decade from new theories, 

techniques, and rapid surge in computational power. The main goal of protein-ligand 

simulations is to map reaction coordinates involved in ligand-target binding and the 

assessment of the energy changes involved in this process. This means deciphering complex 

interrelationships between protein dynamics and ligand association; and then using this 

information to reconstruct ligand-binding thermodynamics and kinetics for a specific or 

intuitively known pathway. But the question arises whether this valuable information is 

adequately sufficient to predict the impacts of drug-ion channel binding at the physiological 

level? The answer, in our opinion, is “Not Yet”. Some studies may focus on drug binding 

processes for a certain type of ion channel (e.g., potassium-selective channels). However, 

these proteins are part of the complex network involving multiple inward/outward currents 

with different ionic types (e.g., sodium and calcium ions) that regulate cellular functions.

Ideally, the thermodynamics (free-energy differences) and kinetic information (rate 

constants, barriers) obtained at the single channel level from MD simulation of different 

types of ion channels may provide the basis for ion-current models developed for either 

single-channel or cellular levels. Then, action potentials can be generated in silico from 

these models, via a set of flux equations with different intermediate states of drug-ion 

channel binding. In this approach, the computed binding affinities and rate constants should 

be constrained by experimental data to produce key observables of drug-binding effects on 

ion channels. While the multi-scale connections among different branches of computational 

biophysics studying ion channels are still evolving, we believe that a combination of such 

multi-scale approaches will provide a fresh impetus for connecting the modulation of these 

transmembrane proteins by drugs with the corresponding cellular responses[13].

In this mini-review, we first discuss how to effectively sample the binding of drugs/ligands 

to ion channels via MD simulations. Since current atomistic simulations are able to produce 

a vast amount of data, a need of extracting the most relevant and comprehensible data has 

led to a rapid development of the Markov State Model (MSM) formalism[14]. This method 

allows rigorous estimation of the relevant dynamics and kinetics from all-atom MD 
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simulations of channel-ligand binding. Finally, we outlined how to integrate the information 

derived from MD simulations (molecular level) into kinetic models (single channel, cell and 

tissue levels) to build predictive models for rational drug design[15].

2. Thermodynamics and Statistics of Drug Binding from MD Simulations

The thermodynamics and statistical data on drug binding to ion channels are crucial to 

quantitatively describe how drugs can disturb the functions of these proteins. This data may 

include, for instance, relative binding free energies, occupancy probabilities, and correlations 

between conformational states of ion channels and various binding modes of drugs. The 

accurate calculation of these quantities from MD simulations requires a thorough sampling 

of phase-space. But except for small molecules (e.g. soluble proteins of ~80 amino acids), 

there is a practical limit on the size of all-atom systems that can be thoroughly simulated to 

millisecond time-scales within a reasonable time with the most advanced technology[16–

18]. For ion channels, which must be imbedded in some model lipid bilayers and solvated by 

explicit aqueous solutions, simulated system sizes can be much larger than the soluble-

protein systems. As a result, thoroughly simulating ion channel systems can become 

exceedingly expensive. Consequently, millisecond MD simulations[19–21] remain 

unreachable for most of these proteins. Furthermore, drug binding events and their couplings 

to conformational dynamics and functions of ion channels take milliseconds or longer to 

have measurable physiological effects. In spite of this formidable sampling task, there are 

promising methodologies to enhance the sampling in MD simulations. These approaches 

could provide insights into the thermodynamics and intermediate states of drug-ion channel 

association process. As will be shown in Sec. 5, the thermodynamic properties and statistics 

of relevant functional states can be used to build kinetic models and rationalize experimental 

observations in terms of specific gating and drug binding mechanisms.

2.1 Biased MD simulations

Many simulations often implement a biased potential that drives systems for sampling rare 

but functionally relevant events, allowing the identification of global free-energy minima 

and transition pathways within affordable timescales. Biased MD simulations require a prior 
knowledge of viable reaction coordinates, along which the binding/unbinding pathways of 

drugs can be easily described. Typical sampling pathways for drug binding to ion channels 

are depicted in Figure 1 B. In the simplest case, drugs simply diffuse to the pore domain of 

these proteins, either from extracellular or intracellular sides and directly block the ion-

permeation pathways. However, for most sampling problems, the selection of reaction 

coordinates is not trivial. In fact, it is difficult to reduce a large number of degrees of 

freedom into a comprehensive set of collective variables or reaction coordinates that would 

best represent a drug binding pathway or conformational transitions in many biological 

systems. In this case, some approximations may be necessary. For example, an 

approximation of drug binding to ion channels may require the truncation of unnecessary 

parts of the proteins, usually supported by mutagenesis data[22]. Sampling these 

approximate reaction coordinates (ξ) returns a useful thermodynamic quantity, referred as 

the Potential of Mean Force (PMF), which can be computed by
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(1)

where ρ is an unbiased probability distribution of systems computed along ξ; and C is an 

arbitrary constant.

To compute ρ or PMF, many effective biasing sampling techniques have been developed 

such as adaptive biasing[23], steered/pulling MD[24, 25], conformational flooding[26, 27], 

and metadynamics[28, 29] methods. In this review, we focus on crucial aspects of umbrella 

sampling (US) as one of the most widely used methods for re-constructing unperturbed free-

energy landscapes from biased data[30, 31]. In principle, one can use arbitrary external 

potentials for biasing purposes as long as sampled biasing distributions are ‘as wide and 

uniform as possible’ to have an accurate connection between perturbed and unperturbed 

distributions[30]. For example, Roux[31] showed that a wide and uniform biasing 

distribution can be achieved from combining a series of separated windows, which focus on 

sampling particular regions of a reaction coordinate coupled to an external harmonic 

potential. It can be proved that the distributions of reaction coordinate between consecutive 

biasing windows need to have sufficient overlapping for accurately reconstructing free-

energy landscapes[32]. The resultant free-energy values are sensitive to the tails of 

windowed distributions and the overlap extend [31, 32]. So, it is advised to post-process 

umbrella sampling data via Weighted Histogram Analysis Method, which solve a set of non-

linear equations to return optimal unperturbed free-energy profiles[33]. Then, uncertainty 

analysis of free-energy profiles can be performed via Bootstrap method[34] or assessing data 

correlations and mutual entropies [35] to identify unsatisfactorily sampled data points. It 

might be also very useful to perform force-decomposition analysis[36] to extract 

contributions from electrostatic and Van de Waals forces to PMFs.

Based on PMFs, one can estimate effective binding/dissociation constants or kinetic rates 

(κ) via Kramer’s theory[37, 38], as follows

(2)

where Kb and kw are the curvatures at the barrier and well, respectively; D is a diffusion 

coefficient, which can be estimated from MD data by various methods[39–41]; and ΔW is a 

free energy difference between the barrier and local minimum. As will be discussed in Sec. 

5, these kinetic rates can be used to build kinetic models. Furthermore, relative free energy 

of drug binding is computed by

(3)

where C0 is the standard concentration (1 M) and Keq can be calculated from W(x, y, z) as 

follows
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(4)

where S(x,y) is a cross-section area in the xy-plane that influence the binding pathways, and 

z1 and z2 are the lower and upper bounds of z, respectively[42, 43]. If a binding process can 

be solely described by the pathway of , W(x, y, z)~ W(z) and S(x,y) is approximated as 

πR2, in which R is often chosen as an effective radius of ion channels[44–46]. However, if 

binding pathways involve the lateral fenestration by diffusion of drugs in lipid membranes 

(Figure 1 B), the estimation of S(x,y) may not be trivial. Sampling these pathways may 

become exponentially demanding, as additional dimensions of drug binding plus more 

rotational degrees of freedom than sampling the directly-blocking pathway must be 

considered[47]. In this case, we need a sampling strategy to both optimize sampling 

resources and ensure reliable outcomes (see below).

2.2 Unbiased MD simulations

For many ion channels, either the binding sites or binding pathways for drugs are rarely 

known. To get the least biased insight into the binding of drugs, standard MD simulations 

may be revealing if they can produce sufficient data. For example, using Anton simulation-

dedicated supercomputer[19], Boiteux et. al.[11] performed multi-microsecond unbiased all-

atom MD simulations of the antiepileptic drug benzocaine (BZC) and the anesthetic 

phenytoin (PHT), which bind to the bacterial NavAb channel, a homolog of the human Nav 

channels [48]. In these simulations, the system is saturated with many drug molecules to 

increase the probability of drug binding events. This study is one of the few reports that have 

pushed all-atom MD simulations of drug-ion channel systems into physiological time-

scales[19, 49–53]. It showed that there are up to seven binding sites for BZC, leading to the 

determination of a high-affinity pore-blocking site through fenestrations, and an interesting 

site between the pore and voltage sensor domain of NavAb[11]. Note that this study used 

only one specific conformational state of NavAb for the sampling of the binding sites, thus it 

is not clear if the observed binding pathways for BZC and PHT are dependent on other 

conformational states. This methodology has also been used to study the binding pathways 

of the anesthetic drug isoflurane to both the nicotinic-acetylcholine receptor (nAChR)[54], 

and the bacterial voltage-gated sodium channel (NaChBac)[55] in simulations of ~0.5 μs, 

and also the binding pathways of ethanol to the glycine receptor (GlyR)[56].

There is another strategy to run standard MD simulations, which can cover many areas of 

phase space. For example, Folding@Home[57, 58], which is a network of desktop 

computers volunteered to run MD simulations, has been used to massively run a few 

hundred thousand of independent short straightforward MD simulations on protein 

complexes. To implement this simulation strategy, it is critical to prepare uncorrelated initial 

states so that several simulations sufficiently capture as many binding modes as possible. 

However, it is often tricky to know how many of these simulations would be needed to 

produce significant and reliable statistics, particularly for drug-ion channel binding events.
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2.3 Accelerated/Enhanced/Guided/Weighted-Ensemble MD Simulations

Whenever the statistical quality of thermodynamic data is under thorough scrutiny, both 

biased and unbiased simulations can be applied with enhanced sampling techniques[47, 59–

62] to provide a more ascertain justification to the convergence of MD data. Depending on 

whether well-defined reaction coordinates are available or not, additional layers of 

algorithms can be dispatched on top of normal Newton-based MD integrators to accelerate 

the exploration of a broader phase space. Tempering (T-REMD)[63] and Hamiltonian (H-

REMD)[64] replica exchange simulations are typical algorithms available in many MD 

softwares to enhance the statistics of drug binding/unbinding events to ion channels. The 

essence of T-REMD and H-REMD is to exchange relatively higher-energy with lower-

energy states and vice versa by means of the Metropolis criterion[65]. These methods can 

offer a sampling of about 50–100 times more relevant data than standard MD simulations 

started from the same initial configurations[66, 67]. These techniques can be expensive, 

since they may require few thousands of CPUs or hundreds of GPUs to distribute among 

many replicas of ion channel systems. A practical criterion for ‘good’ replica exchange 

sampling is to achieve an average exchange rate of 20–23% among all T-REMD or H-

REMD replicas, or 30–50% among all solute replicas in REST2[15]. Using this criterion, a 

typical number of replicas of small soluble proteins for T-REMD with a temperature range 

between 275 and 400 K is around 64, and for H-REMD is one replica per about 0.5-Å 

incremented window. However, it should be noted that there is no clear justification for a 

“good” exchange rate because there may be still some aggregations of replicas in the 

temperature space[68]. In this case, an adaptive T-REMD can be implemented to avoid such 

aggregations[69]. Note that T-REMD or REST2 are particularly useful for simulation 

systems with unknown reaction coordinates for describing binding/unbinding events or 

correlation between binding/unbinding and conformational changes of ion channels. On the 

other hand, H-REMD simulations are likely affordable for a number of known reaction 

coordinates typically less than 3.

Other techniques, which might be also useful for efficiently guiding the drug-ion channel 

simulations, are string methods and weighted ensemble simulations. On-the-fly[70] and 

swarm-trajectory[71, 72] string methods[73] were designed to find minimum free-energy 

pathways (MFEP) between two known end-states more efficiently than simply sampling a 

sufficiently large free-energy landscapes and then identifying MFEP via, e.g., US sampling. 

It is suggested to be particularly powerful for studying systems without a prior knowledge of 

reaction coordinates, and has been proven to be effective in many systems[54, 74, 75]. The 

challenge of delineating data obtained via string methods in protein systems is how to reduce 

a large number of collective variables into a small and comprehensible set of major 

transformations. String methods have often been carried out to produce many initial 

configurations of proteins and tentative drug-binding pathways for running a massively large 

number of independent simulations[54, 74, 75]. Similar strategies could be carried out for 

studies of drug binding to ion channels, in which string methods could be performed to drive 

certain movements of gating domains or voltage-sensing domains to obtain a series of initial 

critical configurations of these proteins for running a large number of independent 

straightforward simulations. String methods can be combined with the weighted ensemble 

approach[76] to further enhance the sampling of drug binding. This weighted ensemble 
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(WE)[77] approach utilizes an on-the-fly protocol of removing or dividing simulation 

replicas[78] to achieve a convergence probability distribution of states. It scales very well 

with a large number of CPUs to sample a ten thousand of trajectories per iteration[79]. 

Another advantage of this method is that it works with both equilibrium and non-equilibrium 

steady states, in which one might sample conformational states in equilibrium fashion while 

sampling of ion permeation in a steady state. This WE-string-method approach to study ion 

channels might be worth further exploring to compare with other sampling techniques.

Another viable approach for simulations of drug-ion channel binding is to incorporate 

critical experimental data like X-ray or NMR properties in simulations. For example, MELD 

(Modeling by Employing Limited Data)[80] can use ‘loose and vague’ or limited 

information from experiments to enhance sampling in MD simulations. It was developed for 

estimating relative binding affinities of peptide-protein complexes by ordering MD sampling 

to achieve some structural properties such as hydrophobic contacts or secondary structures 

via some evolutionary information[81]. In the simulations of the binding of p53 epitope on 

MDM2 (Mouse Double minute 2 homolog) as a factor contributing to cancer growth, MELD 

was used with replica exchange to swap binding and unbinding configurations of the 

complex[81]. So, a similar simulation approach can be carried out for the drug binding to 

ion channels.

3. How to decipher correlations between drug binding events and channel 

conformational states?

Many ligands (e.g. full- and partial- agonists, antagonists) are known to induce 

conformational changes at the ligand-binding domain (LBD) that trigger the opening or 

closing of distant conducting pores through allosteric mechanisms[82, 83]. For example, in 

ionotropic Glutamate Receptor (iGluR), the binding of agonist molecules to LBD induces 

the opening of its transmembrane pore domain to enable nerve impulses to propagate in the 

post-synaptic neuron. Through MD simulations approaches, it has been possible to 

decompose the complex relationships between ligand binding and conformational changes 

involving the opening and closure of LBD in iGluR[22, 82–87]. To correlate ligand binding 

with transition states of the LBD in GluA2, the free-energy contributions to the total LBD-

ligand binding free energy were computed using a combination of different approaches (see 

Ref. [22] for details). This study only considered the LDB domain, not the entire channel. 

So, the precise allosteric mechanism for GluRs pore opening, triggered by the binding of 

agonists to the LBD, remains incomplete. It is indeed difficult and expensive to use the same 

approach to unravel the couplings between drug-binding events and channel conformational 

transitions. In this regard, the major questions are: (1) Which conformational states are the 

most crucial for drug bindings and ion permeations? (2) How are these states connected?

Logically, a systematic approach based on a combination of large datasets generated by 

computer simulations and interpreted with established kinetic approaches, such as Markov-

State-Models (MSM), is currently the best strategy to shed light on these questions. 

Conceptually, the complex dynamics involving all states for a specific ion channel can be 

mapped out from exhaustively sampled atomistic simulations. With tetraflops 
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supercomputers, simulations can produce a large sum of trajectories, in which drugs bind to 

ion channels in various locations with different probabilities among an enormous number of 

‘noisy’ (non-relevant) structures. From these trajectories, it is a must to have a systematic 

and robust strategy to extract the most representative states and any possible coupling 

between drug binding and conformational dynamics of ion channels. A popular strategy to 

filtering out relevant conformational states is to construct MSMs from MD trajectories[88–

92]. Conceptually, MSM assumes a Markovian network of labeled states, which are 

clustered from MD trajectories. One can cluster structural data and build MSM via various 

structural metrics or features including RMSD[93, 94], angles, dihedrals, relevant distances, 

contact maps and other internal coordinates[14, 95, 96]. MSM can be combined with time-

structure independent component analysis (tICA)[97] to estimate the timescales of the 

slowest motion and correlated movements, or principle component analysis[98] to classify, 

project and optimize metastable states[99–101] in MD data. The so-called implied 

timescales, which are proportional to the inversed eigenvalues obtained from MSM-

transition probability matrix, can be used to identify if the slow dynamic modes of the 

system occur in the time-scales for physiological events[47, 89, 96]. Simulation times may 

be few orders of magnitude smaller than implied timescales. As a result, one may obtain a 

handful of principal or slowest components and metastable states that are much more 

comprehensible than original MD data. Importantly, a cross-validation of any resultant MSM 

models can be also performed to identify any possible uncertainty[102]. One can then use 

the transitional matrix obtained from MSM to estimate a net flux of transitions between any 

product and reactant states[96, 103]. This transition matrix and the resultant transition fluxes 

among those states can be particularly useful for kinetic modeling (see Sec. 5).

Generally, when applying MSM to ion channel dynamics, it is necessary to use different sets 

of features and cluster algorithms to unravel relevant states that are important for both drug 

binding and also ion-selective transport[95]. For instance, subtle flexibility such as flip-

flopping of carbonyl oxygen atoms and sidechains, which are crucial for ion permeation and 

selectivity[104], may be coupled with different gating modes [105, 106]. In a general case, 

one might have to use, for example, a set of distances among carbonyl oxygen atoms in a 

selectivity filter, relative positions of ions, and native contacts for the ion channel and drug 

as a feature for analysis. While MSM has been widely used to study the folding, ligand 

binding, and native conformational states of soluble proteins[107], there are only a few 

applications of MSM to membrane proteins. Among them, the studies by Kohlhoff et al. on 

b2-adrenergic receptor (b2AR)[58] and Choudhary et al. on VDAC1 channel, a cylindrical 

beta-barrel anion channel[108]. The dynamics of b2AR were simulated from the crystal 

structures of the active and inactive states, in which a partial inverse agonist and a full 

agonist were bound. As a result, a MSM model was built to map the influences of the 

agonist for modulating the structural changes of the receptor. Then, docking small molecules 

to those kinetically relevant states was carried to identify chemotypes for b2AR. In 

VDAC1[108], MSM was used to identify the permeation pathways of ATP along the interior 

of VDAC1. For this type of problems, MSM shown to be useful in ranking the different 

binding poses of ATP along the permeation pathways and link dynamical data generated by 

a large set of short (~50–200 ns/trajectories) simulations with open/closure transitions which 

occur in much longer timescales (~ seconds). Currently, python-based MSM software 
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packages MSMBuilder[89] and PyEMMA[90] are freely available with insightful tutorials. 

PyEMMA is built based on MSMBuilder but generalized to include data from all replicas in 

T-REMD and H-REMD simulations[91, 92], thus robust to perform MSM analysis.

It is worth noting that MSM is based on the Markovian assumption among all possible 

clustering states, i.e., no memory among distant states. It is, however, known that some 

states of ion channels usually display a non-Markovian behavior, i.e., a significantly long 

history of initial states[109, 110]. Particularly, there is direct evidence of non-Markovian 

behavior ranging from gating in VDACs to polymer/ligand escape[53, 111, 112]. Therefore, 

it might be necessary to apply a non-Markovian State Model[113] to identify how drugs 

influence the conformational transitions of ion channels in individual trajectories, which are 

simulated from different initial states. It means that certain simulation protocols may be 

applicable to study the non-Markovian dynamics in these proteins, others may not. For 

example, a number of straightforward unbiased or individual biased MD trajectories contain 

possible long histories of initial states, but those sampled by tempering replica-exchange 

approaches may diminish the effects of initial states after just few iterations because of 

Metropolis exchanges with multiple distant states at different temperatures.

As discussed further below, the conceptual challenge of kinetic modeling lies in the 

consideration of multiple “hidden” states for fitting to electrophysiology data[4, 114–116]. 

The mathematic assumption of using hidden variables is that there may be more than one set 

of variables and connections among them that would fit few outcomes of so many 

unknowns. There is, however, a mathematically optimal set of variables (hidden and known) 

that would best describe and predict the outcomes within some constraints[117]. In the 

kinetic modeling of ion channels, many of the physiologically hidden states are “silent”, e.g., 

they are not resulting in directly measurable signals (for example, inactivated or some 

intermediate states). Yet, these states could be critical for drug binding and overall channel 

functions[7, 118]. Obviously, it is necessary to justify these hypothetically hidden states: 

how many are sufficient for describing physiological data? These states could be justified 

based on structural data of open, closed, and inactive states from experiments, if available. 

From the perspective of MD simulations, there is no hidden state if thorough sampling is 

reached. However, due to a limited amount of MD data, some intermediate states are likely 

not properly sampled. In this case, the concept of hidden variables or states could be also 

applied to MSM modeling, so-called Hidden Markov Modeling (HMM)[117, 119]. In fact, 

HMM could be used to smoothen out discrete states found in MSM model to potentially 

provide a better interpretation of transition pathways. HMM may be, therefore, useful to 

provide more insights into the hidden states hypothesized in the kinetic scheme or whether 

they are in fact not “hidden”.

4. Kinetic modeling of ion channels’ gating, drug interactions and cellular 

processes from Electrophysiology data

The original idea of modeling ion currents or channels gating and drug-induced 

perturbations could be dated back to the pioneering work of Hodgkin and Huxley on the 

Action Potential. Hodgkin and Huxley (HH)[120] formulated the first mathematical model 
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of channel gating and AP generation and propagation. Their model is based on the inward 

(Na+) and outward (K+, leakage) currents in giant-squid axons at different membrane 

potentials (Vm) upon depolarization. These currents are calculated by the Ohm’s law:

(5)

where x is an ionic type (i.e., Na+ or K+), Ix is a macroscopic transmembrane current 

[μA/cm2], Ex is an equilibrium potential (mV), and gx is the conductance (mS/cm2). The 

conductance is estimated as , where  is the maximum conductance for ion x and 

Po is an opening probability that was modeled empirically by assuming independent gating 

and as a function of gating particles or gating parameters[120]. Although the HH formalism 

has been successful and is still widely used in many applications[121], the gating particles or 

parameters considered in HH model do not represent specific kinetic states of ion channels. 

For instance, the inactivation probability of the Na+ channel was found to be higher when 

the channel is open[122], which invalidates the HH assumption of independent gating.

Since the development of single channel recording techniques[123], a much more detailed 

picture of the mechanisms underlying membrane excitation has emerged over the years and 

the gating kinetics of several ion channels in excitable cells are better described by Markov 

Models[124, 125]. These models have been very useful as they involve well defined channel 

states and assume that transitions are interconnected by rate constants dependent on external 

variables like the membrane potential, ligand concentration, etc. The essence of Markov 

Models is that, for any single step in the gating mechanism, the transition probability (i.e. 

the microscopic equivalent of the rate constant) is time independent. This is also the main 

assumption for building MSM from MD simulations as pointed in the previous section. The 

state probabilities in the model are calculated by solving the following equation (eq. 6):

(6)

Where p⃗ is is the vector of state probabilities (PO…Pi) and Q is the system matrix of the 

transition rate constants (αkl, eq. 7), corresponding to the transition between states k and l. 
The transition rate constants of the system are assumed to have the following 

expression[126]:

(7)

Where Vm is the external electric potential in mV, α0kl is the voltage independent rate 

constant (α0kl=αkl (0 mV) in ms−1 units) and βkl (mV−1 units) has the following expression:

(8)
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Where θkl is the fraction of the gating charge zgkl moved to reach the rate-limiting barrier in 

the forward direction. The fraction in the reverse direction would be 1- θkl. F is the Faraday 

constant, T is the temperature in Kelvin and R is the gas constant. In practice, initial values 

of αkl and βkl are guessed and then optimized to fit the outcomes of kinetic models to 

experiments. Once eq. 6 is solved, the probability of being in the open state (PO: conducting 

state) is found and the current is calculated using the eq. 5.

The Markovian kinetic models for ion channels contain a number of hidden states, many of 

which, however, are nearly impossible to observe experimentally. Although the states are not 

directly visible, the output –ion channel gating behaviour- which is dependent on the hidden 

states, is visible. It is important to stress that all developed Markov Models for channel 

gating kinetics are constrained by experimental measurements to ensure reproducibility of 

key metrics[127]. Experimental data used to constrain the models might come either from 

voltage-clamp single channel recordings or whole cell measurements. The current measured 

in “whole cell” configuration belongs to many channels of the same type and is isolated 

from currents due to other type of channels in the cell. There are several software packages 

available to simulate ion channel currents and fit Markov Models to them. Those include 

NEURON[128, 129] and QuB[130–132] among others. Both provide a powerful platform 

for simulating single-channel and whole cell currents in response to electrophysiological 

stimuli and pharmacological stimuli. Fredkin and Rice[133] have shown that ideal single 

channel data obtained from voltage-clamp steps provide all the information necessary for 

fitting ion channel models but, with real noisy data, the analysis is extremely difficult and 

many complications arise[134].

Since whole-cell current measurements are widely used to describe ion channel gating 

kinetics, drug effects and mutations under physiological conditions, we will discuss a few 

studies using those measurements to constrain the fit to Markov Models. For example, 

Perissinotti et al. [4] recently developed a kinetic model to explain the mechanism of the 

drug NS1643 (channel activator) effect on hERG WT and L529I mutant using the five-state 

model from Wang et al.[135] (Graphical illustration for common kinetic scheme is shown in 

Figure 2). Another example is the modeling of blockers to hERG channels[136]. In these 

studies, voltage-clamp data from whole cell experiments on hERG was used, rate constants 

for binding (kon)/unbinding (koff) were constrained via optimization to electrophysiological 

pacing protocols and IC50 values for each drug[15, 136, 137]. To simulate the effects of the 

drug, different models that include two populations of hERG channels in drug-free and drug-

bound states (see Fig. 3) were considered with state-dependent drug binding affinities and 

on/off rates as essentially free variables but constrained by the available experimental data. 

In the case of the NS1643 activating effect, the model shows that the drug should bind to the 

open state and at least two early closed states; and modify the voltage dependence of the 

transition rates among the states to reproduce the experimental behavior. Interestingly, these 

mechanistic findings together with mutagenesis experiments and MD structural analysis 

suggested a binding site around the voltage sensor domain of hERG imbedded in lipid 

membrane as a mechanism to alter the voltage-gated properties of hERG[138].

The examples presented above illustrate how the effect of drugs on a particular type of 

channel (hERG) can be rationalized in terms of a mechanism by fitting a proposed Markov 

Miranda et al. Page 12

Biochim Biophys Acta. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Model to experimental data. In these examples, together with most studies in literature, the 

fitting is performed through the Global-Fitting procedure described by Balser et al.[127], 

which is the common methodology used when fitting Markov Models to whole cell 

electrophysiology data. The Global-Fitting Approach involves the use of comprehensive and 

extensive data sets of experimental information from a broad range of ion current responses 

to multiple voltage stimulations conditions (voltage protocols, membrane potentials, 

temperature, etc.) and is designed to reduce the universe of possible solutions to the model 

system mechanism, ensuring the robustness of the parameter set obtained for the model. 

Using that approach, a proposed kinetic model, which includes drug-free and drug-bound 

states attempts to explain and predict various effects of the drug on a particular ion channel. 

It is important to emphasise that those proposed models have limitations due to experimental 

uncertainties, type of cell line used, technical issues, and more importantly; they may still 

fail to explain the effect at the cellular or tissue level as other types of channels present in the 

cell may be involved in the observed side-effects.

5. Towards MD-based kinetic models for ion channels gating, drug 

interactions and cellular processes

The data obtained from all-atom simulations could form a basis for solid multi-scale 

platforms that allow the prediction of cellular responses from perturbations by drugs. In 

effect, these MD data could help to establish or discard hidden states in kinetic models, and 

replace them with MD-based metastable states. Ultimately, MD simulations can provide a 

molecular mechanism of drug-ion channel interactions, which underlie the cellular 

responses. The drug-induced cellular responses are results of perturbations propagated in a 

network of several ion channels that selectively translocate different ions. Thanks to 

advanced Cryo-EM techniques[139–141], a significant number of structures of mammalian 

ion channels recently resolved at a quality (~3–4 Å) suitable for MD simulations pave a way 

to rigorously understand the molecular basis of the cellular responses. Although sampling on 

individual channels itself is challenging and the cellular responses happen in a temporal-

spatial scale that is not accessible by atomistic simulations, theoretically there are 

mathematical and physical frameworks to marry MD-sampled events with cellular 

responses. As will be shown below, the diffusion coefficients, relative free energies, barriers, 

and transition rates typically obtained from MD simulations of particular ion channels can 

supply kinetic models or even higher-level models like cells, tissues and organs, which are 

well established in the biomedical engineering field.

How can MD simulations be useful to restrain kinetic models? MD simulations with its 

current reach in time scales and the ability to incorporate effects of membrane potentials 

may provide missing parameters and states for kinetic models of ion channels. In a physical 

sense, the collection of parameters provided by kinetic models fitted (constrained) by 

experimental data should be sufficient to elucidate channel gating dynamics and to enable 

predictions for a variety of conditions (concentrations, temperatures, pH and voltages). 

Nevertheless, various models with different states or connectivity may provide a reasonable 

description for a complex phenomenon such as channels’ gating and at a higher level, AP 

propagation. Due to the complexity of the phenomena, there are usually components and 
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processes that are neglected when trying to model cellular responses from kinetic models of 

ion channels. So, it is difficult to establish a cause when a prediction of drug effects from the 

models is proven wrong. We would like to argue that detailed atomistic models of state-

specific drug interactions with ion channels might provide an additional level of validation 

for ion channel kinetics models, enabling self-consistent development of cellular models by 

incorporating restraints from a single protein level data and measurements of drug-induced 

perturbations at the cellular level. Essentially, a mathematical model that describes the 

channels’ gating and drug interaction could be proposed based on combined MD-MSM data. 

After fitting the model to experimental data and constrained it by MD data, the set of 

parameters obtained can then be plugged into a higher-level model like the whole cell, tissue 

or even organ and test how that ion channel drug- targeted effect interplays with the rest of 

currents in the cell.

The interplay between all-atom MD level and kinetic modeling could be illustrated with 

analysis of ion currents and dynamics of a single ion channel (the workflow is shown in 

Figure 3). As it was mentioned before, some of the simplest and successful kinetic 

models[142] for ion channel gating assumes the Markovian transition, i.e., the last 

probability does not have the memory from 0 to t but only the fact that the channel is open at 

t. As a result, an open probability of a single channel at time t is expressed as follows

(9)

where τi = 1/λi is a transition time and Σi αi = 1. This probability function is in fact 

equivalent to an eigenstate obtained from time-structure independent component analysis 

(tICA)[97], which has been used as the most efficient way to extract maximal 

autocorrelation times among a large noisy data set of multi-dimensions in Markov Models. 

This probability is also a solution to the Eq. (6), and is equivalent to the matrix of metastable 

states that are extracted from a MSM built upon MD data. One can also estimate the 

transition rates (α0kl) that will be used to build the transition matrix Q (eq. 6) via Eyring’s 

equation [126] as follow

(10)

where the free-energy difference ΔGkl between states k and l can be estimated from 

unperturbed free-energy landscapes obtained from unbiased or biased-MD simulations Then, 

the effects of the membrane voltage in the transition rates (αkl(Vm)) can be simulated via 

equation 7. The transition rates (α0kl) can also be obtained using MD-MSM, from the 

number of observed transitions between states k and l. Using these transition rates, ionic 

fluxes can be straightforwardly estimated (for example, see Refs. [142, 147]). Given such 

transition rates, various frameworks for simulating ion permeation can be found in Ref. 

[148]. Therefore, using transitional matrices obtained from either biased-MD or MSM-MD 

approaches, one would get all state-dependence probabilities via solving Eq. (6).
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Once metastable states and their connectivity are available, it is possible to model ion 

permeation for an i-th intermediate state via Smoluchowski’s equation,

(11)

where ci(r,t) is a concentration of ions, ∇ is a gradient operator, Di(r) is a spatial-dependence 

diffusion tensor, Ui(r) is equal to the sum of applied electric potentials and state-dependence 

potential of mean forces (Wi(r)) of single or multiple ions across ion channels obtained from 

MD simulations, and β is 1/(kBT). Consequently, the average single-channel current can be 

computed from the probability of finding a channel in the i-th state (Pi) and the current, 

, through the channel in this state as follows

(12)

This current can be measured in single-channel recordings and analysis for model testing. 

The entire procedure to marry MD simulations with kinetic modeling is schematically given 

in Figure 3.

It is also possible to extend the approach described above to the case of state-dependent drug 

blockade, which appears to be critical for understanding of many adverse drug effects. It has 

been shown that drugs with similar binding affinity but different binding kinetics can have 

diverse effects[3, 149, 150]. The most commonly used metric for drug blockade is IC50, but 

it provides an average measure of drug potency to supress ion currents without any 

mechanistic insights. In that regard, state-dependent drug binding/unbinding kinetic rates, 

which are often impossible to measure experimentally, can be calculated from equilibrium or 

non-equilibrium MD simulations. This data can be used within the multiscale modeling 

strategy (Fig. 3) to better predict relationships between channel gating, drug binding, and 

altered cellular responses such as action potential duration.

For instance, MD-MSM can provide kinetic information on drug-ion channel binding 

through the mean-first-passage-time (MFPT) estimator. The MFPT, which can be solved 

from transition pathway theory, is defined as the average time taken for the transitions 

starting at state A until reaching state B for the first time.[107] For the case of a drug 

binding to an ion channel, the association (“on”) and dissociation (“off”) kinetic constants 

can be calculated as koff = 1/MFPToff and kon = 1/(MFPTonCdrug, where Cdrug is the 

concentration of the drug[151]. Buch et al.[152] calculated the kon and koff kinetic constants 

for benzamidine-trypsin complex from the MFPT obtained from their MSM (see Section 3), 

although with one order of magnitude deviation with respect to experimental values. 

Moreover, coarse-grained models currently allow to build membranes that mimics the lipid 

composition of specific cell/organelle and to simulate the lateral distribution of the 

lipids[153]. This could be important to assess the influence of lipids in both the gating of ion 

channels and their association with drugs.

Miranda et al. Page 15

Biochim Biophys Acta. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clearly, the mathematical frameworks to obtain rates for channel gating transitions and drug 

binding/unbinding from MD simulations in single-channel modeling are connected (Fig. 3). 

As a result, detailed atomistic models of state-specific drug interactions with ion channels 

might provide additional levels of validation for the ion currents kinetic models, thus 

enabling self-consistent development of cellular models that are iterated between a single 

protein level data and measurements of drug-induced perturbations at the cellular levels. We 

believe that the knowledge resulting from this multi-scale modeling approach would 

significantly contribute to the molecular pharmacology.

Note that many challenges are to be solved including improvement of the force-field 

parameters[104], better modeling of physiologically relevant lipid mixtures[153], better 

models of membrane potentials controlling function of membrane proteins[154–156] among 

others. We foresee that fruitful structural information will be more easily derived from a 

number of experimental techniques such as Cryo-EM methodology[141] or X-ray laser 

serial crystallography[157]. Consequently, the MD-based kinetic modeling would become 

an inevitable and more accurate tool to predict the side effects of drugs targeting ion 

channels.
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Abbreviations

AP (Action Potential)

EM (Electron Microscopy)

HH (Hodgkin and Huxley model)

hERG (human Ether-a-go-go channel)

HCN (Hyperpolarization-activated Cyclic Nucleotide-gated channel)

H-REMD (Hamiltonian-Replica Exchange Molecular Dynamics)

HMM (Hidden Markov Model)

IC50 (half-maximal inhibitory concentration)

MD (Molecular Dynamics)

MELD Modeling by Employing Limited Data)

(MFEP) Minimum Free-Energy Pathways

MFPT (Mean First Passage Time)
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MSM (Markov State Model)

NMR (Nuclear Magnetic Resonance)

PMF (Potential of Mean Force)

REST (Replica-Exchange with Solute Tempering)

RMSD (Root-Mean Square Deviation)

tICA (time-structure Independent Analysis)

T-REMD (Temperature-Replica Exchange Molecular Dynamics)

WHAM (Weighted Histogram Analysis Method)
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Highlights

• Review present topical discussion on common strategies in studies ion 

channels-drug interactions

• Molecular and Cellular Models for Ion Channel Function are discussed

• The tentative multi-scale approach for integration of protein-level data with 

cellular kinetic models is presented
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Figure 1. 
Ion permeation and drug binding pathways in ion channels. A) The ion permeation pore in 

ion channels. The structure corresponds to the hERG potassium channel (PDBID: 5VA1). 

The voltage sensing and pore domains are colored in blue and red, respectively. The ion 

selectivity filter is colored in green. Only two subunits of the tetramer are shown for clarity. 

The extracellular and cytoplasmic sides of the plasma membrane are represented by solid 

black lines. B) Typical pathways for drug (D) - channel (C) binding mechanisms. ,  or 

 represent the reaction coordinate for hydrophilic, partition, and lipophilic pathways, 
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respectively. Drug-induced conformational changes in the channel may be described by a set 

of reaction coordinates (ξc).
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Figure 2. 
Kinetic models describing the activator effect of NS1643 drug on hERG channel. Closed 

states (C1 to C3), Open state (O), Inactivated state (I) and drug bound states (D subindex) 

are connected and constrained by experimental data. kon-C, kon-O are the drug association 

rates constants in the closed, open states, respectively. koff-C, koff-O are the dissociation rate 

constants in the closed and open states, respectively. The rest of the rate constants describing 

transitions between the unbound/bound states were modeled according to the previously 

Markov Model proposed by Wang et al.[135].
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Figure 3. 
Schematic of MD-based kinetic modeling. Transition matrix Q can be generalized to include 

various ion-selective channels.
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