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Abstract

Purpose

To a) achieve cardiac 19F-Magnetic Resonance Imaging (MRI) of perfluoro-crown-ether

(PFCE) labeled cardiac progenitor stem cells (CPCs) and bone-derived bone marrow mac-

rophages, b) determine label concentration and cellular load limits, and c) achieve spectro-

scopic and image-based quantification.

Methods

Theoretical simulations and experimental comparisons of spoiled-gradient echo (SPGR),

rapid acquisition with relaxation enhancement (RARE), and steady state at free precession

(SSFP) pulse sequences, and phantom validations, were conducted using 19F MRI/Mag-

netic Resonance Spectroscopy (MRS) at 9.4 T. Successful cell labeling was confirmed

using flow cytometry and confocal microscopy. For CPC and macrophage concentration

quantification, in vitro and post-mortem cardiac validations were pursued with the use of the

transfection agent FuGENE. Feasibility of fast imaging is demonstrated in murine cardiac

acquisitions in vivo, and in post-mortem murine skeletal and cardiac applications.

Results

SPGR/SSFP proved favorable imaging sequences yielding good signal-to-noise ratio val-

ues. Confocal microscopy confirmed heterogeneity of cellular label uptake in CPCs. 19F

MRI indicated lack of additional benefits upon label concentrations above 7.5–10 mg/ml/mil-

lion cells. The minimum detectable CPC load was ~500k (~10k/voxel) in two-dimensional

(2D) acquisitions (3–5 min) using the butterfly coil. Additionally, absolute 19F based concen-

tration and intensity estimates (trifluoroacetic-acid solutions, macrophages, and labeled
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CPCs in vitro and post-CPC injections in the post-mortem state) scaled linearly with fluorine

concentrations. Fast, quantitative cardiac 19F-MRI was demonstrated with SPGR/SSFP

and MRS acquisitions spanning 3–5 min, using a butterfly coil.

Conclusion

The developed methodologies achieved in vivo cardiac 19F of exogenously injected labeled

CPCs for the first time, accelerating imaging to a total acquisition of a few minutes, providing

evidence for their potential for possible translational work.

Introduction

Implantation of stem cells (SCs) has provided a methodological pathway that promises cardiac

tissue regeneration and structural and functional improvements following injury. The basic

approach of SC therapy involves the direct transplantation of cells, followed by their migration,

differentiation, and proliferation, ultimately attaining homing and engraftment. However,

while the feasibility of SC technologies has been proven, efficacy is still in question [1].

Within the realm of SC therapies, non-invasive imaging and tracking of labeled SCs, and

their functional impact, has taken a prominent role in recent years. The visualization of the

implanted SCs to define optimal therapy strategies (dose, timing, delivery) using pre-labeled

cells with fluorescent probes [2], transduced expression of fluorescent proteins [3], or iron

oxide particles (MPIOs) [4], and their assessment for temporal label persistence, has become a

subject of intense research. Over the past decade, nanoparticles (NPs) containing perfluoro-

crown-ethers (PFCE) have led to direct tracking and quantification of exogenously labeled cell

populations [5, 6, 7, 8] with 19F magnetic resonance imaging (MRI).

Despite the implementation of 19F MRI early on in the development of MRI, exploitation

efforts had languished until recent years [5, 6, 9, 10]. The resurgence of interest in 19F imaging

arose further to initiatives in molecular imaging, and capitalized on the exogenously injected

fluorine’s 100% abundance, and the high relative sensitivity and contrast with respect to the
1H nucleus. The lack of endogenous fluorine provides fluorinated labels an added advantage as

tracking agents. Consequently, the technique has found applicability in cellular labeling and

tracking applications in vivo [5, 11], with potential for translational value [12].

Furthermore, prior applications were confined to either direct injections of neural SCs [13],

immune cells [6, 7, 9], hematopoietic SCs [14], or on direct intravascular administrations of

NP emulsions [15, 16, 17, 18, 19, 11]. Correspondingly, there have been no prior reported 19F

MRI preclinical applications in normal or infarcted hearts using exogenously administered,

labeled progenitor SCs, while direct applications of other types of SCs in the rodent heart have

been limited [14].

Prior efforts attempted to optimize fluorine acquisitions in terms of speed, evoked MR sig-

nal, and cellular detectability [11], by focusing on spectroscopy [17, 18, 19] or on dedicated

pulse sequences [20–26], and by selecting imaging parameters that elicited maximum signal

responses, despite the prohibitively long acquisition times. To our knowledge, there is no prior
19F MRI study on the use of labeled cardiac progenitor cells (CPCs) (previously used to show

efficacy of regeneration and cardiac functional improvements [27]). Certainly, lacking are also

detailed relaxometric studies in these cells post-labeling.

We present a comprehensive methodology that applies 19F MRI aiming to achieve: a) fast

imaging of PFCE-labeled CPCs within clinically relevant times (of the order of a few minutes)

Murine cardiac19F MRI/MRS of labeled stem cells and macrophages

PLOS ONE | https://doi.org/10.1371/journal.pone.0190558 January 11, 2018 2 / 21

090532/Z/09/Z), and British Heart Foundation

(BHF) grant FS/11/50/29038 (JS). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: I would also like to

respectfully indicate that I am currently affiliated

with Chi Biomedical Ltd. (since my departure from

U. Oxford and UK on 7/8/17). However, the

presented work in this manuscript was completed

during the period of July 2015-June 2017 at the U.

Oxford during my employment at U. Oxford as a

Marie-Sklodowska Curie fellow. Correspondingly,

there are no issues relevant to funding or

competing interests. Chi Biomedical has been in a

financial dormant status for a number of years and

despite its viable legal status, it has been financially

inactive. Correspondingly, there was no salary

contributed by Chi Biomedical directors/staff, and

for this submitted work there are no declarations

pertaining to employment, consultancy, patents,

products in development, or marketed products.

The current commercial affiliation of the lead

author [CC] commercial affiliation does not alter

the adherence of all the authors/coauthors of this

work to PLOS ONE policies on sharing data and

materials.

https://doi.org/10.1371/journal.pone.0190558


in the in vivo mouse, b) determination of detection limits of label cellular load with clinically

applicable surface and volume coils, and c) spectroscopy and image-based quantification vali-

dated in phantoms, CPCs, labeled bone-marrow-derived murine macrophages, and in the

post-mortem mouse. The stated objectives were investigated based on theoretical and simula-

tion comparisons of pulse sequence performances, in vitro relaxation value characterization of

PFCE-labeled CPCs, experimental concentration validations, and post-mortem and in vivo

applicability of the imaging approach in the cardiac and skeletal muscles of the C57BL/6

mouse.

Materials and methods

Animal ethics

All procedures were in accordance with the Home Office (UK) guidelines under The Animals

(Scientific Procedures) Act, 1986 (Permit Number: PIL30/3322), the European Animal

Research Directive, and with local institutional guidelines. All surgery and live animal imaging

was performed under isoflurane (ISO) anesthesia, and all efforts were made to minimize suf-

fering. Animals were euthanized using cervical dislocation.

Cardiac progenitor stem cells and bone marrow-derived macrophages

Nanoparticle synthesis. Particles were synthesized in accordance to previously published

methodologies [7]. All particles were then extensively washed with distilled water and lyophi-

lized for 2–3 d. For the cell labeling, nanoparticles were synthesized with the addition of fluo-

rescent dye (Atto647, ATTO-TEC, GmbH, Germany) to the organic phase. Prior 19F Magnetic

Resonance Spectroscopy (MRS) characterization of PFCE NP labels confirmed the presence of

a single spectral peak at -91.8 ppm (with respect to CFCl3) [11].

Cell isolation. Cardiac progenitor cells (CPCs, comprising either cardiosphere-derived

(CDC) or collagenase-trypsin (CT)) were isolated from adult, C57BL/6, green fluorescent pro-

tein (GFP) positive or GFP negative, mouse atria, using standard protocols [28], and were

maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) media (Thermo Fisher Scien-

tific, UK). CDCs have been previously used to show efficacy of regeneration and cardiac func-

tional improvements [27], while CTs have been recently shown to express similar cardiac

phenotypic characteristics to CDCs [29]. Additionally, bone marrow-derived macrophages

were cultured from bone marrow harvested from C57BL/6 mouse hindlimbs. Bone marrow

cells were washed with phosphate buffer solution (PBS, Sigma-Aldrich, UK), passed through a

cell strainer to produce a single cell suspension, and differentiated for a week in petri-dishes in

Dulbecco’s modified eagle’s medium (DMEM) that contained L-cell conditioned media. At

that point, adherent bone-marrow derived macrophages were harvested. They were subse-

quently washed with PBS and were re-suspended in pellets in improved minimal essential

medium (OPTIMEM).

Cellular culture and labeling. Cells were plated in IMDM solutions and incubated with

PLGA-PFCE-Atto647-containing NPs for approximately 24 h before isolation and pelleting.

Addition of a fluorescent dye (Atto647) allowed independent flow cytometry and confocal

microscopy validation studies. Cell pellet suspensions (CPCs or macrophages) were main-

tained in media (IMDM or OPTIMEM) and were subsequently used for MRI, flow cytometry,

or confocal microscopy, after fixation in 2% methanol-free paraformaldehyde solution

(Thermo Scientific Pierce, UK) mixed with PBS (1:7 v/v).

FuGENE labeling. The commercially available DNA transfection agent FuGENE (Pro-

mega, Madison, WI, USA) was used to label the CPCs (both CT and CDC cells in separate cul-

tures) with the NPs (using 25 μl of FuGENE in ~106 cells). FuGENE was pre-mixed and
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incubated with the NPs before cell transfection for ~20 min. Cells were then labeled overnight

[30].

Confirmation of cellular label uptake and viability. Successful labeling was confirmed

with a CyAn ADP flow cytometer (Beckman Coulter, USA) using control and labeled cell sam-

ples. Cellular viability was determined with the Trypan Blue exclusion assay, directly after

labeling, and at the completion of MRI studies (wherever applicable), using a cell counter.

High-content epifluorescence imaging. Live cells were plated in 6-well plates and stained

with Calcein (CellTrace™ Calcein Red-Orange, ThermoFisher Scientific, UK) and Hoechst

(ThermoFisher Scientific, UK) for cytoplasmic and nuclear high-content imaging (Operetta,

Perkin-Elmer, UK). Fluorescence was assessed based on Atto647. The Operetta’s Harmony

software was used for image analyses. Imaging was based on a randomized field analysis meth-

odology that covered each of the studied wells.

MRI/MRS. All experiments were conducted on a 9.4 T Agilent scanner equipped with a

DirectDrive console and a 1000 mT/m actively shielded gradient set (internal diameter = 60

mm) (Agilent Technologies, USA). For comparative tests (pulse sequences, radiofrequency

(RF) coils), the same acquisition parameters and total acquisition times were used.

Aqueous and cellular phantoms. Twenty-four cylindrical (15–50 ml) phantoms (1–100

mM), containing trifluoro-acetic acid (TFA), PFCE NPs, and labeled CPCs or macrophages,

were used to test RF coil responses at 9.4 T (without, and with the use of adiabatic excitations),

determine detection limits (TFA, NP solutions mixed in water and IMDM, labeled cells), and

for image- and spectroscopy-based quantification.

RF coils. Coils comprising an eight-rung, low-pass, quadrature birdcage (diameter = 34

mm), an 40×20 mm2 butterfly constructed on a 28 mm diameter former, and a 5 (diameter) ×8

(length) mm2 solenoid prototypes, were constructed. All coils were tuned at 375.88 MHz (fluo-

rine resonance), and were matched to 50 O. The broad frequency response of the coils (3dB

range spanning a few tens of kHz) permitted imaging on both the 1H and 19F nuclei.

Spoiled gradient echo (SPGR) imaging allowed surface coil comparisons (without, and with

the use of adiabatic excitation, as described below), using aqueous TFA phantoms (range of

concentrations = 0.5–100 mM) with the following imaging parameters: TR = 6.3 ms, TE = 3.2

ms, flip angles = 50˚ (non-adiabatic), and 190˚ and 205˚ (adiabatic) (with comparable power

settings for non-adiabatic and adiabatic acquisitions), NEX = 8, BW = 6 kHz, field-of-view

(FOV) = 40×40 mm2, slice thicknesses (ST) = 2 mm, matrix = 32×32. Mid-axial profiles were

obtained from reconstructed images and compared.

The butterfly coil was used for murine studies owing to its increased B1 detection sensitiv-

ity. The increased B1 homogeneity of the birdcage and solenoid coils allowed the a) assessment

of the minimum detectable number of 19F atoms (and the fluorine content of the PLGA-NPs),

and b) the estimation of relaxation times.

Adiabatic excitation. Phantom studies (six Eppendorf vials containing aqueous TFA

solutions at 5–10 mM) were conducted without (Gaussian RF pulse excitation) and with the

use of hyperbolic adiabatic full-passage (HS-AFP) RF pulses [31] using the butterfly coils to

determine ultimate concentration detection limits and RF B1 penetration. Since HS-AFP

pulses are non-ideal in achieving proper slice selection, three-dimensional (3D) adiabatic

acquisitions were performed, whereby excitation of a thick tissue slab was accompanied by

imaging of only a relatively smaller tissue area (relevant to the injected labeled CPCs).

Adiabatic pulse parameters were chosen appropriately to achieve adiabaticity, yet maintain-

ing power to comparable levels as those used for Gaussian (non-adiabatic) excitations [31] (1H

MRI: TR/TE = 13.6/1.72 ms, flip angle = 50˚ (versus 180˚ for HS-AFP adiabatic excitation),

NEX = 16, BW = 50 kHz, FOV = 40×40 mm2, ST = 3 mm, matrix = 128×128; 19F MRI: TR/

TE = 8.7/4.4 ms, flip angle = 50˚ or 190/205˚ for HS-AFP, NEX = 8 or 1248, BW = 4 or 8 kHz,

Murine cardiac19F MRI/MRS of labeled stem cells and macrophages

PLOS ONE | https://doi.org/10.1371/journal.pone.0190558 January 11, 2018 4 / 21

https://doi.org/10.1371/journal.pone.0190558


FOV = 40×40 mm2, ST = 2 mm, matrix = 32×32, BW HS-AFP = 1.35 kHz, resolution = 0.4 μs,

cutoff = 2 or 4%).

Simulations. SPGR, rapid acquisition with relaxation enhancement (RARE), and fid/

echo steady state free precession (fid-SSFP, echo-SSFP) sequences were simulated in accor-

dance with steady-state, closed-form, signal and signal-to-noise ratio (SNR) equation formula-

tions, as described in the S1 Appendix. Parametric SNR maps were generated in MATLAB

(Version 2010b, Mathworks, Natick, MA, USA) using typical 19F relaxation times and imaging

parameters for TFA solutions and CPCs, as these were determined in this study. Estimated

SNR values for SPGR and SSFP sequences were normalized to the maximum signal over the

entire parametric space. SNR normalization in the case of RARE adhered to the recent analysis

presented by Mastropietro et al. [25].

Pulse sequence comparison. Extensive prior in vivo preclinical work has favored RARE

imaging [25], and more recently bSSFP [24]. The choice of the optimal pulse sequence for 19F

MRI was based on experimental work using the homogeneous birdcage coil by comparing the

SNR responses of SPGR, RARE, and SSFP sequences, based on 2D acquisitions of a 100 mM

TFA solution. The imaging parameters were: (SPGR/SSFP: TR/TE = 6.7 and 6.8/3.4 ms, flip

angle = 50/30˚, NEX = 988/580, 32×32, FOV = 40×40 mm2, ST = 2 mm, BW = 6 kHz, and

RARE: TR/TE = 1100/10.5 ms. NEX = 96, NEX = 1024, 32×32, ETL = 32, FOV = 40×40 mm2,

ST = 2 mm, BW = 6 kHz, total acquisition time = 3.5 min).

SNR maps were generated by dividing the reconstructed images by the noise SD, estimated

from background regions using standard methodologies. Given the relatively large SNR values

(>10) of reconstructed images for cell and phantom studies, no bias corrections for the magni-

tude reconstruction were applied.

Relaxation measurements. To allow SNR optimization and direct image-based quantifi-

cation, T1 and T2 measurements of aqueous TFA, NaF, NP solutions, and labeled (without and

with the use of FuGENE) CPCs, were conducted with the birdcage/solenoid coils using con-

ventional inversion recovery and Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences, with

the following imaging parameters: a) T1: TR = 5–8 s, 512 points, NEX = 2–16, BW = 4 kHz; b)

T2: TR = 5 s, TE = 2 ms, 2048 points, NEX = 8, BW = 4 kHz.

For the relaxation measurements of CTs, cells were suspended in Eppendorf tubes and

were maintained in IMDM media in ice-cold baths at 4˚C and under normoxic conditions

(normal oxygen tension). The tubes were then allowed to reach room temperature before mea-

surements were conducted. The partial pressures of oxygen (pO2) of the tested solutions were

not monitored during experiments.

In comparison to the T1 values, the T2 values of labeled CT cells were not quantified owing

to the low 19F signal elicited from these labeled cells, often leading to exceedingly long acquisi-

tion times using nonlocalized spectroscopy that may lead to compromised oxygenation status

and viability.
19F detection threshold in TFA and nanoparticle solutions. To assess the MRI detection

threshold and the optimal labeling dose (SPGR vs. SSFP), a a) TFA, and b) a phantom with

PFCE label solutions were imaged with the birdcage coil using conventional 1H SPGR (TR/

TE = 4.9/2.47ms, flip angles = 20˚, NEX = 1, BW = 50 kHz, FOV = 40×40 mm2, ST = 2 mm,

matrix = 128×128) and 19F SPGR and SSFP sequences (TR/TE = 4.9–6.37/2.47–3.2ms, flip

angles = 50–60˚, NEX = 512, BW = 4–6 kHz, FOV = 40×40 or 60×60 mm2, ST = 2 mm,

matrix = 32×32). Both phantoms were constructed with 0.7 and 1.7 ml Eppendorf tubes con-

taining: a) one 100 mM TFA reference standard (middle vial) and five TFA solutions (1–100

mM), b) a 25 mM TFA reference standard (middle vial) and six PLGA-PFCE solutions at dif-

ferent NP concentrations (2.5–10 mg/ml, or equivalently, 0.32–3.2 mM).
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Detection threshold in labeled cells in vitro. Multiple CT cells (1, 0.75, 0.5, 0.25 million

cells) were seeded, and labeled with FuGENE with NPs at a concentration of 10 mg/ml/million

cells. The cells were subsequently suspended, maintained in IMDM media, and placed in mul-

tiple Eppendorf tubes for imaging using SPGR with the butterfly coil (1H: TR/TE = 62.34 ms,

flip angle = 50˚, NEX = 2, BW = 20 kHz, FOV = 40×40 mm2, slice thickness = 2 mm, 8 slices,

matrix = 128×128; 19F: TR/TE = 8.54/4.29ms, flip angle = 180˚, NEX = 1024, BW = 6 kHz,

FOV = 40×40 mm2, slice thickness = 20 mm, matrix = 32×32, pulse width (HS-AFP) = 3 ms,

BW = 1.35 kHz, resolution = 4 μs, and 4% cutoff. For MRS, the solenoid acquisitions used the

following parameters: TR = 500 ms, 512 points, NEX = 256, BW = 20 kHz.

MRS and image-based concentration quantification. Implementation was achieved in

phantom TFA solutions, in labeled CPCs, and in the post-mortem mouse following intracar-

dial administration of CPCs using a setup that could be used in vivo.

In vitro quantification: Direct MRS and SPGR-image-based quantification was imple-

mented using the birdcage coil and the multivial TFA phantom described above, based on

region-of-interest (ROI) estimation. A reference calibration curve was generated with four

TFA solutions (25–100 mM), whereby signals were estimated in a blinded fashion and refer-

enced against a standard of known concentration (middle vial) (19F: TR/TE = 6.21/1.75, flip

angle = 20˚, NEX = 256, BW = 8 kHz, FOV = 40×40 mm2, ST = 5 mm, axial, matrix = 32×32).

Labeled CPCs: This effort was extended in CPCs (cell densities of 0.5, 0.75, 1, and 2 million)

and in macrophages (cell densities ~2–6 million) using the solenoid (both cell types) and but-

terfly (CPCs using adiabatic excitation) coils. Imaging and quantification was achieved with

MRS/MRI (1H: TR/TE = 4.9/2.47 ms, flip angle = 20˚, NEX = 1, BW = 50 kHz, FOV = 40×40

mm2, ST = 15 mm, coronal, matrix = 128×128; 19F (SPGR): TR/TE = 3.46 or 11.71/1.75 or

5.87 ms, flip angle = 50˚ or 227.5˚, NEX = 2048, BW = 10 kHz, FOV = 40×40 mm2, ST = 15

mm, coronal, matrix = 32×32).

To facilitate extension of the methodology to the post-mortem mouse, a 3D SPGR acquisi-

tion protocol was successfully tested in vitro (flip angle = 200˚) using the butterfly coil and ref-

erence (800k FuGENE-labeled CPCs) and test (~1.3 million CPCs before their injection—

please see (c) below) Eppendorf vials. The two vials were positioned on the surface of the but-

terfly coil at comparable positions to those used in the post-mortem case. T1 and T2 correction

was achieved based on fully relaxed MRS or the steady-state, closed form, signal equations of

SPGR and echo-SSFP, in accordance to Eqs 8 and 16 (S1 Appendix). CPC cell numbers and
19F content from samples with unknown content were extrapolated based on known cell den-

sities of reference standards (validated using Trypan Blue), against a 25 mM TFA phantom.

Post-mortem mouse: For these tests, the butterfly coil was used. The reference vial was posi-

tioned on the anterior thorax. The cell pellet position was approximately at the same level

(along the inferior-superior direction of the animal, inclined ~-45˚) as the injection site loca-

tion. Estimation of the injected cell number was based on the ratio of the total 19F MRI signal

of the injected cells (upper mid-ventricular myocardium) and the reference CPC signal,

obtained using the 3D SPGR adiabatic excitation (optimized in vitro—see (b) above) using a

220˚ flip angle.

Post-mortem and in vivo animal models—Skeletal and cardiac muscle applications.

To assess the feasibility and reproducibility of the imaging protocol, labeled cells (~1.5–2.5 mil-

lion suspended in ~50–100 μl of IMDM media) were injected in the femoral areas of mouse

hindlimbs (n = 3), and in the anterior left ventricular (LV) muscle post-mortem (n = 3)

(mouse strains included PHD3f/f, PHD2flox/flox, and C57BL/6). The mice were then posi-

tioned on the butterfly coil and imaged. 1H images were acquired with the 3D SPGR sequence

using TR = 2.49 ms, TE = 1.26 ms, flip angle = 20˚, NEX = 3, BW = 50–150 kHz, FOV = 40×40

mm2, matrix = 192×192×192, in 4.36 min. For 19F MRI (3D-SPGR) the acquisition parameters
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were: TR/TE = 5.64–2.84ms, flip angles = 20˚, NEX = 48, BW = 6 kHz, FOV = 40×40 mm2,

matrix = 32×32×32, in a total of 4.37 min.

In vivo cardiac muscle applications. Labeled cells (~1.5 million suspended in ~50 μl of

IMDM media) were injected in two C57BL/6J mice (male weight range = 20–30 g) that under-

went thoracotomy, followed by recovery. Induction was achieved using 4% ISO, and the mice

were maintained with 1.5–2.0% ISO, mixed in 100% oxygen.

The mice were subsequently imaged. All animals were placed on a specially constructed cra-

dle, and were allowed to breathe freely throughout the study. A homeostatically controlled

hot-air system was used to maintain mouse body temperature at approximately 37˚C. Electro-

cardiographic (ECG) and breathing rates were monitored using a gating system. Heart rates

were maintained at 300–500 beats/min.

Ungated/gated, non-localized 19F MRS of the mouse thorax were acquired (following shim-

ming at the 1H nucleus) first confirming the presence and resonance of PLGA-NPs

(TR = 800–1200 ms, flip angle = 90˚, NEX = 32–128, 512 points, BW = 20 kHz). 3D cardiac 1H

images were then acquired with ungated 3D SPGR (TR/TE = 1–2/2–2.5 ms, flip angle = 10–

50˚, NEX = 32–128, FOV = 40×40×40 mm3, matrix = 128×128×128, BW = 100 kHz) and stan-

dard, gated, 2D segmented k-space pulse sequences). Ungated 2D or 3D 19F MRI were subse-

quently acquired (that matched exactly the spatial orientation and FOV of the 1H MRI) of the

mouse thorax (TR/TE = 9/1 or 16.5/8.3ms, flip angle = 50˚ or 20–30˚, NEX = 768 or 12–32,

BW = 2 kHz, FOV = 40×40 mm2or 40×40×40 mm3, matrix = 128×128 or 32×32×32). The

receiver bandwidths of 19F MRI ranged between 1.5–2 kHz and allowed spectral selection of

the NP vs. ISO peaks. Total 19F MRI signals and maximum SNR values were estimated from

the focal areas of hyper-enhancement following labeled CPC cardiac injections in mice (two

post-mortem and two in vivo).

Histology. Post-mortem histological evaluation was performed in mouse hearts on the

same day following cellular implantation to confirm CPC localization. In brief, the excised

hearts were dehydrated and fixed (in a 4% methanol-free formaldehyde solution), processed,

embedded in paraffin, and stored. Serial transverse paraffin sections were subsequently cut,

processed, and imaged on a Leica bright-field optical microscope,

Image processing. 19F images were processed in MATLAB (Mathworks, Natick, MA,

USA) or ImageJ (NIH, Bethesda, MD, USA), and MRS in CSX (Johns Hopkins, USA) and IDL

(Harris Geospatial, USA). The overlay of the 19F and 1H images was achieved using up-inter-

polation of 19F MRI using bicubic splines followed by merging (at an opacity of 50%) in Ima-

geJ. Flow cytometric data processing and exporting was achieved using FlowJo (FlowJo LLC,

Version 10, Ashland, OR, USA).

The field uniformity of the birdcage coil was assessed following high-order shimming (B0

homogeneity linewidths of ~30–70 Hz), based on the signal variability (coefficient of variation

[CV] = SD/mean) from multiple one-dimensional (1D) profiles spanning the central regions

of multiple 2D images (along both image dimensions), acquired using high-concentration

TFA phantoms. SNR was estimated as the mean intensity from selected ROIs divided by the

background standard deviation.

Statistical analyses. All results are reported as mean±standard deviation (SD). Two-tailed

Student’s t-tests, were also used (XLSTAT, Addinsoft, New York) to determine whether label-

ing led to significant changes in transverse relaxation times.

Results

Highest field uniformity was achieved by the birdcage coil that yielded a coefficient of B1 var-

iation in the central 25×32×32 mm3 region of the coil of 2.5% (Fig 1). Additionally, the

Murine cardiac19F MRI/MRS of labeled stem cells and macrophages
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butterfly yielded the highest SNR, while increased field penetration was noted when adiabatic

(HS-AFP) excitation was used. Successful implementation of the adiabatic pulses is also dem-

onstrated with 1H and 19F MRI of the multivial sensitivity phantom using the butterfly coil,

indicating the ability to image 19F concentrations of aqueous TFA solutions down to approxi-

mately 1 mM, at increased depths of penetration compared to nonadiabatic imaging (Fig

1C–1E).

Normalized parametric SNR maps of the flip angle and ETL versus the normalized TR/T1

values for SPGR, RARE, and SSFP imaging, are shown in Fig 2, depicting the zones from

which acquisition parameters were selected for fast imaging.

To allow a direct, experimental comparison of SPGR, RARE, and SSFP sequences, solution

phantoms (75–100 mM TFA) were used to perform a direct comparison using the homoge-

neous birdcage coil (Fig 3). Maximum SNR values (100 mM TFA) are elicited by the fid-SSFP

sequence (139±10) that outperformed both the SPGR (106±7) and RARE (48±4) sequences.

Based on TFA phantom imaging, SSFP achieved the highest mean SNR (1.3- and 2.9-fold

higher than SPGR and RARE) (Fig 3).

T1/T2 relaxation values for TFA, NaF, NP solutions, and labeled/FuGENE labeled CT cells

were 2.73±0.06/2.36±0.16 s, 1.54±0.07/1.11±0.22 s, 0.77±0.02/0.36±0.03 s, 1.32±0.9 s (T1), and

1.36 ± 0.09 / 0.53 ± 0.07 s, respectively (Table 1). T2 values in labeled cells could not be

Fig 1. Axial 19F MRI images of phantoms using a surface coil. (A) butterfly without, and (B) with the use of

adiabatic hyperbolic secant adiabatic full passage (HS-AFP) using the spoiled gradient echo sequence (SPGR) and a

100 mM TFA phantom. Profiles depict signal intensities versus pixel values along the oblique orientation defined in A.

(C-E) Corresponding axial images of a multivial TFA phantom containing 5 mM TFA solutions. (C) Axial 1H image

using the butterfly coil without, and (D) with HS-AFP adiabatic excitation, and (E) axial 19F with adiabatic excitation.

The artifact observed in the right part of the phantom is attributed to fact that the adiabatic condition is not fully met

owing to the butterfly’s B1 assymetry (driving cables).

https://doi.org/10.1371/journal.pone.0190558.g001
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measured primarily owing to the low 19F signal of labeled cells, and the prohibitively long mea-

surement times using CPMG (that would impose cellular viability risks). Labeling led to signif-

icant increases in longitudinal relaxation values in CPCs, compared to NPs in media solutions

(p<0.00047 (labeled), p<0.001 (FuGENE-labeled), α = 5%).

Fig 2. Pulse sequence simulations in parametric space. (A) Theoretical normalized parametric signal-to-noise (SNR)

plots for labeled CT cells (T1 = 1.32 s and T2 = 0.05 s) for a: (A) SPGR sequence (flip angle versus TR/T1), (B) a rapid

acquisition with relaxation enhancement (RARE) sequence [echo train length (ETL) versus TR/T1 with flip-back], (C,

D) balanced steady state free precession [free induction decay (fSSFP) and echo-SSFP (eSSFP)] (flip angle versus TR/

T1 without sign alteration). Optimal and selected acquisition zones are indicated. Optimized labeled cell imaging was

based on the generation of the respective plots that used the estimated relaxation values as listed in Table 1. All

simulations assumed a total imaging acquisition of 4.5 min, NEX = 256, an acquisition matrix of 32×32, and an

acquisition bandwidth of 4 kHz.

https://doi.org/10.1371/journal.pone.0190558.g002

Fig 3. Experimental pulse sequence comparison in phantoms. Pulse sequence SNR comparison using the birdcage

coil based on two-dimensional (2D) acquisitions using a 100 mM TFA phantom in the same total imaging acquisition

time. SNR values lied within the set scale bar shown on the right.

https://doi.org/10.1371/journal.pone.0190558.g003
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Based on phantom imaging and MRS, the minimum detectable NP dose was 2.5 mg/ml

(0.8mM) (birdcage) (Fig 4). As before, superior SNR performance is demonstrated by echo-

SSFP (compared to SPGR) in 19F imaging of the NP solutions, whereas lack of substantially

improved signals is also documented for NP loading beyond 7.5 mg/ml for the studied CPCs

(Fig 4E).

Fig 5 presents flow cytometry results in justification of the successful labeling protocol.

Confocal microscopy images of control and labeled CT cells are shown in (Fig 5A–5F), in justi-

fication of the lower sensitivity of detection of the labeled population by confocal microscopy

(and correspondingly by MRI). The estimated percentage of viable labeled cells using confocal

microscopy was 10% using simple labeling, and significantly increased upon use of FuGENE

to 80% or higher [30]. A significant labeling heterogeneity was also noted for CPCs (Fig 5G–

5I). Additionally, MRS/MRI allowed imaging and quantification of CPC NP concentrations

(fully relaxed MRS for a label loading concentration of 7.5–10 mg/ml/million cells) (Fig 5J–5L)

of the order of 0.3–0.5 mM (solenoid).

Image-based quantification (SPGR images, error of� 3%, 10–100 mM) (Fig 6A–6C) con-

firmed linear signal-concentration dependence in TFA solutions (Actual concentration

[mM] = 1.11×Estimated concentration [mM]-5.5, R2 = 0.997), with detection limits for the

butterfly/birdcage equal to ~0.5 and 10 mM in imaging acquisitions that spanned ~3 min). Fig

6F–6H confirmed that the cellular load detection threshold for the butterfly coil was approxi-

mately 0.5 million labeled CPCs (without FuGENE) (Table 2) using the imaging protocol.

More importantly, the ability to conduct in vitro, image-based cell quantification was con-

firmed using TFA phantoms (Fig 6A and 6B), labeled CPC (Fig 6E) and macrophage cells

(Actual concentration [mM] = 0.17×Estimated concentration [mM]+0.03, R2 = 0.99), using

fast imaging and MRS. The effort was extended successfully in the post-mortem mouse using

the butterfly coil.

The applicability of the presented methodologies and optimization strategies for in vivo

imaging are justified by the fast, post-mortem imaging of injected labeled CPCs in cardiac

muscle (in vivo and post-mortem) and femoral areas (post-mortem) of the C57BL/6 mouse

Table 1. In vitro relaxation values of fluorinated compounds. Summary of 19F T1 and T2 relaxation values in phantoms and in labeled cells (immune, neural stem, and

cardiac progenitor) from this and prior published studies. Significantly increased T1 values (p<0.00047 (labeled), p<0.001 (FuGENE-labeled), α = 5%) were measured for

the NP-labeled cells compared to NPs in solution.

Compound T1 (ms) T2 (ms) Field strength (T) Comment Reference

NP (PCE) 1010 526 1.5 PFCE—Gd in lipid monolayer surrounding NP Neubauer et al. 2008 [32]

NP (Gd) 238 63

NP (PCE) 990 238 4.7

NP-Gd 500 24

NP (PCE) 763.3 71 11.7

NP-Gd 625 11

PFCE in dendritic cells 950±30 50±8 7 MRSI—birdcage/solenoid 15 mm in diameter Bonetto et al. 2012 [33]

Saline 1400±30 440±25 9.4 18 mm surface adiabatic excitation van Heeswijk 2012 [16]

PCE in venous blood (in vitro) 1350±40 25±2

Free PFPE 280±20 153±4 11.7 Surface coils 9–25 mm diameter Boehm-Sturm et al. 2011 [13]

Labeled human neural stem cells 380±4 68±3

TFA 2728±16 2365±18 9.4 Birdcage/Solenoid This study

PLGA-PFCE (solution) 773±16 360±34

NP labeled CT cells 1324±89 -

NP FuGENE-labeled CT cells 1360±95 533±70

https://doi.org/10.1371/journal.pone.0190558.t001
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[37] (Fig 7). Reported findings were confirmed with histology, whereby cellular injection local-

ization was identified using bright field histological imaging (Fig 7).

From the quantification viewpoint, the in vitro measurement using 19F MRI (based on the

labeled CPC reference standard) estimated the number of labeled cells as 1.26 million based on

the labeled CPC reference standard (compared to the actual number of 1.3 million estimated

based on Trypan Blue). Only 1 million cells were quantified from the post-mortem images.

Fig 4. 19F MRI validation in NP solution phantoms. (A) Non-selective 19F magnitude spectrum of NP solutions in

the presence of a 25 mM TFA phantom (as shown in B). (B) 1H and 19F MRI of NP phantoms using (C) the SPGR, and

(D) the echo-SSFP sequences. The TFA phantom does not appear in 19F MRI (C, D) since broadband excitation/

narrowband receiver detection was used centered at the NP resonance. (E) Variation of the mean 19F SNR from

phantom solutions in (C, D) above for the SPGR and SSFP sequences for different NP concentrations.

https://doi.org/10.1371/journal.pone.0190558.g004
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Fig 5. CPC label confirmation using flow cytometry and in vitro 19F MRI/MRS validation. (A, B, D, E) Ungated

scatter plots of forward (FSC) and side scatter (SSC, singlets vs. doublets) and (C, F) gated, overlapped flow cytometry

histograms of control (C) and labeled CT cells (F) confirming cellular uptake. Applied gates are indicated in the scatter

plots as highlighted regions-of-interest. (G, H) Confocal microscopy images of PFCE labelled (G) CDC GFP+ (calcein

[gray]), (H) Atto647 (red), and (I) merged calcein/Atto647 with a zoomed inlet indicating the heterogenous distribution

of cellular label uptake. (J, K) Corresponding 19F and 1H-19F merged MRI of labeled CT cells (~4.5 million) obtained

Murine cardiac19F MRI/MRS of labeled stem cells and macrophages
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The discrepancy is attributed to injection losses (resuspension fluid loss before injection, and

other injection losses).

From the post-mortem and in vivo imaging viewpoints, the total 19F signal of injected

CPCs in mice (post-mortem vs. in vivo) yielded a CV of 24%, whereas the maximum SNR val-

ues were comparable (10±1.8, range = 8–11.8). The reported variability is a result of the

expected discrepancies in the injected number of cells and injection losses in the four studied

cases.

Discussion

Despite the technical, biological, and imaging advances and development of 19F MRI [5, 6, 9,

10, 15, 33, 38] and cellular tracking during the last decade [39, 12, 13, 24, 35, 40], no prior

imaging and quantification work focused on CPCs [12, 13, 36].

While Faber and Schmid [26] have recently reported theoretical and experimental compari-

sons of 19F pulse imaging strategies, the approach adopted herein is mathematically rigorous

and analytic, and includes reference to the explicit mathematical formulations, allowing theo-

retical comparison of SSFP, SPGR, and RARE sequences. Additionally, the 2D/3D comparison

is also formulated mathematically, thereby justifying the efficiency and expected SNR

improvements in 3D (as tabulated in Faber and Schmid [26]). Additionally, there are impor-

tant practical implications relevant to the translatability and implementation of the bSSFP

sequence for cardiac 19F MRI that have not been addressed previously as they pertain to arti-

facts and SNR performance for exogenously administered SCs in the in vivo murine beating

heart, while the explicit mathematical formulation for the signal of the SSFP sequence (fid vs.

echo) is lacking (useful and relevant for quantification). Furthermore, there have been no

prior direct, experimental comparisons of image SNR under controlled phantom conditions

for SPGR, SSFP, and RARE. Prior publications on the performance of SPGR imaging in 19F

MRI, including the recent work by Faber and Schmid [26], have shown merit only for Ernst

angle imaging. Nevertheless, in this work, the inefficient aspects of (slow) Ernst angle and the

beneficial aspects of fast SC imaging are emphasized using SPGR.

Technical development of cardiac 19F MRI using exogenously administered SCs has been

lacking, while optimizations of MR imaging acquisitions in association with SCs have been

limited [26].

More importantly, imaging times for adopted methodologies in most applications in vivo

were excessively long (often > 60 min) [36] due to the low cellular label concentration and the

choice of the imaging sequences, often becoming prohibitive for translational work. Interest-

ingly, recent implementations of compressed sensing in 19F MRI [41, 42] have led to reduced

imaging times, albeit limited by the low SNR of multinuclear in vivo studies.

We have presented the first in vivo cardiac 19F MRI data from labeled CPCs injected in the

murine myocardium. We have demonstrated feasibility and reproducibility of fast (of the

order of a few minutes), in vivo cardiac 19F-MRI of exogenously administered CPCs in the

murine heart using SPGR/SSFP sequences.

The imaging protocol can be easily and readily adopted for any other labeling agent in pre-

clinical work, and has potential for use in translational work. Additionally, the presented theo-

retical and experimental schemes are label-independent and can be readily applied to any

other fluorinated compounds.

using the solenoid coil showing excellent 19F signal localization. (L) 19F magnitude spectrum in labeled CTs using the

solenoid coil (line broadening = 30 Hz, zero reference frequency set to the NP-labeled CT cell resonance).

https://doi.org/10.1371/journal.pone.0190558.g005
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Fig 6. 19F MRI-based quantification in solutions and CPCs and determination of cellular detectability limit. 19F

MR spectroscopy, image-based quantification, and sensitivity detection limits: (A, B) Axial 1H and 19F images from

TFA phantoms of different concentrations (25–100 mM), and images of a multivial sensitivity phantom containing

0.25, 0.5, 0.75, and 1 million labeled/transfected CT cells suspended in media for sensitivity limit detection (cell pellets

resided at the bottom of the Eppendorf tubes) using the butterfly coil. (C) 1H imaging indicates spatial B1 fall off-effects

(laterally and with depth, non-adiabatic excitation). 19F imaging indicates a minimum detectable cellular load of

approximately 500k cells in a total acquisition of 4.4 min (white arrows). The 19F MRI in (D) shows cells over a slice

thickness of 20 mm. As shown by the inserted schematic, the 1H MRI in (C) shows cross-sections (from the middle of

the Eppendorf tubes), while the 19F MRI in (D) shows the hyperintense cell pellets that were sometimes slightly

displaced spatially given the tilting of some of the tubes and the dispersion of the cells on the walls of the tubes in

instances where the acquisitions were prolonged. (E) Quantification of labelled CPCs using 19F MRS (solenoid). The

linearity of the evoked fully relaxed spectral area versus cell number was independently confirmed using fast, direct,

image-based SPGR using CPCs (butterfly coil) (results not shown).

https://doi.org/10.1371/journal.pone.0190558.g006
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In contrast to imaging of nuclei other-than-protons (e.g., 23Na MRI), where the intrinsically

abundant sodium nucleus exhibits fast longitudinal relaxation (and where the optimal SNR is

elicited at the Ernst angle favoring TR�T1), 19F MRI depends on exogenously administered

NPs, emulsions, or labeled cells, with relatively long T1 values and small T2/T1 ratios. Despite

the expected maximal SNR increases for SPGR sequences at long TRs, it is recommended that

fast acquisitions are used in conjunction with averaging and with an appropriate choice of the

flip angle, based on theoretical evaluations. This study has also assessed the cellular load detec-

tion thresholds (0.5 mM for the butterfly versus 10 mM for the birdcage coil) for 19F NP labels,

based on fluorinated phantom solution comparisons and fast acquisitions of the order of a few

minutes at voxel resolutions of ~2 μl or less.

Despite recent efforts to chemically modify the T1/T2 characteristics of labeled NPs [43] to

speed up acquisitions, such approaches require complex chemical syntheses. The PLGA-PFC

NPs used in this study have elicited T1 and T2 values that are in agreement with prior reports

[36], and a T1-effect is demonstrated post-cellular loading. The inability to quantify T2 upon

cellular loading is primarily attributed to the low labeling efficiency (and hence the low 19F sig-

nal), and to the intracellular endosomal/vesicular packaging of the NP label leading to a rela-

tively short transverse relaxation times (of the order of a few ms) [39, 36]. Correspondingly,

prolonged spectroscopic acquisition times will invariably impose additional issues in terms of

the cellular oxygenation status (oxygen tension, leading to hypoxia [41]), and altered viability,

compromising T2 estimates. Given the limited in vivo/post-mortem visibility of labeled cells

(without FuGENE), and the reported dependence of the T2 values of PFCE-NPs on i) tempera-

ture [44, 45], ii) label concentration [46], and iii) cell type, and the iv) extremely low 19F signal

of labeled cells, increased complexity and limited usefulness and consistency, are anticipated

from the measurement of these values.

Our reported relaxation values in NP solutions (T1 and T2) are smaller in value than those

recently reported by Colotti et al. [46] at 24˚C at 3T. This difference, however, is expected in

Table 2. Comparison of acquisition parameters and cell detection limits in this and prior studies. Optimized sequence parameters for the current 19F MRI study led

to fast imaging acquisitions (3–5 min) in comparison to prior published studies. The table summarizes the existing literature in reference to the total imaging time, cell

detection limit, and the ultimate detection limit for 19F signal detection (an extended version of prior published studies can be retrieved from Srinivas et al. [36]).

19F label Cell type Field strength

(T)

Voxe size

(μl)

Total imaging

(min)

Cell detection limit

(per voxel)

19F Atom detection limit/

voxel (×1016)

Reference

PLGA-PFCE Human dendriti

cells

7 2–3.5 27 <30,000 - Srinivas et al. 2010

[7]

PLGA-PFCE Human dendritic

cells

7 13 60 5000 3.5 Bonetto et al. 2012

[33]

PFCE emulsion Human SC/

progenitor

11.7 27 4 6100 3.8 Partlow et al. 2007

[9]

PFCE emulsion Murine dendritic

cells

9.4 0.1 106 106 170 Waiczies et al. 2011

[34]

PFCE emulsion Murine

macrophages

9.4 0.2–0.4 19 200 0.18 Flogel et al. 2008

[15]

PFCE emulsion Murine neural

SCs

9.4 0.3 5 140 pmol

PFCE/cell

- Ruiz-Cabello et al.

2008 [10]

PCE emulsion Dendrit c cells 9.4 0.1 70 105 100 Waiczies et al. 2013

[35]

PFC emulsion Monocytes

Macrophages

Dendritic cells

Granulocytes

9.4 0.4 32 - - Van Heeswijk et al.

2013 [18]

PLGA-PFCE (no

FuGENE)

CDC

CT

9.4 2 3–5 10400 - This study

https://doi.org/10.1371/journal.pone.0190558.t002
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Fig 7. Post-mortem and in vivo murine cardiac 19F MRI following intramyocardial CPC injections. Post-mortem

(A-D) and in vivo (E-F), merged 1H-19F images of approximately 1.5–2.5 million labeled CT cells administered in the

(A, B) femoral skeletal (axial, sagittal views; both legs were injected), (C, D) post-mortem cardiac (pseudo-short and

short-axis views, without (C) and with the anterior thorax (D)) from PHD3f/f, PHD2flox/flox, (E) ungated in vivo

cardiac (coronal) views from a C57BL/6 mouse using the butterfly coil. (F) Corresponding ungated, unlocalized 19F
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PLOS ONE | https://doi.org/10.1371/journal.pone.0190558 January 11, 2018 16 / 21

https://doi.org/10.1371/journal.pone.0190558


view of the B0-field relaxation dependence trends reported by de Vries et al. for 19F emulsions

[44].

Our successful labeling protocol was confirmed using flow cytometric and confocal micros-

copy validations. Based on validation studies presented herein, no additional benefits are

expected by increasing the label concentration beyond 7.5–10 mg/ml per million cells, given

the constancy of elicited signal responses in NP solutions using both the SPGR and SSFP

acquisitions.

The minimum cellular detectable load (no FuGENE) was determined to be approximately

500k cardiac stem cells (or equivalently~10k cells per voxel) in fast acquisitions (~3–5 min)

using the butterfly coil. This finding can be justified by the inefficient process of cellular label

uptake in these cardiac stem cells in association with their much smaller cellular size (~30 μm3

isotropic) compared to dendritic cells or macrophages. Evidently, FuGENE significantly

decreases this detection limit, thereby achieving 19F cardiac MRI [30].

Regarding quantification, we have demonstrated direct spectroscopy, and direct image-

based quantification of absolute 19F concentration in TFA solutions, in labeled CPCs and mac-

rophage cells, and injected cells post-mortem, with responses that scale linearly with increased

fluorinated label or fluorine concentrations ex vivo. The ability to conduct both 19F MRI/MRS

provides an easy/efficient methodological pathway to study focal myocardial disease.

However, unlike prior quantification studies [6, 47, 48], a major limitation of the quantita-

tive capacity of in vivo 19F MRI is the fact that it cannot be applied to CPCs given their low

and heterogeneous label uptake at insufficient levels for their MRI detection. To overcome

such a limitation, we have validated an in vitro quantification scheme (in combination with

adiabatic excitation) that can be adopted to in vivo applications, where a secondary reference

phantom containing a known number of labeled CPCs can be used.

The present study is associated with various limitations, including the focus on two particu-

lar CPC types that consist of a heterogeneous cell mixture, and their low label uptake that ulti-

mately hinders T2 measurements. Given the stringent spatial requirements of the high-field

bore system, temperature and oxygen tension effects cannot be easily monitored during relaxa-

tion measurements, or following cellular injection. Furthermore, our study has focused on

PFCE with a single resonant peak, compared to other fluorinated compounds (e.g., PFOB)

that exhibit complex, multi-peak responses.

Another major limitation is the lack of quantitative accuracy in vivo primarily owing to the

stringent time limitations for additional data acquisitions for achieving adiabaticity and B1 and

motion corrections. Even still, an additional confounding factor that may limit quantification

is the diminished viability of injected cells as a result of the hypoxic environment in which

they are injected [1]. Correspondingly, evoked 19F signal hyper-enhancements that may be

attributed to viable cells, or released NPs from lysed cells (immediately following injection, or

in tracking studies), ought to be interpreted with care. Such present the primary limitations in

translating this work to a true experimental setting in humans.

Furthermore, the spatio-temporal effects of motion on 19F cardiac MRI may need to be

addressed in more detail. However, preliminary tests with the implemented protocols indicate

lack of spatial discrepancies between ungated and gated 1H MRI scans (voxel size = 0.2 μl) in

normal mice. Correspondingly, possible motion effects between ungated and gated 19F MRI

MRS from the upper thorax showing the two isoflurane (ISO) and the labelled CT cell peaks. All 1H images were

acquired when the coil was tuned/matched at the 19F resonance. (G) Indicative optical bright field histological image

from the mouse heart in (D) above. The dotted square box indicates the area where cells were localized within the left

ventricular myocardium.

https://doi.org/10.1371/journal.pone.0190558.g007
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acquisitions are expected to be minimal, considering the large voxel (voxel volume>2 μl), and

the spatio-temporal averaging over the acquisition time intervals. Although gated cardiac 19F

scans are possible, they are prohibitively long (exceeding at least 30 min, thereby imposing

beat-to-beat variability issues) and yield inadequate image SNR responses that would disallow

NP detectability and localization.
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