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Abstract
Intracranial recordings captured from subdural electrodes in patients with drug resistant epilepsy

offer clinicians and researchers a powerful tool for examining neural activity in the human brain

with high spatial and temporal precision. There are two major challenges, however, to interpreting

these signals both within and across individuals. Anatomical distortions following implantation

make accurately identifying the electrode locations difficult. In addition, because each implant

involves a unique configuration, comparing neural activity across individuals in a standardized man-

ner has been limited to broad anatomical regions such as cortical lobes or gyri. We address these

challenges here by introducing a semi-automated method for localizing subdural electrode contacts

to the unique surface anatomy of each individual, and by using a surface-based grid of regions of

interest (ROIs) to aggregate electrode data from similar anatomical locations across individuals.

Our localization algorithm, which uses only a postoperative CT and preoperative MRI, builds upon

previous spring-based optimization approaches by introducing manually identified anchor points

directly on the brain surface to constrain the final electrode locations. This algorithm yields an

accuracy of 2 mm. Our surface-based ROI approach involves choosing a flexible number of ROIs

with different spatial resolutions. ROIs are registered across individuals to represent identical ana-

tomical locations while accounting for the unique curvature of each brain surface. This ROI based

approach therefore enables group level statistical testing from spatially precise anatomical regions.
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1 | INTRODUCTION

Intracranial EEG (iEEG) recordings using subdural and depth electrodes

are often used to evaluate candidates with Drug-resistant focal epi-

lepsy. The goal of these recordings is to identify regions of seizure

activity for possible surgical resection (Cooper, Winter, Crow, & Walter,

1965; Penfield & Jasper, 1954). As such, it is important to identify the

locations of these electrodes with high precision and accuracy. Besides

their clinical utility, iEEG recordings also offer a natural opportunity to

investigate the neural mechanisms underlying cognitive behavior, since

participants are often monitored for an extended period of time (Crone,

Boatman, Gordon, & Hao, 2001; Jacobs & Kahana, 2010; Lachaux,

Rudrauf, & Kahane, 2003; Miller, Polyn, & Kahana, 2007). The high

temporal resolution of these signals and their close proximity to the

cortical surface offer researchers a powerful approach to directly assess

neural signals underlying such behavior.

Although iEEG offers high spatial resolution, combining data across

participants without losing this precision remains an important issue in

the field. For both clinical and research purposes, comparing activity

from similar anatomical regions across participants is necessary for

making general claims about patterns of cortical activation. There are

two major challenges for making such comparisons. First, identifying

accurate electrode locations and comparing these locations to standard

models is difficult due to the swelling and brain shift experienced fol-

lowing implantation; and second, comparing activity across participants

is difficult since each participant is unique in their cortical anatomy and

in the configuration of their implanted electrodes.
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Numerous solutions addressing the challenge of electrode localiza-

tion have been set forth (Dalal et al., 2008; Dykstra et al., 2012;

Hermes, Miller, Vansteensel, & Ramsey, 2010; Pieters, Conner, & Tan-

don, 2013; Yang et al., 2012). In general, these approaches have found

success by first defining the spatial configuration of the electrodes, and

then warping the configuration so as to fit the surface anatomy deter-

mined by the preoperative MRI. Each approach fuses particular infor-

mation from multiple imaging modalities acquired at different time

points (pre-, intra-, and postoperative), including digital photography

(Mahvash et al., 2007; Pieters et al., 2013; Wellmer et al., 2002), X-ray

radiography (Miller et al., 2007), computerized tomography (CT) (Dyk-

stra et al., 2012; Grzeszczuk et al., 1992; Hermes et al., 2010; Hunter

et al., 2005; LaViolette et al., 2011a; Sebastiano et al., 2006; Tao et al.,

2009; Wang, Agrawal, Nguyen, Domocos, & Gotman, 2005; Winkler

et al., 2000), and magnetic resonance imaging (MRI) (Bootsveld et al.,

1994; Kovalev et al., 2005; Morris, O’Brien, Cook, Murphy, & Bowden,

1998; Schulze-Bonhage et al., 2002; Yang et al., 2012).

Conversely, many methods for comparing data across participants

either naively average and visualize data over broad anatomical regions

such as cortical lobes or gyri, or forego group analysis altogether for

individual participant analysis. Interestingly, functional imaging studies

(fMRI) have largely addressed this issue by comparing activity among

spatially defined voxels, standardized across participants to a template

brain (Friston et al., 1995; Friston, Worsley, Frackowiak, Mazziotta, &

Evans, 1994; Kriegeskorte, Goebel, & Bandettini, 2006; Worsley,

Evans, Marrett, & Neelin, 1992). Creating a similar system of spatially

defined regions could represent a tractable method of standardizing

and then interpreting changes in neural iEEG activity across

participants.

Here, we address these challenges by implementing a modified

algorithm for electrode localization that builds upon previous

approaches, and by creating standardized regions of interest (ROIs)

that enable across participant analysis from analogous anatomical loca-

tions. We draw upon previous approaches for localizing electrode con-

tacts by combining favorable elements into an algorithm that we

demonstrate improves localization accuracy. Specifically, we identify

electrode locations on a smoothed pial surface, defined in each partici-

pant by the preoperative MRI, using an adapted spring network optimi-

zation (Dykstra et al., 2012) guided with anchor points identified using

intra-operative photography (Dalal et al., 2008; Pieters et al., 2013;

Yang et al., 2012). We compare the accuracy of localization between

registration algorithms and confirm that the inclusion of anchor points

enables accurate electrode localization. We then address the group

level analysis problem by defining uniformly distributed ROI center

points on a standard template brain, then normalizing each participant’s

brain to the template using surface-based registration (Dykstra et al.,

2012; Fischl, Sereno, & Dale, 1999; Kadipasaoglu et al., 2014) and a

standardized mesh resampling (Saad & Reynolds, 2012). Consequently,

each ROI center has a spatially analogous location across participants

which is independent of a priori assumptions regarding function, and

we are able to aggregate electrode data into ROIs for comparison

across participants.

2 | MATERIALS AND METHODS

2.1 | Patient population

Seventeen participants (7 male; age 31.262.6 years [mean6SEM])

with medication-resistant epilepsy underwent a surgical procedure in

which platinum recording contacts (3 mm diameter) were implanted

subdurally on the cortical surface. Participants were grouped into a pri-

mary cohort, S1-S11, and a validation cohort, S12-S17. Data from the

validation cohort was held out from our initial analyses and was used

solely to validate that our localization model did not overfit its

parameters.

Data were collected at the Clinical Center at the National Institutes

of Health (NIH; Bethesda, MD). The research protocol was approved

by the Institutional Review Board, and informed consent was obtained

from the participants and their guardians. Software packages used to

implement electrode localization and the creation of standardized sur-

face based regions of interest, as well as a sample data set, are available

for public download at: https://neuroscience.nih.gov/ninds/zaghloul/

downloads.html.

The available software package requires the publicly available soft-

ware packages AFNI (http://afni.nimh.nih.gov) and FreeSurfer (http://

surfer.nmr.mgh.harvard.edu) and takes as input the CT coordinates of

each electrode.

2.2 | Image acquisition and co-registration

We acquired preoperative T1 weighted MPRAGE images for all partici-

pants using a 3.0T scanner (Philips Achieva; voxel size

0:8330:8331:4; 13131, or 0:7530:7530:8 mm [n59]; repetition

time 3:1 � TR � 4:3 ms; echo time 6:9 � TE � 8:9 ms; field of view

FOV5240 mm; flip angle 9 degrees). Following electrode implantation,

all participants also received a postoperative clinical CT scan within

four hours (GE LightSpeed Ultra, Siemens SOMATOM Definition Flass,

or Siemens SOMATOM Force; voxel size 0:5230:5231; 0:4930:493

1 [n54], or 0:5930:5931:25 mm [n56]; 512 3 512 matrix).

We co-registered MRI and CT images using AFNI (Cox, 1996). Spe-

cifically, we deobliqued the T1 MRI, then performed an affine transfor-

mation using a signed local Pearson correlation (LPC) cost function

with AFNI’s “align-epi-anat.py” (Saad & Reynolds, 2012). If this registra-

tion failed based on visual inspection, we repeated the procedure using

an unsigned LPC cost function on an intensity-inverted T1 MRI. This

two-tiered approach was successful for all attempted affine

registrations.

2.3 | Surface reconstruction and normalization

We reconstructed surfaces from preoperative MRI images using Free-

Surfer (Fischl, 2012). We created surface models using “recon-all.” After

creating a surface for each participant, we created a smoothed pial sur-

face using “localGI” that traverses cortical sulci (Figure 1b) (Kadipasao-

glu et al., 2014; Schaer et al., 2008). The smoothed pial surface is a

smoothed version of the surface which follows the gyral crowns and
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traverses cortical sulci. (Kadipasaoglu et al., 2014). Our goal was to

localize electrode contacts to this smoothed pial surface.

Using FreeSurfer, we then normalized surfaces across participants

(Figure 2). For each hemisphere of each participant, we inflated the sur-

face and mapped its points onto a sphere. We then aligned the curva-

ture patterns to a population average—the “fsaverage” template brain

(Dale, Fischl, & Sereno, 1999; Fischl et al., 1999). To establish a

correspondence between the vertices of different participants’ surfa-

ces, we resampled the warped spherical meshes into a standardized

mesh grid with AFNI’s “MapIcosahedron” command. The mesh grid is

the inflation of a tessellated icosahedron to a sphere (Saad & Reynolds,

2012). We used a sampling with a linear depth of 141, where the linear

depth is the number of divisions per icosahedral edge. Finally, we

unwarped the resultant spheres to obtain resampled surfaces for each

FIGURE 1 Pipeline Overview. (a) Electrodes localized on postoperative CT. (b) Pial surface and smoothed pial surface created from
preoperative MRI. (c) CT-MRI registration results in electrodes localized beneath the surface; the surface has been made translucent. (d)
Intra-operative photographs show cortical anatomy and electrode placement, allowing accurate identification of anchor points. (e) Result of
our localization algorithm as guided by anchor points [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Surface Normalization. Surfaces are reconstructed for each individual participant (top row) and for a population average brain
(bottom row). (a) A curvature measure is computed (brains inflated for illustrative purposes). (b) Surfaces are mapped onto a sphere, and
subsequently individual participant curvature patterns are optimally aligned to the average curvature. (c) Surface meshes are resampled in a
standardized manner using a recursively subdivided icosahedron template. (d) Surfaces are unfolded into their original geometries but retain
their new aligned and corresponding surface meshes
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participant. As a result, each surface had the same number of mesh ver-

tices (198,812), and these vertices corresponded to analogous anatomi-

cal locations across participants.

2.4 | Gold standard and anchor points

Intra-operative digital photographs were taken of the exposed cortical

surface before and after placement of subdural electrode contacts (Fig-

ure 1d). By matching vascular patterns visible on the photographs with

gyral anatomy visible on the surfaces, we were able to identify anatom-

ical landmarks and electrode locations (Hermes et al., 2010). To select

anchor points, we chose only electrodes whose anatomical locations

were clearly identified and were careful to select only electrodes that

were positioned on the crown of a gyrus so as to best identify those

locations on the brain surface reconstructions. For all clearly visible

electrodes that could be confidently identified, we used the publicly

available software package 3D Slicer (https://www.slicer.org) to mark

locations on the smoothed pial surface of each participant’s recon-

structed preoperative surface. We defined a subset of these points as

anchor points, which were used to inform the automated localization

algorithm, and we used the remaining points as gold standard electrode

locations to evaluate the success of localization (Table 1).

2.5 | Electrode localization

We identified electrode locations in CT space using Curry Neuroimag-

ing Suite (Compumedics USA, Charlotte, NC) through a combination of

manual annotation and maximal intensity projection. We used the

transformation matrix representing the successful co-registration of CT

and MR image sets to map coordinates identified in the postoperative

CT space to the preoperative MRI space.

Due to the brain shift caused by the implantation procedure, trans-

forming these electrode locations into the preoperative MRI space for

each participant resulted in electrode locations that did not lie on the

cortical surface (Figure 1c). To correct for this, we adapted a spring net-

work optimization procedure that pulls electrode centers registered in

MRI space to the preoperative smoothed pial surface (Dykstra et al.,

2012). Conceptually, the spring network is iteratively relaxed from a

strained initialization, with its total energy decreasing until it reaches

target stability.

Importantly, we modified the optimization procedure in two ways.

First, we constrained a subset of electrode contacts (anchors) to specific

locations on the smoothed pial surface that were identified based on

intra-operative photography. We took all contacts that could be identi-

fied from these photographs but were not used as anchors to be our

gold standard electrodes (Figure 3a,b; Table 1), and we used these to

validate the performance of brain shift correction and final electrode

localization. Second, the smoothed pial surface that we created for each

participant is only an approximation of the true cortical surface upon

which intracranial electrodes are placed. Using a spring optimization

algorithm that strictly constrains electrodes to lie on this smoothed pial

surface would therefore rely upon the accuracy of this approximation

and on the assumption that the hardware follows the curvature of the

smoothed pial surface. As such, we relaxed this constraint, and instead

placed more emphasis on the information from the anchor points and

registered geometry. The relative values of these constraints is reflected

in the spring constants governing the optimization algorithm.

To project electrodes to the smoothed pial surface, we constructed

a spring network (Figure 3) and minimized the following energy function:

Etotal5Edisplacement1Efitting1Edeformation (1)

where Edisplacement represents the energy of displacement and accounts

for the displacement of electrode centers from their initial registered

locations to their final location:

Edisplacement5
1
N

XN
i51

kdisp jjei2e0i jj2 (2)

where N is the total number of electrodes, e0i is the coordinates of each

initial registered electrode location, and ei is its final determined location.

We defined kdisp as the spring constant governing the energy of

displacement.

Efitting represents the energy of fitting, which pulls the electrode

centers to either a constrained area on the smoothed pial surface, or to

the identified anchor points:

Efitting5
1
N

XN
i51

kanchjjei2eanchi jj2 if ei is an anchor;

kfitjjei2eneari jj2 otherwise:

8<
: (3)

where eanchi is the coordinate of the i’th electrode’s anchor point if one

is defined, kfit is the spring constant governing the energy of fitting,

and eneari is the coordinate of the nearest point on the smoothed pial

surface to the electrode location ei. We recalculated the nearest neigh-

bor after every iteration of optimization to restrict electrode

TABLE 1 Participant summary

Participant No. elec. implanted No. elec. identified

S1 46 11

S2 48 14

S3 72 27

S4 78 11

S5 79 17

S6 60 20

S7 105 22

S8 70 15

S9 90 13

S10 132 22

S11 71 20

S12 68 22

S13 84 19

S14 134 19

S15 104 14

S16 74 17

S17 86 19
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movement. We defined kanch as the spring constant governing the

energy of fitting to anchor points and used high values of kanch to

ensure that those designated electrodes were pulled to those specific

locations.

Edeformation represents the energy of deformation, and accounts for

changes in the original spatial arrangement of the electrode contacts:

Edeformation5Enormal1Eshear1Ebend5
1
jN j

XN
i51

XN
j5i11

kdefaijðdij2d0ij Þ2

aij5

(1 if ði; jÞ 2 N ;

0 otherwise;

where kdef is the spring constant governing the energy of deformation,

dij is the distance between electrodes i and j at their final determined

locations, d0ij is the original distance between electrodes i and j given

their initial registered coordinates, and N is the set of all electrode

pairs determined to be connected neighbors. The indicator function aij

determines whether two electrodes, ei and ej are connected in the

spring network. Within every grid or strip, we defined neighboring elec-

trodes as connected if they were horizontally or vertically adjacent, if

they were separated by two electrodes in the horizontal or vertical

direction, or if they were separated by one electrode diagonally (Figure

3c). We directly identified neighbors within a grid or strip using the

known layout of electrodes within that grid or strip. In this manner we

captured normal, shear, and bend deformations (Enormal, Ebend, and

Eshear, respectively). Electrodes on separate pieces of hardware were

considered neighbors if their euclidean distance was within 15 mm,

which is 1.5 times larger than the typical distance found between elec-

trodes in the same grid or strip.

Because the initially registered locations give an accurate represen-

tation of electrode geometry but a poor position relative to the preop-

erative MRI surface, we wanted kdisp � kdef . This ensured that the

overall geometry of the electrode grids and strips were retained, while

allowing the position of the electrodes to move to the cortical surface.

We wanted kfit< kanch since anchors, being based on intra-operative

photographs, yield more accurate electrode locations than naive projec-

tions (Pieters et al., 2013). But while we felt that the anchor points

should play an important role in determining the final electrode loca-

tions, we did not feel it would be appropriate to set kanch infinitely high

since the locations of these anchor points are still subject to the inac-

curacies of visual identification and therefore cannot be considered

absolutely precise.

Searching the complete parameter space would be computationally

intractable, and so we fixed kdisp and kdef. We reasoned that kdisp

should be relatively low, since electrodes are known to shift from their

CT coordinates and because the CT coordinates serve primarily as an

initial estimate. We also reasoned that kdef should be relatively high

since the geometry of the grid should remain mostly intact after

implant. We therefore set these two parameters to be kdisp51 and

kdef51,000, respectively. This established a limited space in which the

remaining two parameters could be chosen. We used a sparse grid

search over the remaining two parameters and evaluated the results on

individual participants empirically, using visual inspection and error

from the gold standard as metrics. We determined empirically that

kfit525 and kanch5200 yielded good results.

We performed optimization of Equation 1 using the fmincon func-

tion in MATLAB (The Mathworks Inc, Natick, MA). Optimization termi-

nated when the change in total energy was less than 0.01. Electrode

FIGURE 3 Localization Algorithm. (a) Intra-operative photographs were used to visually identify electrode locations. (b) Identified electro-
des are manually placed on the cortical envelope (left); a subset of these are used as anchor points (right), while the rest are used as the
gold standard locations to validate the localization algorithm. (c) Final electrode localization is optimized based on a spring model (left).
Springs governing the energy of displacement (kdisp) are placed between the final (ei) location and CT-registered location (e0i ), between the
final electrode location and the cortical surface (kfit) or anchor point (kanch), and between neighboring electrodes (kdef). Neighboring electro-
des (right) were chosen to model normal, bend, and shear forces, and external connections were made between hardware within 15 mm
[Color figure can be viewed at wileyonlinelibrary.com]
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projection converged for all participants in an average of 110613 iter-

ations (mean6 SEM) across participants with a maximum of 140

iterations.

2.6 | Surface electrode mapping

To enable functional mapping within and across participants, we

assigned mesh vertices to each electrode location on the smoothed pial

surface surface to identify analogous electrode locations across partici-

pants. To do this, we defined a disk on the smoothed pial surface with

a diameter equal to the exposed electrode diameter (3.0 mm) and cen-

tered at each electrode location. We then found the nearest vertex on

the reconstructed brain surface to every point within the disc defined

on the smoothed pial surface. We assigned all such identified vertices

to that electrode (Kadipasaoglu et al., 2014).

2.7 | Regions of interest

To conduct regions of interest (ROI) based analyses, we developed a

method to generate a standard set of surface-based ROIs which could

be used across subjects. We first defined a set of ROI centers on an

average template brain by sampling a subset of the surface’s normal-

ized mesh vertices. We ensured that the ROI centers were uniformly

distributed by using a geodesic farthest point sampling algorithm (Peyr�e

& Cohen, 2006). Conceptually, this procedure builds a subsampling

such that each point added is the farthest geodesic distance from all

previous points in the set, beginning with a random seed point. This

method is flexible in that it allowed us to vary the number of ROIs sim-

ply by choosing when to terminate the procedure.

To evaluate the uniformity of the ROI centers’ spatial distribution,

we used the R-statistic, given by R5ro=rCSR , which gives the observed

average nearest neighbor (ANN) distance, ro, as a fraction of the

expected ANN distance of a completely spatially random distribution

rCSR (Clark & Evans, 1954). Note that a square lattice on a 2D plane has

R52.00 and that the upper bound of R is 2.149. We found R52.06

for the fine sampling and R52.07 for the coarse grid, suggesting a uni-

form distribution of ROI centers on the average brain. However, due to

the unique curvature patterns of individuals, we found that across par-

ticipants, uniformity decreased to R51:7260:01 and R51:7660:01

for the fine and coarse grids, respectively. Although still highly uniform,

this resulted in each participant’s ANN distances between ROI centers

being slightly below our targets (mean 4.7 60.07 mm, fine; 9:660:12

mm, coarse).

3 | RESULTS

3.1 | Electrode localization

We examined subdural strip and grid electrode locations in eleven par-

ticipants with medication-resistant epilepsy. We implemented an algo-

rithm to accurately localize electrode contacts to the preoperative

reconstructed cortical surface. In brief, we modified a previously

described spring optimization algorithm (Dykstra et al., 2012) by using

visually identified anchor points to guide localization (see Materials and

Methods). We compared the final electrode locations to the locations

of electrodes that were visually identified using intra-operative photog-

raphy, which we considered the gold standard. As such, because both

the anchor point locations and the gold standard electrode locations

rely upon the accuracy of intra-operative photography, it is important

to know how accurate we are in identifying these locations. To mea-

sure this, we compared the manually identified electrode locations in

each participant between two independent raters and found that these

locations differed by 2.25 60.12 mm. Moreover, it is also important to

know to what extent electrodes may shift in the time between place-

ment and recording. During the implantation procedure, electrode grids

are routinely sewn to the overlying dura to prevent such shifts. Never-

theless, to confirm that electrode locations do not significantly shift

during the monitoring period, in one case we had access to intra-

operative photographs taken during explantation of the hardware and

could measure the displacement in electrode locations between place-

ment and explantation. By identifying corresponding electrode contacts

(n511) between images, we measured the average shift to be 1.90

60.10 mm (mean6SEM).

For each participant, we calculated the distance between all gold

standard electrode locations and the final electrode locations as deter-

mined by registration alone, by registration with the original optimiza-

tion procedure, and by the modified, anchor-based optimization

procedure, in which we varied the number and spatial distribution of

anchors. We used a Wilcoxon signed-rank test for all of our statistical

tests (which does not rely on assumptions of normality) and observed

that the modified algorithm outperformed baseline registration and the

original spring algorithm (Figure 4a). We found that using just a single

anchor offers improvement over registration alone (Tn511; 22tailed566;

p � 0:001) and over the original optimization procedure

(Tn511;22tailed566; p � 0:001). Moreover, using more anchors with

higher inter-anchor spacing yielded better results. Using five, maximally

spaced anchors produced our best results (mean 2.01 60.15 mm), but

even using two anchor points yielded an accuracy (2.64 60.25 mm)

comparable to other approaches in the field.

During the development of our localization procedure, we deter-

mined the spring constants in part by finding parameters that produced

optimal localization results (see Materials and Methods). Therefore, it

was critical to evaluate whether our localization algorithm performed

equally well on an independent set of participants to ensure that the

algorithm’s success was not due to overfitting. We used six additional

participants (S12-S17) as a validation set and evaluated the results.

Using a single anchor gave a mean error of 3.5060.35 mm, which was

significantly lower than both the registered error (11.4860.56 mm,

Tn56;12tailed521; p5 .016) and the original spring algorithm (6.036

0.46 mm, Tn56;12tailed521; p5 .016). Using five anchors with maxi-

mum spacing produced a mean error of 2.29 60.36 mm.

There are several options for selecting which visually identified

electrodes are to be used as anchor points. At one extreme, one could

choose several neighboring electrodes as anchors, whereas at the

other, one could select electrodes that are on opposite sides of the visi-

ble grid. We were interested in whether the spatial arrangement of the

selected anchor points affects localization accuracy. To investigate this,

we created three categories of anchor point arrangements: maximally-
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spaced, moderately spaced, and clustered. The clustered category (and the

separate, single-anchor category) is based on identifying the centroid of all

visible contacts and selecting anchor points only from neighboring con-

tacts to that centroid. Conversely, for maximally spaced anchor points, we

chose electrode contacts with the largest inter-electrode distance. We

found that as anchor points are spread further apart on the cortical sur-

face, localization improves (ANOVA Fð2;3Þ57:15, p5 .001), although a

post hoc Tukey-Kramer test did not suggest any significant difference

between moderately and maximally spaced anchors. Increasing the total

number of anchor points was also significantly helpful (ANOVA

Fð2;3Þ53:64, p5 .015). There was not a significant interaction between

inter-anchor distance and the number of anchors (Fð6Þ50:07, p> .99).

3.2 | Regions of interest

We were interested in developing a region of interest approach for

aggregating and statistically analyzing iEEG activity from electrodes in

analogous anatomical locations across participants. We intended to

generate two grids of ROI centers with an average geodesic distance

between ROI centers of 5 and 10 mm, allowing fine and coarse sampling

of iEEG activity. By sampling 2,400 and 600 points, respectively, we

generated uniformly distributed ROI centers (see Materials and Meth-

ods) with an average nearest neighbor (ANN) distance within 0.1 mm of

our 5 mm and 10 mm targets (Figure 5a,c). Since the subsampling takes

place on the normalized surface, the identified ROI centers correspond

to analogous locations across participants (Figure 6a–c).

Having generated sets of ROI centers, we then radially grew geo-

desic, overlapping regions around each ROI center on each participant’s

surface to create a set of analogous ROIs for across-participant analy-

ses (Figure 5b). The radius of growth was increased until 99.9% of each

surface was covered. Using the 5 mm inter-ROI spacing, we found that

we needed a geodesic radius of 8.8 60.3 mm around each ROI center.

For the coarser 10 mm inter-ROI spacing, the same coverage required

a geodesic radius of 13.7 60.3 around each ROI center (Figure 5b). We

assigned all surface vertices within an ROI’s boundary to that ROI (Fig-

ure 6d,e). Consequently, ROIs may have overlapping coverage, and a

surface vertex may be assigned to more than one ROI. As with the ROI

centers, the vertices within each geodesically grown ROI are anatomi-

cally analogous across participants.

Finally, because we determined the location of each electrode on

each participant’s surface, we assigned all electrodes with any vertices

within each ROI’s boundary to that ROI (Figure 6d). In this manner, one

ROI may be associated with more than one electrode, and one electrode

may be associated with more than one ROI. However, because both

electrode locations and ROIs are anatomically analogous across partici-

pants, iEEG electrode data aggregated into each ROI may be compared

across participants. We observed that on average electrodes were

assigned to 5.07 60.07 ROIs on the coarse grid and 9.31 60.13 ROIs

on the fine grid while ROIs contained 2.40 60.05 electrodes on the

coarse grid and 1.7660.02 electrodes on the fine grid (Figure 5e,d).

To demonstrate how the constructed ROIs could be used to aggre-

gate data across participants, we investigated changes in spectral

power as three participants performed a simple motor task in which

they were instructed to move either their hand or their foot (Figure

7a). When compared to a baseline period, we observed spatially local-

ized effects in high frequency power (40–118 Hz) throughout the

FIGURE 4 Algorithm Accuracy. (a) Mean distance between the location of the gold standard electrodes and localization by CT registration
alone, original spring optimization without the use of anchor points, and optimization using one or more anchor points. When using more
than one anchor point, mean distances are shown for different inter-anchor distances. Each bar represents the average distance between
final electrode locations and the locations of the gold standard electrodes averaged across the primary cohort of participants (with the
exception of the “validated” bar, which reports the 5-anchor, maximally spaced result across the validation cohort). Circles represent partici-
pants with maximum localization error, and error bars represent standard error. A dotted reference line is shown at the level of inter-rater
error. (b) Final location of subdural electrodes from all 17 participants color coded by participant and plotted on a population average brain
[Color figure can be viewed at wileyonlinelibrary.com]
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duration of movement. In each condition, these effects were observed

in the expected sensorimotor cortices, both within individual partici-

pants (Figure 7b, bottom) and on the population average brain when

aggregated into ROIs across participants (Figure 7b, top).

4 | DISCUSSION

A necessary step for expanding the statistical tools available for

the analysis of iEEG data is to develop a systematic way of

comparing changes in neural activity across multiple participants.

This requires accurately localizing iEEG electrodes and developing

an approach for aggregating data from analogous anatomical loca-

tions across participants. We implement this goal here by first

modifying previous electrode localization algorithms to additionally

incorporate the use of manually identified anchor points (Dalal

et al., 2008; Dykstra et al., 2012; Pieters et al., 2013; Yang et al.,

2012). We then create evenly distributed and standardized ROIs

that aggregate data from analogous cortical regions, enabling us

FIGURE 5 Regions of Interest. (a) Nearest-neighbor distance was computed between all ROI centers on the average brain for fine and
coarse spacing of the ROI centers. (b) ROIs were grown for each participant until 99.9 percent of the surface was covered. The geodesic
radius needed to cover the standard brain is shown for both fine and coarse ROI centers. (c) ROI distribution on the average brain appeared
uniform in the coarse (top) and fine (bottom) grids. (d) Each electrode was assigned to the nearest ROIs. Across all participants, the number
of ROIs assigned to each electrode is shown as a distribution for both fine and coarse ROIs [Color figure can be viewed at wileyonlineli-
brary.com]
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FIGURE 6 Electrode Mapping to ROIs. (a) ROI centers were chosen on the average brain with farthest point sampling until desired
resolution was reached (coarse grid shown). (b) ROI center sampling was performed on the normalized pial mesh, allowing correspondence
between participants. (c) ROI centers across participants are in analogous anatomical locations. (d) Each electrode is assigned to the nearest
pial vertices and then to the closest ROIs. (e) ROIs are grown geodesically to cover the surface and frequently overlap. Each ROI detects
activity from electrodes within its geodesically grown region [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Motor Task Example. (a) Example trial from a task in which three participants were asked to move either their hand or their
foot (contralateral to implant hemisphere). (b) Brain models depict the trial-averaged increase in high frequency spectral power (40–118 Hz)
during the five seconds of movement compared to a baseline period (left column hand, right column foot) plotted using the fine ROI resolu-
tion. We include the average response across participants depicted on an average brain surface (top), and the response of an individual
example participant (bottom) [Color figure can be viewed at wileyonlinelibrary.com]
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to assess the consistency of activity at specific anatomical loca-

tions across multiple participants.

An important first step to attain this goal was localizing electrode

contacts to each participant’s smoothed pial surface, identified using

the preoperative MRI. Implantation of subdural and depth electrodes

routinely results in a parenchymal shift that makes it difficult to localize

electrodes to the surface of the participant’s brain. Several approaches

have been proposed to address this issue (Dalal et al., 2008; Dykstra

et al., 2012; Hermes et al., 2010; Pieters et al., 2013; Yang et al., 2012).

Spring optimization algorithms are suitable for both grids and strips and

offer the advantage of modeling inter-electrode geometric relationships

while simultaneously allowing for the nonuniform deformations often

caused by brain shift. However, algorithms that take advantage of

intra-operative photography often outperform procedures that attempt

to approximate locations without photographs. (Pieters et al., 2013).

We therefore built upon the spring optimization procedure (Dyk-

stra et al., 2012) by including the additional use of anchor points identi-

fied using digital photography in the operating room. The use of intra-

operative photography to identify electrode locations has been well

established (Dalal et al., 2008; Pieters et al., 2013; Yang et al., 2012).

Our approach therefore combines the advantages of both spring opti-

mization algorithms and manually identified anchor points, allowing

accurate localization of grid and strip elements, as well as grids that are

cut or arranged in an atypical arrangement. There are two limitations

inherent in this approach, however. First, manually identifying electrode

locations necessarily introduces some error, and therefore it is impor-

tant that anchor points should only be selected if their visible location

can be identified with high confidence. When we compared the man-

ually identified locations between independent raters, we found that

they were reassuringly consistent. Second, it is possible that the elec-

trode locations may shift during the monitoring period following

implantation, and because manual identification only relies on a single

intra-operative snapshot, it remains unknown whether the visual pho-

tograph represents the true electrode location. We were only able to

verify that the electrode locations did not significantly shift in one case

in which we captured an intra-operative photograph during explanta-

tion. However, electrode grids are routinely sewn to the dura in multi-

ple locations, which would minimize any such movement.

Despite these limitations, we found that our localization procedure

identified accurate electrode locations when compared to those elec-

trode locations manually identified. Accuracy minimally improved as we

included more anchor points, but we were able to achieve sufficiently

accurate localization with as few as two points. The optimization

algorithm ensures that the designated anchor points inform the final

position of nearby electrode locations, so many anchor points are

unnecessary. In addition, accuracy improved as the space between

anchor points increased, suggesting that the distributed locations of

anchor points capture the overall geometry of the electrode locations.

Of note, the accuracy that we attain using the addition of anchor

points is comparable to the inter-rater variability observed when man-

ually identifying electrode contacts in the intra-operative photographs.

This suggests that localization using this semi-automated algorithm

approaches the upper limit of what is possible given the variability

inherent in manual localization.

Recent approaches to the problem of localization have generally

adopted two strategies: photography-based labeling and projection

algorithms (Table 2). On the one hand, intra-operative photographs

yield highly accurate information about electrode locations, but this

approach is manually intensive (Dalal et al., 2008). On the other hand,

projection algorithms are automated, but typically introduce inaccura-

cies (Dykstra et al., 2012; Hermes et al., 2010). The most accurate

approaches combine both strategies, using procedures that manually

identify two to four electrode locations at the corners and edges of the

implanted strip or grid followed by a projection to the smoothed pial

surface (Pieters et al., 2013; Yang et al., 2012). Studies using this hybrid

approach, however, have based their localization procedure on the

acquisition of a postoperative MRI. Hence, it is not clear whether the

observed improvements are due to the combined hybrid approach, or

whether the improved accuracy is due solely to the advantages offered

by localization using a postoperative MRI.

Indeed, many of the inaccuracies in localization can be partly

resolved by using a transformation between the postoperative and pre-

operative MRIs. Using the postoperative MRI in this manner results in

increased accuracy (LaViolette et al., 2011a; Pieters et al., 2013; Yang

et al., 2012) and could also address the limitations related to manual

identification of the electrode contacts and possible shifts in electrode

locations. Here, we also adopt a hybrid approach, using electrode loca-

tions identified through intra-operative photography to improve a pro-

jection algorithm. Importantly, however, in this case we extract initial

electrode locations using a postoperative CT that is merged to the pre-

operative MRI. We were interested in achieving a high level of accu-

racy using the postoperative CT alone, and indeed find that the hybrid

approach in this manner can offer significant improvements in accuracy

that are comparable to the accuracy obtained with postoperative MRI.

Obtaining postoperative CT images is standard in many epilepsy cen-

ters, and it is often the only imaging modality available during the

TABLE 2 Previously published methods

Author Method Postoperative MRI Reported Error

Dalal et al. (2008) photography no 1.560.5

Hermes et al. (2010) projection no 2.6 (median)

Dykstra et al. (2012) spring model no 2.53, 3.0

Yang et al. (2012) projection with anchors yes 0.9560.81

Pieters et al. (2013) projection with anchors yes 2.0
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postoperative period. Registration of the postoperative CT to the pre-

operative MRI requires co-registering two separate imaging modalities,

however, and risks introducing errors in localization. To minimize such

errors, we used a previously validated registration algorithm, the LPC

cost function (Saad et al., 2009), and found that this registration tech-

nique facilitated automation of the localization process without sacrific-

ing accuracy.

To compare electrode activity from analogous anatomical locations

across participants, we needed to standardize the anatomical space.

Surface based normalization has been well established in functional

imaging (Saad et al., 2009), and we borrow heavily from these methods.

Normalizing surface anatomy in this manner has also been previously

adapted in one study for iEEG data (Kadipasaoglu et al., 2014). We

used surface based normalization to standardize all surfaces to a stand-

ard brain (Kadipasaoglu et al., 2014), then used icosahedral standar-

dized sampling to establish an anatomical correspondence of vertex

sets across patients (Saad et al., 2009). Hence, our approach is compati-

ble with other methods of electrode localization as long as electrodes

are assigned to nodes on participants’ surfaces.

Although our localization approach projects electrodes to the

smoothed pial surface, it is necessary to find each electrode’s nearest

points on the normalized surface so that these points can then be

assigned to nearby ROIs. We represent each electrode as a disc on the

smoothed pial surface, so the projection of all disc points results in a

group of vertices on the participant’s reconstructed surface. This allows

an electrode that spans a small sulcus to potentially have points that

are assigned to two different gyri (Kadipasaoglu et al., 2014). We note

that projecting electrode contacts to the closest point on the surface

introduces a small deviation from absolute location. This deviation,

however, does not significantly affect inter-electrode distances, how

electrode contacts are anatomically defined, or how electrode contacts

are aggregated into neighboring ROIs.

We were interested in creating standardized ROIs across partici-

pants to aggregate data from electrode contacts. Previous approaches

for analyzing iEEG data across participants have relied on grouping

electrodes into broad anatomical regions such as cortical lobes or gyri.

Regions designated for comparison in these approaches are generally

based on anatomical atlases, which require prior assumptions about

function. However, atlases and even gyral regions can be coarse rela-

tive the spatial resolution offered by iEEG. Approaches that use surface

based normalization have attempted to address this problem by aggre-

gating data from different participants at the level of individual mesh

vertices (Kadipasaoglu et al., 2014). Such an approach can certainly

capture much of the variability between different participants. How-

ever, the size of the electrode contacts and the error in localization are

both on the order of several millimeters. Thus, statistical analyses at

the spatial resolution of the mesh indices (tenths of a millimeter) may

at times be inappropriate. Indeed, data in these approaches are often

either aggregated to the larger and coarser anatomical regions such as

lobes or gyri or impose assumptions about cortical voltage propagation

by using distance-weighted decay functions.

Here, we offer an approach that takes advantage of surface based

normalization to create a flexible set of standardized ROIs. Importantly,

our approach creates a substrate for comparing activity at varying spa-

tial scales across participants without making any a priori assumptions

about the functional and anatomical architecture of the brain. We used

farthest point subsampling to create ROIs uniformly spaced approxi-

mately every 5 and every 10 mm, but it is possible to aggregate iEEG

data using ROIs with any degree of spatial precision that can more

fairly represent the spatial resolution of the electrode contact and their

localization. Appropriately spacing ROIs is an important factor in group

analyses as the number of ROIs affects both the spatial resolution of

interest and the number of multiple comparison tests needed in statisti-

cal analyses. By increasing the depth of subsampling, we were able to

generate ROI centers that capture the spatial resolution of the rela-

tively local iEEG sources while maintaining this balance. Furthermore,

not only must these two competing factors be balanced, but given a

desired spacing, it is important to evenly distribute ROIs over the cor-

tex while minimizing their redundancy. We found that farthest point

subsampling provided a uniformly distributed set of ROI centers.

By using geodesic growth around each ROI center on each partici-

pant’s surface, we were able to identify cortical regions that are analo-

gous across participants. Although electrical fields may spread as a

function of euclidian distance, we implemented ROI growth using geo-

desic distance so that the aggregate activity represented in each ROI is

derived from a single functional area of cortex (Kadipasaoglu et al.,

2014; Oosterhof, Wiestler, Downing, & Diedrichsen, 2011). In this

manner, no single ROI spans two different gyri, avoiding the possibility

that functionally different areas of cortex would be averaged together

in the same ROI. Indeed, an electrode contact may be localized to two

different gyri if it lies on a sulcus between them. In these cases the

activity of that electrode would map to two different ROIs. Moreover,

ROIs constructed in this manner necessarily overlap to ensure com-

plete coverage of the cortex. Depending on the size of the ROIs, more

than one electrode may be assigned to an ROI, and a single electrode

may be assigned to more than one ROI.

One concern when performing population analyses that is particu-

lar to iEEG data is the variability in the number of participants contrib-

uting data to different anatomical regions. For all group analyses, we

can also calculate the number of participants with electrode locations

contributing to each of our spatially defined ROIs. We can restrict

drawing statistical conclusions across a population of participants to

those ROIs that include data from a minimum number of participants.

This number will depend on the statistical test and the size of the

observed effect. Although the number of electrode contacts contribut-

ing data to each ROI will vary across participants, the aggregate data in

each ROI from each participant is treated as an identical independent

observation. Furthermore, because our ROIs are evenly spaced on the

cortical surface, no individual electrode contact is over-represented in

contributing to the aggregate data for each ROI.

While our approach therefore enables comparisons in cortical

activity across participants, one limitation is that the localization and

aggregation of electrode data into standardized ROIs is strictly surface-

based. Hence, we do not account for depth electrodes. One possibility

is to infer a deformation field from the output of our cortical localiza-

tion process and apply this to depth electrodes. However, their
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locations will likely be misrepresented with this approach alone. Until

better volumetric registration and standardization techniques are

developed, identifying the location of depth electrodes may remain a

manual process.

Nevertheless, the approach proposed here offers a number of

advantages for systematically comparing neural activity across partici-

pants. First, aggregating data across participants is independent of the

projection algorithm used to localize electrode contacts to the

smoothed pial surface, as long as the surface and evenly spaced ROIs

are standardized between participants. Second, the ROIs represent a

well defined spatial region for which statistical results in individual par-

ticipants can be aggregated. The size of these regions can be increased

or decreased depending on the desired spatial resolution. Third,

because each ROI is defined by a specific spatial location in a standard

coordinate space, each ROI can be characterized by its three dimen-

sional coordinates, Brodmann Area, gyrus, or lobe. This facilitates sev-

eral other possible groupings for across-participant analyses as

alternatives to the ROIs themselves. Fourth, because both electrode

locations and ROIs are identified in the individual surface, this approach

enables inter-modal comparisons with fMRI, for example, and other

imaging techniques. And finally, this approach effectively allows us to

treat every defined ROI in a manner similar to voxels defined for the

standard brain in fMRI analyses. This opens up iEEG analysis to similar

statistical tools available in the fMRI literature to assess the consistency

of changes in neural activity across a population.
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