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Abstract
A novel mega-analytical approach that reduced methodological variance was evaluated using a

multisite diffusion tensor imaging (DTI) fractional anisotropy (FA) data by comparing white matter

integrity in people with schizophrenia to controls. Methodological variance was reduced through

regression of variance captured from quality assurance (QA) and by using Marchenko–Pastur Prin-

cipal Component Analysis (MP-PCA) denoising. N5192 (119 patients/73 controls) data sets were

collected at three sites equipped with 3T MRI systems: GE MR750, GE HDx, and Siemens Trio.

DTI protocol included five b50 and 60 diffusion-sensitized gradient directions (b51,000 s/mm2).

In-house DTI QA protocol data was acquired weekly using a uniform phantom; factor analysis was

used to distil into two orthogonal QA factors related to: SNR and FA. They were used as site-

specific covariates to perform mega-analytic data aggregation. The effect size of patient-control

differences was compared to these reported by the enhancing neuro imaging genetics meta-

analysis (ENIGMA) consortium before and after regressing QA variance. Impact of MP-PCA filter-

ing was evaluated likewise. QA-factors explained �3–4% variance in the whole-brain average FA

values per site. Regression of QA factors improved the effect size of schizophrenia on whole brain

average FA values—from Cohen’s d5 .53 to .57—and improved the agreement between the

regional pattern of FA differences observed in this study versus ENIGMA from r5 .54 to .70.

Application of MP-PCA-denoising further improved the agreement to r5 .81. Regression of meth-

odological variances captured by routine QA and advanced denoising that led to a better

agreement with a large mega-analytic study.
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1 | INTRODUCTION

Lower integrity of cerebral white matter (WM), quantified as reduced

fractional anisotropy (FA) of water diffusion measured from diffusion

tensor imaging (DTI), is a consistent finding in schizophrenia (Alba-Fer-

rara & de Erausquin 2013; Ellison-Wright & Bullmore 2009; Friedman

et al., 2008; Glahn et al., 2013; Kelly et al., 2017; Kochunov & Hong

2014; Kubicki et al., 2007; Nazeri et al., 2012; Perez-Iglesias et al.,

2011; Phillips, Rogers, Barrett, Glahn, & Kochunov, 2012; Wright et al.,

2015). FA deficits are hypothesized to be prominent in the associative

WM fibers and responsible for neuropsychological deficits association
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with this disorder (Ellison-Wright & Bullmore 2009; Friedman et al.,

2008; Kochunov et al., 2016, 2017; Kubicki et al., 2007; Nazeri et al.,

2012; Perez-Iglesias et al., 2011). A challenge for evaluating regional

WM deficits is the need for statistically powerful and representative

samples that can be difficult to collect at a single site (Ioannidis 2014;

Jahanshad et al., 2013). Multisite studies can collect larger and more

representative samples but require pre-processing steps to address

site-specific sources of methodological variance. The enhancing imag-

ing genetics meta-analysis (ENIGMA) consortium developed a multisite

homogenization approach for DTI data to address methodological

biases in multisite data (Jahanshad et al., 2013). We sought to improve

upon this approach, by evaluating two new steps aimed at addressing

site-specific variances: (a) regression of the site-specific variance

captured through routine quality assurance (QA) program and (b)

Marchenko–Pastur Principal Component Analysis (MP-PCA)-based

noise reduction technique aimed at improving signal-to-noise ratio

(SNR) and reporting potential artifacts that contribute to spatial

nonuniformities of thermal noise. We tested these approaches in the

data collected by the multicenter collaborative Social Processes

Initiative In Neurobiology of the Schizophrenia(s) (SPINS) study.

We assessed the impact of regressing the site-specific methodo-

logical variance and advanced denoising approach by comparing the

effect size of schizophrenia on regional FA values to those published

by the largest meta-analytic analysis of regional FA deficits to date

(N51,984/2,391 patients/controls, thirty independent cohorts world-

wide) performed by ENIGMA (Kelly et al., 2017). The average effect

size for regional FA values in ENIGMA was reported to be Cohen’s

d5�.25 (Kelly et al., 2017). This suggested that a sample of N5250

patients/250 controls is required to detect such an effect size. The

SPINS sample (N5192) is insufficiently powerful to reliably detect

these regional differences. Therefore, the aim was to study the changes

in the agreement in the pattern of regional difference between the

SPINS and ENIGMA results. This study was focused on FA and did not

explore other diffusion parameters (axial, radial, and mean diffusivities);

FA was selected because it is the most commonly studied diffusion-

metric in schizophrenia research, and is the metric most consistently

altered between schizophrenia patients and matched controls (Kelly

et al., 2017).

2 | METHODS

2.1 | Subjects

The study was performed in N5192 participants (average age

532.7610.1 years), including n5119 schizophrenia patients

(age533.6613.3) and n573 controls (age531.2610.2) collected at

three sites (Table 1). Each site collected both patients and controls.

Data for N584 participants were collected at the Centre for Addiction

and Mental Health, Toronto (CAMH); N560 at the Maryland Psychiat-

ric Research Center (MPRC), Baltimore; and N547 at the Zucker-

Hillside Hospital (ZHH), New York City. The demographic information

is summarized in Table 1. Uniform clinical assessment and exclusion cri-

teria were maintained across the three sites. The local Internal Review

Boards approved the studies, and informed written consent was

obtained from all participants. All participants had no current or past

neurological conditions or major medical conditions. Patients were

diagnosed with either schizophrenia or schizoaffective disorder as

determined by the Structured Clinical Interview for DSM-IV or IV-TR

(SCID). Controls had no Axis I psychiatric disorder as determined by

the SCID. With the exception of nicotine, participants were excluded if

they had DSM-IV substance abuse in the last three months or sub-

stance dependence within the past six months. Other exclusion criteria

included diagnosis with uncontrolled hypertension, type 2 diabetes,

heart disorders, or a major neurological event such as stroke or tran-

sient ischemic attack.

2.2 | Diffusion tensor imaging

Imaging data were collected using 3T MRI systems and multichannel

head coils. A homogenized diffusion imaging protocol was developed for

this study and implemented on each site using a consistent set of 60 gra-

dient vectors (b51,000 s/mm2) and five b50 volumes. Details of the

implementation of the protocol at each site are summarized in Table 2.

2.3 | Image processing

DTI data from the three sites was processed using the ENIGMA-DTI anal-

ysis pipeline (http://enigma.ini.usc.edu/ongoing/dti-working-group/),

which includes quality control and assurance QC/QA steps. One

deviation from ENIGMA-DTI protocol was inclusion of the principal com-

ponent analysis (PCA)-based approach for automatic removal of noise-

specific components, developed by Veraart, Fieremans, & Novikov (2016;

Veraart, Novikov, et al., 2016). The MP-PCA approach differs from tradi-

tional denoising approaches that improve SNR via spatial smoothing.

Instead the MP-PCA approach quantifies the principal components that

are fundamentally associated with thermal noise signal in magnitude MRI

data. Noise contributes randomly to voxel-wise intensity values, but its

contribution to the histogram of the eigenvalues of covariance matrix is

deterministic (Veraart, Novikov, et al., 2016) and its eigenvalues are

described by the Marchenko–Pastur (MP) distribution (Marchenko & Pas-

tur 1967). The MP-PCA approach estimates the noise level and the num-

ber of significant signal components and regresses eigenvalues related to

noise while not affecting the temporal or spatial domains of the data

(Veraart, Novikov, et al., 2016). Quantification and regression of thermal

noise can both enhance SNR and identify the spatial patterns of noise

distribution within data (Veraart, Novikov, et al., 2016) (Figure S1, see

Supporting Information). The spatial distribution of thermal noise is inde-

pendent of the underlying tissue type and, therefore, should have uniform

spatial distribution(Veraart, Novikov, et al., 2016). Spatial heterogeneity in

the noise component may serve as an important QA parameter that pro-

vides information regarding the linearity and noise properties of the

receiving elements of the RF coil as shown by artifacts observed in the

data from one of the sites (Figure S1, see Supporting Information). MP-

PCA denoising was applied to rawDTI data using the default filter setting.

Both raw and MP-PCA filtered data were processed using the ENIGMA-

DTI pipeline.
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Next, DTI data were corrected for motion and eddy current distor-

tions using the eddy correction tool distributed as a part of FMRIB

Software Library (FSL, “eddy_correct”) package (Smith et al., 2006). FA

maps were then generated by voxel-wise fitting of the local diffusion

tensor. Next, individual FA maps were warped to an ENIGMA-DTI tem-

plate and projected onto the ENIGMA-DTI skeleton that represents

the middle of the tract of major white matter structures. ENIGMA-DTI

per-tract average values were calculated by averaging values along

tract regions of interest in both hemispheres. Overall average FA values

were calculated by averaging values for the entire white matter skele-

ton, including the tract regions of interest and peripheral white matter.

DTI data is sensitive to artifacts brought about by subject’s motion

(Yendiki, Koldewyn, Kakunoori, Kanwisher, & Fischl, 2014). All data

included in the analysis passed the ENIGMA-DTI QA/QC adopted

from the report by Acheson et al. (2017). The QA/QC steps included:

visual inspection of raw and FA images, followed by calculating the

frame-wise displacement and the average projection distance onto the

skeleton.

2.4 | DTI quality assurance

DTI QA was performed one to two times per week following each

scanner reboot. The details of the QA protocol are discussed elsewhere

(Chavez et al., 2017). In short, the spherical (d517.5 cm) agar-gel filled

BIRN phantom (Biomedical Informatics Research Network) was used.

The phantoms were stored in the scanner rooms to ensure tempera-

ture consistency. The QA protocol parameters matched imaging param-

eters used by the site. QA data were processed by a centralized

automated QA pipeline (https://github.com/josephdviviano/qa-dti)

(Chavez et al., 2017). The average signal-to-noise ratio (SNR) measure-

ments for b50 and b51,000 s/mm2 images and the average and

TABLE 1 Subject demographics for the Centre for Addiction and Mental Health (CAMH), Maryland Psychiatric Research Center (MPRC), and
Zucker Hillside Hospital (ZHH) sites

CAMH MPRC ZHH

Patients
(34M/17F)

Controls
(17M/16F)

Patients
(36M/8F)

Controls
(13M/8F)

Patients
(15M/14F)

Controls
(9M/9F)

Average Age, Range (years) 28.96 9.3
18–50

25.966.7
18–47

37.96 10.5
19–55

38.5611.1
20–55

36.66 8.8
23–55

32.669.4
20–50

BPRS
(total)

29.86 6.8 N/A 33.56 8.8 N/A 30.96 9.2 N/A

Age-of-Onset (years) 21.36 5.6 N/A 20.36 6.3 N/A 18.96 5.9 N/A

Illness Duration (years) 8.96 7.2 N/A 15.46 11.2 N/A 16.46 11.3 N/A

Education
(year)

13.16 7.2 15.562.0 13.16 2.8 15.761.9 13.46 3.2 15.262.2

IQ 108.16 16.2 116.56 8.4 100.1620.6 115.56 9.6 96.36 20.6 107.56 14.6

Handedness
(% right)

84% 91% 86% 91% 84% 72%

Medication Dose
(CPZ)

376.36 270.1 543.36387.4 471.36426.5

Current Smokers 31% 18% 39% 35% 41% 12%

FTND 3.66 3.0

Severity of psychiatric symptoms was ascertained using the Brief Psychiatric Rating Scale (BPRS). Antipsychotic medication dose is provided in the
chlorpromazine equivalent dose (mg/day). The severity of tobacco dependence was ascertained using the Fagerstrom Test for Nicotine Dependence
(FTDN).

TABLE 2 DTI sequence parameters for Centre for Addiction and
Mental Health (CAMH), Maryland Psychiatric Research Center
(MPRC), and Zucker Hillside Hospital (ZHH) sites

CAMH MPRC ZHH

MRI system GE MR750
Discovery

Siemens Trio GE HDx

Year of Installation 2010 2011 2004

Head Coil 8-channel 12-channel 8-channel

Acceleration Asset52 GRAPPA52 Asset52

Echo Time (ms) 88 85 88

Repetition Time (ms) 8,800 8,800 17,000

Flip Angle (degrees) 90/180/180 90/180 90/180/180

FOV (mm) 256 256 256

In-plane resolution (mm) 2.0 3 2.0 2.0 3 2.0 2.0 3 2.0

Slice Thickness (mm) 2.0 2.0 2.0

Number of Slices 66 66 66

Partial k-space acceleration techniques, Array Spatial Sensitivity Encoding
Technique (Asset), and Generalized Autocalibrating Partially Parallel
Acquisitions (GRAPPA) were used on GE and Siemens scanners, respectively,
to reduce effective TE and TE by undersampling k-space along the phase
encoding direction. A twice refocused spin-echo EPI sequence was used on
the GE scanners to improve spatial distortions. A refocused monopolar EPI
sequence was used on the Siemens scanner to improve SNR.
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standard deviation of the fractional anisotropy (FA) measurements

showed trending correlations with whole-brain FA values in subjects.

We included these measurements as potential explanatory variables

for site-specific methodological variance.

The QA sessions were matched-in-time to the human imaging ses-

sion. For each site we chose the closest QA session to the human

imaging session (average time interval52.561.1 days). Factor analysis

was performed on the QA measures to distill orthogonal measurements

of scanner stability. Factor analysis used principal components analysis

(PCA) to extract linear composites of correlated variables with

eigenvalues>1. MP-PCA yielded eigenvalues describing the amount of

variance among variables explained by a factor. A varimax rotation was

used to remove collinearity (e.g., to orthogonalize individual eigenvec-

tors). The factor analysis yielded factor loadings (correlations between

a variable and a factor) and factor scores (a standardized score on each

factor).

We compared the effect of the regression of the site-specific

QA factor scores by comparing effect sizes observed in this study to

these published by the ENIGMA-schizophrenia working group in the

largest DTI study of patient-control differences in this disorder

(www.enigma-viewer.org) (Kelly et al., 2017). Specifically, we com-

pared the regional FA differences observed here with ENIGMA’s

patient-control effect sizes across white matter regions in the brain

(Table 5). The SPINS data were collected past the deadline for the

submission to ENIGMA project and, therefore, can be treated as an

independent replication sample. The results provide a definitive and

independent assessment of white matter regions most vulnerable to

schizophrenia.

2.5 | Mega-analysis

The ENIGMA-DTI mega-analysis algorithm was used to combine the data

into a single population following regression of nuisance covariates and data

homogenization. The goal of this analysis was to investigate the impact of

the regression of QA-related variance on the overall effect size of schizo-

phrenia on the whole-brain average and regional FA values. The ENIGMA-

DTI mega-analysis uses two normalization steps: regression of covariates,

per cohort, followed by the per-cohort inverse Gaussian normalization of

data (Kochunov et al., 2014). This produced the mega-analytic sample to

quantify the significance of the global and regional differences in the FA val-

ues and calculating effect size (Cohen’s d). Four analyses were conducted:

the first used the standard per-site covariates (age, sex, age2, age 3 sex,

age23 sex), followed by the standard and QA covariates (FA and SNR

factors), followed by denoising and the standard covariates and the final

analysis combined denoising with the standard andQA covariates.

3 | RESULTS

3.1 | Extraction of QA factors

Temporal stability plots for the factorized and raw QA measures are pro-

vided in Supporting Information (Figures S2 and S3). Overall, all three

system demonstrated a good stability (variance<5%) across the 60

week period of data collection. Factor analysis in the SNR b50, SNR

b51,000, average FA and standard deviation FA measures produced

two orthogonal factors that explained 94%, 92%, and 97% of total var-

iance in QA scores for the CAMH, MPRC and ZHH sites respectively

(Table 3). The pattern of factor loading was similar for all three sites—

with SNR and FA measurements loading on separate factors (Table 3).

3.2 | Stability of QA factors

The scatter plot of QA factors over the week of scanning demonstrates

that MPRC and ZHH sites experienced significant (p< .01) linear

changes in QA factors with time on one or both factors (Supporting

Information Figure S2). The MPRC site showed significant increase in

both SNR and QA factors (r5 .37 and .51, p< .02). The ZHH site

showed significant increase in SNR factor (r5 .71, p< .001).

3.3 | Correlation between QA factors and
average FA values

The two orthogonal QA factors explained �8.6% of the individual

variance in the whole-brain FA values and this was significant for the

TABLE 3 Factor analyses using principal component extraction and
orthogonalization were performed on QA data collected at the
three sites

SNR factor loading FA factor loading

CAMH

SNRb0 .98 –.06

SNRdwi .97 –.05

Average FA –.64 .72

StdDev FA .35 .98

MPRC

SNRb0 .96 –.12

SNRdwi .97 –.06

Average FA –.10 .93

StdDev FA .05 .93

ZHH

SNRb0 .98 –.17

SNRdwi .97 –.14

Average FA –.89 .41

StdDev FA –.18 .98

TABLE 4 Pearson correlation coefficients between average FA val-
ues and two orthogonal QA factors and percent variance in average
FA explained by two factors based on linear regression analysis

Site SNR factor FA factor
% Variance
explained (p value)

CAMH .03 –.22 11.0 (p5.047)

MPRC .09 –.04 7.5 (p5.11)

ZHH –.08 –.24 11.5 (p5.16)

1018 | KOCHUNOV ET AL.

http://www.enigma-viewer.org


T
A
B
L
E
5

E
ff
ec
t
si
ze

(C
o
he

n’
s
d)

o
f
pa

ti
en

t-
co

nt
ro
l
di
ff
er
en

ce
s
fo
r
w
ho

le
-b
ra
in

an
d
re
gi
o
na

l
F
A
m
ea

su
re
m
en

ts

T
ra
ct

E
N
IG

M
A

C
o
he

n
’s
d

(p
va

lu
e)

*

M
eg

a
an

al
ys
is

(a
ge

an
d
se
x)

C
o
he

n
’s
d

(p
va

lu
e)

M
eg

a
an

al
ys
is

(a
ge

,
se
x
an

d
qa

fa
ct
o
rs
)

C
o
he

n
’s
d

(p
va

lu
e)

M
P
-P
C
A

m
eg

a
an

al
ys
is

(a
ge

an
d
se
x)

C
o
he

n
’s
d
(p

va
lu
e)

M
P
-P
C
A

m
eg

a
an

al
ys
is

(a
ge

,
se
x,

q
a
fa
ct
o
rs
)

C
o
he

n
’s
d
(p

va
lu
e

F
ib
er

ty
p
e

C
o
n
n
ec

ti
o
n
s

W
ho

le
-B

ra
in

A
ve

ra
ge

.4
2
(4

3
1
0
2
2
4
)

.5
5
(.0

0
0
6
)

.5
6
(.0

0
0
5
)

.5
7
(.0

0
0
2
)

.5
5
(.0

0
0
2
)

R
eg

io
na

l

G
en

u
(G
C
C
)

.3
7
(1

3
1
0
2
1
8
)

.3
9
(.0

1
5
)

.3
7
(.0

1
9
5
)

.3
8
(.0

1
)

.3
6
(.0

2
)

C
C
er
eb

ra
l
H
em

is
p
h
er
es

B
o
dy

(B
C
C
)

.3
9
(3

3
1
0
2
1
8
)

.2
4
(.1

2
)

.3
4
(.0

3
3
0
)

.3
0
(.0

4
)

.3
7
(.0

1
)

C
C
er
eb

ra
l
H
em

is
p
h
er
es

Sp
le
ni
um

(S
C
C
)

.2
2
(4

3
1
0
2
6
)

.3
1
(.0

4
9
)

.2
9
(.0

6
0
8
)

.2
9
(.0

4
)

.2
9
(.0

4
)

C
C
er
eb

ra
l
H
em

is
p
h
er
es

A
nt
er
io
r
C
R
(A
C
R
)

.4
0
(9

3
1
0
2
1
9
)

.3
7
(.0

2
1
)

.3
5
(.0

2
7
8
)

.3
5
(.0

2
)

.3
4
(.0

2
)

A
/P

/C
C
o
rt
ic
al
/S
u
b
co

rt
ic
al

Su
pe

ri
o
r
C
R
(S
C
R
)

.1
5
(7

3
1
0
2
6
)

.0
0
(.9

8
)

.0
3
(.8

4
9
3
)

.0
2
(.9

)
.0
5
(.8

)
A
/P

/C
C
o
rt
ic
al
/S
u
b
co

rt
ic
al

P
o
st
er
io
r
C
R
(P
C
R
)

.2
5
(2

3
1
0
2
1
2
)

.1
2
(.4

4
)

.1
5
(.3

4
5
5
)

.1
4
(.3

6
)

.2
0
(.1

8
)

A
/P

/C
C
o
rt
ic
al
/S
u
b
co

rt
ic
al

C
in
gu

lu
m

(C
G
C
)

.2
7
(3

3
1
0
2
9
)

.2
6
(.0

9
)

.2
2
(.1

8
1
2
)

.2
6
(.0

8
)

.3
6
(.0

2
)

A
C
in
gu

la
te

G
yr
u
s/
H
ip
p
o
ca
m
p
u
s

C
o
rt
ic
o
-s
pi
na

l
tr
ac
t
(C
ST

)
.0
4
(.3

)
.1
8
(.2

5
)

.0
7
(.6

5
2
6
)

.1
4
(.4

4
)

.0
4
(.9

8
)

P
C
o
rt
ic
al
/S
p
in
al

C
o
rd

E
xt
er
na

l
C
ap

su
le

(E
C
)

.2
1
(1

3
1
0
2
7
)

.2
1
(.1

7
)

.2
6
(.0

9
1
5
)

.1
9
(.1

7
)

.2
0
(.1

2
)

A
F
ro
n
ta
l/
T
em

p
o
ra
l/
O
cc
ip
it
al

In
te
rn
al

C
ap

su
le

(IC
)

.1
8
(2

3
1
0
2
5
)

.3
7
(.0

2
0
)

.3
3
(.0

3
4
3
)

.3
2
(.0

2
)

.2
0
(.1

2
)

P
Su

b
co

rt
ic
al
/B

ra
in
st
em

/C
o
rt
ex

F
o
rn
ix

(F
X
)

.3
1
(7

3
1
0
2
1
2
)

.3
2
(.0

4
3
)

.3
6
(.0

2
3
0
)

.3
3
(.0

3
)

.3
4
(.0

2
)

P
/C

H
ip
p
o
ca
m
p
u
s/
T
h
al
am

u
s

In
fe
ri
o
r
F
ro
nt
o
-O

cc
ip
it
al

(IF
O
)

.1
1
(.0

0
3
)

.2
5
(.1

0
)

.2
5
(.1

0
7
5
)

.2
5
(.1

0
)

.2
4
(.1

1
)

A
F
ro
n
ta
l/
T
em

p
o
ra
l/
O
cc
ip
it
al

Su
pe

ri
o
r
F
ro
nt
o
-O

cc
ip
it
al

(S
F
O
)

.2
9
(4

3
1
0
2
8
)

.1
4
(.3

8
)

.1
6
(.3

3
0
5
)

.1
1
(.3

5
)

.1
1
(.3

5
)

A
F
ro
n
ta
l/
P
ar
ie
ta
l/
O
cc
ip
it
al

Su
pe

ri
o
r
Lo

ng
it
ud

in
al

F
as
ci
cu

lu
s
(S
LF

)
.2
2
(6

3
1
0
2
8
)

.2
9
(.0

6
)

.2
1
(.1

8
4
8
)

.2
9
(.0

4
)

.2
3
(.1

1
)

A
F
ro
n
ta
l/
T
em

p
o
ra
l/
O
cc
ip
it
al

Sa
gi
tt
al

St
ra
tu
m

(S
S)

.3
0
(5

3
1
0
2
1
4
)

.4
6
(.0

0
4
)

.4
1
(.0

0
9
5
)

.4
3
(.0

0
4
)

.3
8
(.0

1
)

A
/P

Su
b
co

rt
ic
al
/T

em
p
o
ra
l/
O
cc
ip
it
al

U
nc

in
at
e
F
as
ci
cu

lu
s
(U
N
C
)

.1
6
(9

3
1
0
2
7
)

.2
5
(.1

2
)

.2
3
(.1

4
2
4
)

.2
0
(.1

8
)

.2
0
(.1

8
)

P
H
yp

o
th
al
am

u
s/
O
rb
it
o
fr
o
n
ta
l

F
ir
st

co
lu
m
n
sh
o
w
s
E
N
IG
M
A

ef
fe
ct
s
si
ze
s
(K
el
ly

et
al
.,
2
0
1
7
).
SP

IN
-M

eg
a
an

al
ys
is

re
su
lt
s
ar
e
sh
o
w
n
af
te
r
co

rr
ec
ti
o
n
fo
r
co

va
ri
at
es
,
in

pa
re
nt
he

si
s,
in
cl
u
d
in
g
ag
e,

se
x,

an
d
Q
A

fa
ct
o
rs

(s
ec
o
n
d
an

d
th
ir
d
co

l-
um

n)
an

d
fo
llo

w
in
g
M
P
-P
C
A

de
no

is
in
g
an

d
co

rr
ec
ti
o
n
fo
r
co

va
ri
at
es
.

KOCHUNOV ET AL. | 1019



MPRC site (11% variance explained, p5 .047) with the correlation coeffi-

cients shown in Table 4. Only the FA factor showed consistent negative

correlation with FA values at all three sites (r52.22,2.06, and2.24).

3.4 | Effect of diagnosis before and after

regression of QA factors

Patients showed lower average FA values than controls in each of

three samples, after regression of age and sex effects (Figure 1, Table

5). This difference was only significant for MPRC and ZHH sites

(Cohen’s d5 .82 and .60, p5 .003 and .047 for MPRC and ZHH,

respectively). The patient-control difference for CAMH sample were

not significant (Cohen’s d5 .25, p5 .23).

The pattern of regional d values for each site was plotted versus

effect sizes published by ENIGMA (Figure 1, Table 5). The correlation

with ENIGMA pattern approached significance for MPRC sample

(r5 .46, p5 .05). At CAMH and ZHH this correlation was not signifi-

cant (r5 .5, r5 .29, p> .1).

Following inclusion of the QA factors Cohen’s d values for CAMH

improved from d5 .25 to d5 .31 but remained nonsignificant (p5 .16).

The effect sizes for MPRC and ZHH were unchanged (Cohen’s d 5 .78

and .62, p5 .004 and .048 for MPRC and ZHH, respectively). The cor-

relation coefficients between per-site effect size and ENIGMA were

improved (Figure 1). Changes were observed for all three sites: CAMH

(r5 .05 to .25), MPRC (r5 .46 to .57) and ZHH (r5 .29 to .59). The cor-

relation for both MPRC and ZHH became significant (p5�.01). The

correlation for CAMH remained nonsignificant (p5 .13).

3.5 | Effect of diagnosis after MP-PCA-denoising and

regression of QA factors

PCA denoising led to improvements in the effect size for whole-brain

FA average for MPRC and ZHH sites (Cohen’s d 5 .85 and .78,

p5 .002 and .020 for MPRC and ZHH, respectively). The patient-

control difference for CAMH sample remained nonsignificant (Cohen’s

d5 .22, p5 .25). Inclusion of QA factors did not cause a significant

change (p> .5) in effect size for MPRC and ZHH sites (Cohen’s d5 .86

and .76, p5 .002 and .020 for MPRC and ZHH, respectively).

The patterns of regional effect differences for each site were plot-

ted versus effect sizes published by ENIGMA (Figure 1, Table 5). The

MP-PCA denoising improved correlation with ENIGMA pattern

(r5 .17, .50, and .41 for CAMH, MPRC, and ZHH) this correlation.

FIGURE 1 Correlation between regional effects of diagnosis (Cohen’s d values) for each of the three sites versus ENIGMA effect sizes

plotted after regression of age and sex, QA-factors, and MP-PCA denoising [Color figure can be viewed at wileyonlinelibrary.com]
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3.6 | Mega-analyses: Effect of diagnosis before and

after MP-PCA denoising and inclusion of QA factors

The mega-analyses of schizophrenia-related FA difference while

accounting for age and sex demonstrated significantly reduced global

FA values in patients compared to controls (Cohen’s d5 .55,

p5 .0006). MP-PCA denoising led to a slight increase in the effect size

and significance (Cohen’s d5 .57, p5 .0002).

Regional pattern of mega-analytical patient-control FA difference

was significantly correlated with that reported by the ENIGMA schizo-

phrenia analysis (r5 .54, p5 .02; Figure 2). MP-PCA denoising

improved this correlation (r5 .64, p5 .004). Inclusion of QA factors in

the regression of site-specific parameters slightly improved the patient

control difference for global FA values (r5 .70, p5 .001). The best

agreement was observed following MP-PCA and regression of QA fac-

tors (r5 .81, p5 .0001; Figure 2, Table 5).

4 | DISCUSSION

Many neuroimaging studies, such as the Social Processes Initiative in

Neurobiology of Schizophrenia(s) (SPINS), use a multisite design to col-

lect statistically powerful data sets across diverse sites, MRI scanners, or

platforms. DTI places a heavy demand on the stability of the MRI hard-

ware; we therefore proposed a quantitative DTI QA protocol and data

analysis to capture potential methodological variances (Chavez et al.,

2017). Quantitative metrics measured by this approach are sensitive to

small drifts in hardware performance that do not produce detectable

image artifacts (Chavez et al., 2017; Wang, Seo, Chia, & Rollins, 2011).

We show that regression of this variance improves consistency of effect

sizes across sites and makes the overall findings more agreeable with the

findings of larger studies. In parallel, we show that a novel denoising

technique that removes thermal noise from DTI images helps to improve

the agreement of biological signal. Combining these two approaches pro-

duced the best outcome in terms of agreement between SPINS findings

and those published in the largest cohort to date.

The two QA factors loaded on the SNR of the diffusion images and

the average and standard deviation of FA values in the phantom. Longi-

tudinal changes in SNR measurements may signify variability in the

transmit/receive RF system, such as variance in the coil elements/pre-

amplifiers/amplifiers and other system instabilities. In a noise-free, uni-

form agar-gel phantom, water is expected to diffuse freely in all direc-

tions, leading to zero average FA values (Friedman, Glover, & Fbirn

Consortium, 2006; Friedman, Glover, Krenz, & Magnotta, 2006). The

measurement of FA from an agar-gel phantom simultaneously captures

FIGURE 2 Comparison of regional mega-analytic effect sizes following inclusion of the QA factors and MP-PCA denoising [Color figure
can be viewed at wileyonlinelibrary.com]
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the effect of noise, gradient instability, and gradient nonlinearity, as sug-

gested by Wang and colleagues (Chavez et al., 2017; Wang et al., 2011).

Plots of factorized QA metrics over the two-year period of data col-

lection showed that all three sites demonstrated good stability (<5% var-

iance) (Chavez et al., 2017). However, the time-related trends of

factorized QAmetrics differed across sites. The SNR factor showed signif-

icant negative correlation with time for CAMH and a positive correlation

for MPRC and ZHH (Figure 1). The FA factor showed significant positive

correlation with time for MPRC and no changes for two other sites. Such

deviations are expected for a multisite study, as system performances for

different vendors/models are rarely consistent across sites or time.

Inclusion of the methodological variance captured from QA into

the data analysis improved the agreement between the effect sizes

among global and regional effect values observed in SPINS sample and

those published by ENIGMA. Two orthogonal QA factors explained

between 7.5 and 11.5% of the intersubject variance per site. Both QA

factors contributed to explaining methodological variances observed in

human FA values; the effect of removal of this variance was site-

specific and led to both higher and lower effect sizes. For instance, for

all three sites, higher average FA values in the FBIRN phantom were

associated with lower FA values in human subjects scanned the same

week. Such an erroneous variance may both increase and decrease the

observed effect sizes per site. The nonzero average FA values in the

phantom is the consequence of mismatches between the recorded gra-

dient direction/b value and these executed by the gradient system

(Wang et al., 2011). Deviations between the expected and the exe-

cuted gradients, as well contamination by noise may cause both

reduced and increased voxel-wise FA values in human participants by

introducing fit error into the DTI model.

PCA denoising further improved agreement. DTI is an SNR-limited

technique but increasing SNR with longer scan time can lead to a

diminishing return due to subject motion and other physiological arti-

facts (Hansen, Lund, Sangill, & Jespersen, 2013; Hansen et al., 2016;

Poot, den Dekker, Achten, Verhoye, & Sijbers, 2010; Veraart, Novikov,

et al., 2016). Spatial smoothing such as Gaussian kernel filtering are not

appropriate for improving SNR in DTI as spatial averaging of the signal

from nearby voxels may interfere with the fitting of the diffusion ten-

sor model (Molloy, Meyerand, & Birn, 2014; Triantafyllou, Hoge, &

Wald, 2006). Instead, advanced denoising techniques can improve SNR

characteristics and fidelity of DTI-derived parameters by taking advant-

age of the spatial and temporal redundancy of the data. We used a

MP-PCA-based denoising technique to reduce signal fluctuations

rooted in thermal noise and hence increase the SNR without altering

the spatial resolution (Supporting Information Figure S2). The thermal

noise-selective nature is based on data redundancy in the MP-PCA

domain using universal properties of the eigenspectrum of random

covariance matrices (Veraart, Novikov, et al., 2016). The MP-PCA-

denoising brought the biggest improvements in the SNR-limited ZHH

data that was collected with an older MRI scanner (Supporting Informa-

tion Figure S1). It also revealed regional inhomogeneity of the noise

structure in that data set, which may be used as an important charac-

teristic for future QA design. Conversely, MP-PCA denoising only

showed minor changes in the MPRC data set that was collected with

the newest MRI scanner and a 32-channel coil (Supporting Information

Figure S2). The changes in CAMH data set were intermediate.

In summary, regression of site-specific QA factors and application

of MP-PCA-based denoising produced improved correlation between

regional patterns of FA deficits observed in SPINS subjects and these

published by the largest-to-date meta-analysis study (N51,984/2,391

patients/controls). The observed improvements were modest but

showed the outcomes of the SPINS study now more faithfully approxi-

mate the expected results. Our experiment demonstrates the impor-

tance of well-powered samples in solving the problems of

reproducibility in biomedical research. We used ENIGMA regional

effect sizes as the “gold standard” to study the impact of data homoge-

nization steps. The effect of diagnosis on FA values varied among the

three sites due to differences in sample and methodological variance.

The ZHH and MPRC samples showed higher effect sizes than

ENIGMA, while CAMH sample showed only modest effect size. The

mega-analytic aggregation with regression of methodological and

noise-related variances improved the agreement between SPINS and

ENIGMA findings. The SPINS sample was insufficiently powerful to

detect regional findings and regression of methodological variance

reduced significance of some of the regional effects despite providing a

better agreement with ENIGMA. Therefore, the comparison with

ENIGMA was used to show that smaller samples can achieve the

expected patter of effect without achieving statistical significance.

Future directions should focus on quantifying regional site-specific

QA variance. Present assessment was aimed at overall quantification of

the site-specific variance. The spatial maps of the noise derived from

the MP-PCA approach indicated that methodological variance was

regionally variable presumably due to nonlinearity in RF-receiving ele-

ments of the coil or reconstruction algorithms or other scanner hard-

ware or software related problems. Our observations should stimulate

development of QA phantoms that approximate both the geometry of

a typical human head and the nonanisotropy of human white matter

for deriving regional QA indices.

5 | CONCLUSION

Regressing methodological variances captured via a DTI-specific QA

program and reducing signal variances using an advanced denoising

approach made the outcomes of a relatively smaller multicenter study

more reproducible as judged by comparison with the largest meta-

analyses to date.

ACKNOWLEDGMENTS

Support was received from NIH grants 1/3R01MH102324, 2/

3R01MH102324, 3/3R01MH102324, R01EB015611. This work was

also supported in part by the NIH Big Data to Knowledge (BD2K)

Initiative (U54 EB020403).

ORCID

Peter Kochunov http://orcid.org/0000-0003-3656-4281

Meghann Ryan http://orcid.org/0000-0003-3822-423X

1022 | KOCHUNOV ET AL.

http://orcid.org/0000-0003-3656-4281
http://orcid.org/0000-0003-3822-423X


REFERENCES

Acheson, A., Wijtenburg, S., Rowland, L., Winkler, A., Mathias, C. W.,

Hong, L., . . . Dougherty, D. D. (2017). Reproducibility of tract-based

white matter microstructural measures using the ENIGMA-DTI proto-

col. Brain and Behavior, 7(2), e00615.

Alba-Ferrara, L. M., & de Erausquin, G. A. (2013). What does anisotropy

measure? Insights from increased and decreased anisotropy in selective

fiber tracts in schizophrenia. Frontiers in Integrative Neuroscience, 7, 9.

Chavez, S., Viviano, J., Zamyadi, M., Kingsley, P., Kochunov, P., Strothers,

S., & Voineskos, A. (2017). A novel DTI-QA tool: Automated metric

extraction exploiting the sphericity of an agar filled phantom. Mag-

netic Resonance Imaging, 46, 28–39.

Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor

imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 3–10.

Friedman, J. I., Tang, C., Carpenter, D., Buchsbaum, M., Schmeidler, J.,

Flanagan, L., . . . Davis, K. L. (2008). Diffusion tensor imaging findings

in first-episode and chronic schizophrenia patients. The American

Journal of Psychiatry, 165(8), 1024–1032.

Friedman, L., Glover, G. H., & Fbirn Consortium. (2006). Reducing interscanner

variability of activation in a multicenter fMRI study: Controlling for signal-

to-fluctuation-noise-ratio (SFNR) differences.Neuroimage, 33(2), 471–481.

Friedman, L., Glover, G. H., Krenz, D., & Magnotta, V. (2006). Reducing

inter-scanner variability of activation in a multicenter fMRI study:

Role of smoothness equalization. Neuroimage, 32(4), 1656–1668.

Glahn, D. C., Kent, J. W., Jr., Sprooten, E., Diego, V. P., Winkler, A. M.,

Curran, J. E., . . . Blangero, J. (2013). Genetic basis of neurocognitive

decline and reduced white-matter integrity in normal human brain

aging. Proceedings of the National Academy of Sciences of the United

States of America, 110(47), 19006–19011.

Hansen, B., Lund, T. E., Sangill, R., & Jespersen, S. N. (2013). Experimen-

tally and computationally fast method for estimation of a mean kur-

tosis. Magnetic Resonance in Medicine, 69(6), 1754–1760.

Hansen, B., Lund, T. E., Sangill, R., Stubbe, E., Finsterbusch, J., & Jes-

persen, S. N. (2016). Experimental considerations for fast kurtosis

imaging. Magnetic Resonance in Medicine, 76, 1455–1468.

Ioannidis, J. P. A. (2014). How to make more published research true.

PLoS Medicine, 11(10), e1001747.

Jahanshad, N., Kochunov, P., Sprooten, E., Mandl, R. C., Nichols, T. E.,

Almassy, L., . . . Glahn, D. C. (2013). Multi-site genetic analysis of dif-

fusion images and voxelwise heritability analysis: A pilot project of

the ENIGMA-DTI working group. Neuroimage, 81, 455–469.

Kelly, S., Jahanshad, N., Zalesky, A., Kochunov, P., Hibar, D., Chen, J., . . .

Donohue, G. (2017). Widespread white matter microstructural differen-

ces in schizophrenia across 4,375 individuals: Results from the ENIGMA

Schizophrenia DTI Working Group. Molecular Psychiatry, In Press.

https://www.ncbi.nlm.nih.gov/pubmed/29038599

Kochunov, P., Coyle, T., Rowland, L., Jahanshad, N., Thompson, P., Kelly,

S., . . . Le, H. (2017). White matter and core cognitive deficits in

schizophrenia. JAMA Psychiatry, In Press.

Kochunov, P., Ganjgahi, H., Winkler, A., Kelly, S., Shukla, D. K., Du, X., . . .

Hong, L. E. (2016). Heterochronicity of white matter development

and aging explains regional patient control differences in schizophre-

nia. Human Brain Mapping, 37, 4673–4688.

Kochunov, P., & Hong, L. E. (2014). Neurodevelopmental and neurodege-

nerative models of schizophrenia: White matter at the center stage.

Schizophrenia Bulletin, 40(4), 721–728.

Kochunov, P., Jahanshad, N., Sprooten, E., Nichols, T. E., Mandl, R. C., Almasy,

L., . . . Glahn, D. C. (2014). Multi-site study of additive genetic effects on

fractional anisotropy of cerebral white matter: Comparing meta and meg-

aanalytical approaches for data pooling. Neuroimage, 95C, 136–150.

Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R.,

. . . Shenton, M. E. (2007). A review of diffusion tensor imaging stud-

ies in schizophrenia. Journal of Psychiatric Research, 41(1–2), 15–30.

Marchenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some

sets of random matrices.Matematicheskii Sbornik, 114(4), 507–536.

Molloy, E. K., Meyerand, M. E., & Birn, R. M. (2014). The influence of

spatial resolution and smoothing on the detectability of resting-state

and task fMRI. NeuroImage, 86, 221–230.

Nazeri, A., Mallar Chakravarty, M., Felsky, D., Lobaugh, N. J., Rajji, T. K.,

Mulsant, B. H., & Voineskos, A. N. (2012). Alterations of superficial

white matter in schizophrenia and relationship to cognitive perform-

ance. Neuropsychopharmacology, 38, 1954–1962.

Perez-Iglesias, R., Tordesillas-Gutierrez, D., McGuire, P. K., Barker, G. J.,

Roiz-Santianez, R., Mata, I., . . . Crespo-Facorro, B. (2011). White mat-

ter integrity and cognitive impairment in first-episode psychosis. The

American Journal of Psychiatry, 167(4), 451–458.

Phillips, K. A., Rogers, J., Barrett, E. A., Glahn, D. C., & Kochunov, P.

(2012). Genetic contributions to the midsagittal area of the corpus

callosum. Twin Research and Human Genetics, 15(3), 315–323.

Poot, D. H. J., den Dekker, A. J., Achten, E., Verhoye, M., & Sijbers, J.

(2010). Optimal experimental design for diffusion kurtosis imaging.

IEEE Transactions on Medical Imaging, 29(3), 819–829.

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.

E., Mackay, C. E., . . . Behrens, T. E. (2006). Tract-based spatial statis-

tics: Voxelwise analysis of multi-subject diffusion data. Neuroimage,

31(4), 1487–1505.

Triantafyllou, C., Hoge, R. D., & Wald, L. L. (2006). Effect of spatial

smoothing on physiological noise in high-resolution fMRI. Neuro-

Image, 32(2), 551–557.

Veraart, J., Fieremans, E., & Novikov, D. S. (2016). Diffusion MRI noise

mapping using random matrix theory. Magnetic Resonance in Medicine,

76, 1582–1593.

Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J., &

Fieremans, E. (2016). Denoising of diffusion MRI using random matrix

theory. NeuroImage, 142, 394–406.

Wang, Z. J., Seo, Y., Chia, J. M., & Rollins, N. K. (2011). A quality assurance

protocol for diffusion tensor imaging using the head phantom from

American College of Radiology.Medical Physics, 38(7), 4415–4421.

Wright, S. N., Hong, L. E., Winkler, A. M., Chiappelli, J., Nugent, K., Muel-

lerklein, F., . . . Kochunov, P. (2015). Perfusion shift from white to

gray matter may account for processing speed deficits in schizophre-

nia. Human Brain Mapping, 36, 3793–3804.

Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B.

(2014). Spurious group differences due to head motion in a diffusion

MRI study. Neuroimage, 88C, 79–90.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Kochunov P, Dickie EW, Viviano JD,

et al. Integration of routine QA data into mega-analysis may

improve quality and sensitivity of multisite diffusion tensor

imaging studies. Hum Brain Mapp. 2018;39:1015–1023. https://

doi.org/10.1002/hbm.23900

KOCHUNOV ET AL. | 1023

https://www.ncbi.nlm.nih.gov/pubmed/29038599
https://doi.org/10.1002/hbm.23900
https://doi.org/10.1002/hbm.23900

