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Abstract
Medial temporal lobe (MTL) subregions play integral roles in memory function and are differentially

affected in various neurological and psychiatric disorders. The ability to structurally and functionally

characterize these subregions may be important to understanding MTL physiology and diagnosing dis-

eases involving the MTL. In this study, we characterized network architecture of the MTL in healthy

subjects (n531) using both resting state functional MRI andMTL-focused T2-weighted structural MRI

at 7 tesla. Ten MTL subregions per hemisphere, including hippocampal subfields and cortical regions of

the parahippocampal gyrus, were segmented for each subject using a multi-atlas algorithm. Both struc-

tural covariance matrices from correlations of subregion volumes across subjects, and functional

connectivity matrices from correlations between subregion BOLD time series were generated. We

found a moderate structural and strong functional inter-hemispheric symmetry. Several bilateral hippo-

campal subregions (CA1, dentate gyrus, and subiculum) emerged as functional network hubs. We also

observed that the structural and functional networks naturally separated into two modules closely cor-

responding to (a) bilateral hippocampal formations, and (b) bilateral extra-hippocampal structures.

Finally, we found a significant correlation in structural and functional connectivity (r50.25). Our find-

ings represent a comprehensive analysis of network topology of the MTL at the subregion level. We

share our data, methods, and findings as a reference for imaging methods and disease-based research.
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1 | INTRODUCTION

The medial temporal lobe (MTL) comprises hippocampal subfields and

surrounding parahippocampal, perirhinal, and entorhinal cortices. In

healthy humans, it serves as the anatomical locus for declarative

memory (Squire and Zola-Morgan, 1991) and is a key component of

the default mode network (Buckner et al., 2009). The MTL is also

affected in a number of neurological and psychiatric disorders,

including Alzheimer’s disease, temporal lobe epilepsy, schizophrenia,

and depression (Mueller et al., 2009; Mueller et al., 2010; Posener

et al., 2003; Schobel et al., 2009; Small, Schobel, Buxton, Witter, &

Barnes, 2011).

Prior studies in humans and animal models suggest functional spe-

cialization of the various MTL subregions in memory processes, with

left and right hemispheres mediating verbal and nonverbal memory,

respectively (Guzowski, Knierim, & Moser, 2004; Leal and Yassa, 2015;

Suthana, Ekstrom, Moshirvaziri, Knowlton, & Bookheimer, 2009;

Suthana et al., 2015). For example, the dentate gyrus plays a role in

pattern separation (Leutgeb, Leutgeb, Moser, & Moser, 2007), CA3 in

pattern completion (Neunuebel and Knierim, 2014), CA1 in place mem-

ory and autobiographical memory retrieval (Bartsch et al., 2010;

Bartsch, Dohring, Rohr, Jansen, & Deuschl, 2011), and entorhinal cortex

in hippocampal-neocortical communication (Lavenex and Amaral,

2000). Evidence from a range of modalities indicates that there are

spatially non-uniform structural and functional changes in the MTL in

neurological diseases. Although many of these studies derive from

neuroanatomical and neurophysiological data, more recent work uses

noninvasive in vivo neuroimaging. For example, MRI and PET studies in

Alzheimer’s disease show hypometabolism of the entorhinal cortex (de

Leon et al., 2001; Moreno et al., 2007; Small et al., 2011), volumetric

changes in entorhinal cortex, subiculum, CA1, and the CA1–2 transition

zones (Mueller et al., 2010), and atrophy localized to CA1 in early

disease (de Flores, La Joie, & Ch�etelat., 2015). The cortical thickness of

Brodmann area 35 (a component of the perirhinal cortex) also discrimi-

nates between preclinical Alzheimer’s disease and normal aging (Wolk

et al., 2017). Semantic dementia patients exhibit atrophy of CA1 and

subiculum, most prominently in the left hemisphere (La Joie et al.,

2013). Patients with unilateral mesial temporal sclerosis and temporal

lobe epilepsy demonstrate atrophy (Mueller et al., 2009) and decreased

functional activation during memory encoding (Das et al., 2011) of sev-

eral hippocampal subfields ipsilateral to seizure focus. MTL subregions

are also implicated in psychiatric disorders where findings include vol-

ume loss in CA3/dentate gyrus subfields in post-traumatic stress disor-

der (Wang et al., 2010), hippocampal atrophy and shape deformations

localized to the subiculum in depression (Malykhin and Coupland,

2015; Posener et al., 2003; Sheline, Wang, Gado, Csernansky, & Van-

nier, 1996), and selective CA1 hypermetabolism in schizophrenia (Scho-

bel et al., 2009).

Neuroanatomical studies elucidate intra-MTL circuitry as a com-

plex network of structural connections promoting information transfer

(Lavenex and Amaral, 2000). A growing body of research from the field

of network neuroscience highlights the importance of characterizing

brain connectivity, though predominantly at the scale of a whole brain

connectome. This network neuroscience approach involves applying

methods from graph theory to describe functional and/or structural

connectivity between pre-defined brain regions (Bassett and Sporns,

2017; Bullmore and Sporns, 2009; Zalesky et al., 2010). Application of

this approach reveals that whole-brain network architecture is

modulated during cognitive effort (Bassett et al., 2009; Braun et al.,

2015; Kitzbichler, Henson, Smith, Nathan, & Bullmore, 2011; Stanley,

Dagenbach, Lyday, Burdette, & Laurienti, 2014), and disrupted in

various neurological and psychiatric diseases impacting cognition

(Bassett, Nelson, Mueller, Camchong, & Lim, 2012; Bernhardt, Chen,

He, Evans, & Bernasconi, 2011; Minkova et al., 2016; Supekar, Menon,

Rubin, Musen, & Greicius, 2008; Zhang et al., 2011). In addition to

whole-brain networks, several studies suggest that network features

within particular subregions of the brain can serve as useful biomarkers

for neurological function and dysfunction (Khalsa, Mayhew, Chechlacz,

Bagary, & Bagshaw, 2014; Ould Ismail, Amouzandeh, & Grant, 2016;

Soto, Bassett, & Ashby, 2016), and may also reflect changes in

larger-scale brain patterns of functioning and behavior (Deco et al.,

2014; Palop et al., 2007). This prior work lends evidence to the notion

that characterizing the intra-MTL network via non-invasive neuroimag-

ing can lead to a better understanding of MTL physiology and provide

a baseline for studies of neurological diseases involving the MTL.

Functional networks in neuroimaging data are typically derived

from resting state blood oxygenation level dependent (BOLD) func-

tional MRI (fMRI) time series that show spontaneous, low-frequency

signal fluctuations (Biswal, Yetkin, Haughton, & Hyde, 1995). Structural

brain networks can be derived from across-subject covariance of MRI-

derived morphometric features such as cortical thickness or gray mat-

ter volume (Bassett et al., 2008; Mechelli, Friston, Frackowiak, & Price,

2005). These networks display some correspondence with known ana-

tomical networks, perhaps because brain regions that strongly covary

in size across subjects may experience common trophic influences

(Alexander-Bloch, Giedd, & Bullmore, 2013; Gong, He, Chen, & Evans,

2012; Lerch et al., 2006; Zielinski, Gennatas, Zhou, & Seeley, 2010).

Whole-brain functional and structural networks are correlated but

also provide complementary information; for example, functional con-

nectivity has been observed between regions with minimal structural

connectivity, suggesting that functional connectivity can be mediated

by indirect structural connections (Damoiseaux and Greicius, 2009;

Hagmann et al., 2008; Honey et al., 2009; Koch, Norris, & Hund-

Georgiadis, 2002; Liang et al., 2017).

The primary goal of this study was to exploit recent developments

in high-resolution MRI and automated segmentation algorithms to

investigate the network architecture of the MTL. Specifically, we car-

ried out a multi-atlas segmentation approach to identify MTL subre-

gions in healthy adults, using sub-millimeter 7 tesla (7T) T2-weighted

MRI data tailored for MTL subregion visualization, and used graph the-

oretic methods to characterize both structural and functional MTL sub-

region networks. We sought to address several key questions. First, to

what extent are the structure and function of the MTL symmetric

across hemispheres? Elucidating MTL symmetry in a normative popula-

tion would be particularly useful to establish a baseline for future stud-

ies, given the existence of hemispheric lateralization of memory
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function and the possibility of unilateral MTL deficits in neurological

diseases, most apparently temporal lobe epilepsy and semantic demen-

tia. Second, which MTL subregions serve as network hubs that might

facilitate information transfer within network? Third, what is the modu-

lar organization of the MTL subregion network? And finally, what is the

interplay between structure and function within the network? Our

findings represent a comprehensive in vivo analysis of intra-MTL net-

work topology in healthy subjects at the subregion level, and can serve

as the basis for better understanding its physiological function in both

health and disease.

2 | METHODS

2.1 | Subjects

We recruited 31 healthy adult subjects (mean age530.9, SD 10.2, 16

female) with no history of neurological or psychiatric disorders. All

studies were conducted under an approved Institutional Review Board

protocol of the University of Pennsylvania. We additionally recruited

four adults with temporal lobe epilepsy and three adults with mild cogni-

tive impairment for our atlas set of manually segmented structural MRI

images to be used for the automated segmentation protocol (see Section

2.3 for details). The rationale for including subjects with neurological

disease is to enhance usability of our atlas in future studies, with the

hypothesis that such a representative atlas will allow for more accurate

automated segmentations in both healthy and diseased brains.

2.2 | Image acquisition

Whole-brain images were acquired using a 7.0-T whole-body MRI

scanner (Siemens Medical Systems) with a 32-channel phased-array

head coil (Nova Medical Inc.). For all 31 healthy subjects and additional

atlas subjects, we obtained 0.4 3 0.4 3 1.0 mm3 MTL-tailored 7T

T2-weighted structural turbo spin-echo MRI (0.4 3 0.4 mm in plane

resolution, 1 mm slice thickness, 224 coronal slices, TR53,000 ms,

TE5388 ms, 6.16 ms echo spacing) with oblique coronal slices ori-

ented perpendicular to the long axis of the hippocampus and 0.8 3 0.8

3 0.8 mm3 T1-weighted MPRAGE (176 axial slices, TR52,800 ms,

TE54.4 ms, TI51,500 ms, flip angle 578). We also obtained 2 mm3

isotropic resting state fMRI in a subset of 24 healthy adult subjects

(mean age531.7, SD 11.2, 14 female), using a gradient-echo echopla-

nar (EPI) sequence (64 axial slices with 2 mm thickness prescribed in

the superior–inferior direction starting from the apex of the brain;

matrix size596 3 96; FOV5192 mm; TR51 s; TE523.6 ms;

multiband factor54; 420 volumes; 7 minutes) and a B0 field-map

sequence (TR51 s, TE153.24 ms, TE255.37 ms). This fMRI acquisition

led to coverage of the entire cerebrum in all subjects.

2.3 | MTL segmentation

To generate MTL segmentations for our dataset, we used the multi-

atlas automated segmentation pipeline, Automated Segmentation of

Hippocampal Subfields (ASHS) (Yushkevich et al., 2015), which employs

joint label fusion (Wang et al., 2013) and corrective learning (Wang

et al., 2011) to automatically segment a target image based on a set of

manually labeled atlas images. To allow for automated segmentation of

our data, we first acquired our own atlas set of 19 subjects: 12 healthy

adults (a subset of our 31 healthy adult dataset), 4 temporal lobe epi-

lepsy patients, and 3 subjects with mild cognitive impairment. Struc-

tural MRI was acquired in these subjects using the protocol described

in Section 2.2.

Manual segmentation of the MTL in these 19 subjects was carried

out in ITK-SNAP (Yushkevich et al., 2006) by a trained segmentation

expert, using a protocol adapted from the ASHS 3T MRI study

(Yushkevich et al., 2015). The protocol defines MTL subregion bounda-

ries based on a combination of image intensity features and geometric

rules using the oblique coronal slices of the T2-weighted images. As

illustrated in Figure 1, we segmented 10 subregions per hemisphere as

follows: hippocampal subfields (CA1, CA2, CA3, DG, subiculum, tail)

and cortical regions of the parahippocampal gyrus (entorhinal cortex,

parahippocampal cortex (PHC), and perirhinal cortex divided into BA35

and BA36). The hilus (also sometimes called CA4 or included in CA3)

was incorporated in the DG label, and the tail region was composed

of the posterior-most aspects of the hippocampus in which individual

subfields cannot be discriminated.

To evaluate the efficacy of the atlas, we used a leave-one-out

approach to generate automated segmentations for each subject in the

atlas. We then assessed for the degree of overlap between the automated

and manual segmentations for each subject by computing the dice similar-

ity coefficient (DSC). DSC ranges from 0 to 1 and is computed as follows:

DSC A;Bð Þ52 jA \ Bj
jAj1jBj ; (1)

where A and B are, in our case, binary image segmentations.We computed

mean DSCs between automated and manual segmentations in our atlas

for each individual subregion. The computed DSCs were good across all

subregions (range 0.61–0.83) (Table 1). Although all subregions had a

mean DSC>0.6, smaller subregions had lower overlap scores, likely

because small, voxel-level shifts between automated and manual segmen-

tations can substantially penalize the DSC in smaller, thinner subregions

(Pipitone et al., 2014; Wisse et al., 2016). Perirhinal cortical regions BA35

and BA36 also had slightly lower DSC values, likely due to some ambigu-

ity in the maximal coronal extents of these regions. Our overlaps were

comparable to those seen in the prior 3T ASHS MTL atlas (subregion-

level DSCs between 0.50 and 0.819) (Yushkevich et al., 2015) and higher

in smaller subregions, perhaps as a result of the higher resolution images.

The hippocampal subfield overlaps were also comparable with another

recently published hippocampal atlas (DSCs between 0.54 and 0.85)

which also used the ASHS protocol on 7T MRI but did not include all

regions of the parahippocampal gyrus (Wisse et al., 2016). For a visual

representation of the efficacy of the automated approach, Figure 2 illus-

trates the comparison between the manual and automated segmentation

for a representative subject.

The study atlas was used to generate automated MTL segmenta-

tions of the 31 T2-weighted images in our healthy adult dataset. We

qualitatively assessed all resulting automated segmentations via visual

inspection (by authors P.S., L.W.). The resulting segmented MTL
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subregions were used as regions of interest for all subsequent analysis,

though for the 12 healthy adult subjects which were also in the atlas

set, we used the manual rather than automated segmentations to maxi-

mize segmentation accuracy.

2.4 | MTL volumetry

We first computed MTL subregion volumes to compare findings to

prior studies and to relate our network findings to underlying volume-

try. We calculated volumes and volumetric asymmetry indices ([Right –

Left]/[Right1 Left]) for each of the 10 subregions, as well as for the

entire hippocampus and entire MTL.

2.5 | Functional and structural network generation

We carried out several processing steps on the raw fMRI time series

data. First, B0 maps were used to correct EPI distortion. Next,

six-parameter rigid body motion correction was implemented to

account for head motion-related artifacts (Friston, Frith, Frackowiak, &

Turner, 1995). All included subjects experienced minimal head motion

(<1 mm translation and<0.58 rotation in any direction) at all times

during acquisition. Following motion correction, the fMRI data were

co-registered to the high-resolution structural MRI space (using

rigid-body transformation and a mutual information cost function), as

there is evidence that analyzing fMRI data in higher resolution

anatomical space improves spatial precision and reproducibility of

measurements (Kang, Yund, Herron, & Woods, 2007). To reduce

low-frequency drift and high-frequency noise (Biswal et al., 1995;

Van Dijk et al., 2010), the fMRI data were temporally band-pass

filtered in the range of 0.008-0.08 Hz. Physiological noise was

eliminated via linear regression to factor out the global signal and

mean signals from white matter and cerebrospinal fluid regions (Van

Dijk et al., 2010). The Atropos method (Avants, Tustison, Wu, Cook,

& Gee, 2011) was used for three-tissue segmentation. We also

regressed out the six parameters of head motion (obtained from

motion correction) and their six temporal derivatives to minimize

motion-induced signal variation (Van Dijk, Sabuncu, & Buckner,

2012; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). To mini-

mize mixing of BOLD signal between neighboring subregions, we did

not apply any spatial smoothing, as is common in high-resolution

fMRI studies (Carr, Rissman, & Wagner, 2010; Das et al., 2011). Lin-

ear Pearson correlations between the average residual time-series

signals for each MTL subregion were used to generate functional

connectivity matrices for each subject (Zalesky, Fornito, & Bullmore,

2012). The matrices were Fisher r-z transformed for variance stabili-

zation (Fisher, 1921) and then averaged across subjects to generate

a group-level functional connectivity matrix.

We carried out several extra processing steps on the volumetric

data. First, consistent with the procedures in Yushkevich et al. (2015),

we normalized the volumes of the extrahippocampal cortical regions

(ERC, BA35&36, and PHC) by their the anterior-posterior extents as

follows:

FIGURE 1 Example MTL manual segmentation: (a) superior and (b) anterior 3D views, (c) coronal T2 slice with (d) overlying segmentation. DG,
dentate gyrus; SUB, subiculum; ERC, entorhinal cortex; BA351BA36, Brodmann areas 35 and 36 (perirhinal cortex); PHC, parahippocampal cortex

TABLE 1 Atlas validation: DSCs (mean6 SDs) characterizing overlap
between automated and manual segmentation for each subregion
in the MTL atlas

DSC (Auto vs. manual)

Left Right

CA1 0.7960.04 0.7860.07

CA2 0.6060.12 0.6260.15

CA3 0.6260.07 0.6160.09

DG 0.8260.04 0.8360.05

Tail 0.7860.06 0.7860.07

Sub 0.8060.02 0.7860.03

ERC 0.7760.04 0.7660.03

BA35 0.6660.07 0.6560.07

BA36 0.7160.04 0.7060.08

PHC 0.7560.06 0.7560.09
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normalized volume½ �5 volume½ �
extent in slices½ �3 slice thickness½ � : (2)

Since the anterior–posterior slice boundaries of these regions

were defined relative to the hippocampal head, this normalization step

ensures that the volumes are not confounded by hippocampal head

length. Additionally, we adjusted each subregion volume by total

intracranial volume via linear regression, motivated by a prior study

demonstrating that normalizing regional volumes by intracranial volume

is necessary to accurately characterize the extent of disease-driven

regional atrophy (Voevodskaya et al., 2014), and consistent with other

studies (Mueller et al., 2009; Yushkevich et al., 2015). We generated a

group-level structural covariance matrix using the Pearson correlations

between these normalized MTL subregion volumes across subjects, as

Pearson correlation between regional gray matter volumes has been

found to be a useful measure of structural connectivity in prior studies

(Hosseini, Hoeft, & Kesler, 2012; Wu et al., 2012). Similar to the func-

tional networks, the matrix was then Fisher r-z transformed.

Matrices were kept fully weighted, as there is evidence that con-

nection strength carries important information about network architec-

ture (Bassett and Bullmore, 2016) and that weak connections show

potential as disease biomarkers (Bassett et al., 2012). In both the func-

tional and structural networks, the matrices represent graphs in which

subregions serve as nodes and the strength of correlation between

pairs of subregions serve as edge weights. The procedure for generat-

ing both functional and structural networks from the MTL subregions

is summarized in Figure 3.

2.6 | Functional and structural network analysis

2.6.1 | Network symmetry and hubness

As described in Section 2.5, we characterized the MTL networks as

graphs, which contain nodes and edges. Such graphs can contain heter-

ogeneous structure that is important for the system’s function.

Although a number of graph statistics have been defined to understand

this heterogeneous structure, many of them are correlated with one

another, especially in brain networks (Li et al., 2011; Lynall et al., 2010).

It is useful to choose a set of graph statistics that describe important

dimensions of variation in brain networks but are not necessarily

redundant. Historically, measures that have proven particularly useful

in characterizing brain graphs include the connectivity strength, cluster-

ing coefficient, and efficiency (Bullmore and Sporns, 2009), largely due

to their sensitivity to the markers of small-world architecture (Bassett

and Bullmore, 2016). We therefore computed local connectivity

strength, clustering coefficient, and efficiency for both group-level

structural covariance and functional networks. Since the most widely-

applied definitions for these metrics require non-negative edge weights

(Rubinov and Sporns, 2010), and since the meaning of negative correla-

tions is debatable and not well understood (Chai, Casta~n�on, €Ong€ur, &

Whitfield-Gabrieli, 2012; Fox, Zhang, Snyder, & Raichle, 2009; Murphy

and Fox, 2016), we set negative edge weights to zero. The percentage

of connections surviving this threshold was 85.3% of edges in the

group structural network and 96.8% in the group functional network.

We define the network metrics below.

1. Connectivity Strength: The local connectivity strength ki at node

i for a weighted network with a set of nodes, N, is the sum of the

weights of all connections to node i as follows:

ki5
1
N

X

j2N

wij; (3)

where wij is the edge weight between nodes i and j.

2. Clustering Coefficient: The local clustering coefficient ci at node

i can be conceptualized as the likelihood that the neighbors of i are

interconnected. One way in which to quantify this concept for

weighted networks is:

ci5
2

ki k21ð Þ
X

j;h2N

~wij ~wih ~wjh

� �1=3 ; (4)

where the weights are scaled by the largest weight in the network, i.e.

~wij5wij=max(wij) (Onnela, Saramäki, Kert�esz, & Kaski, 2005).

3. Efficiency: The local efficiency ei is often thought of as a

measure of the capacity of node i for information transfer throughout

the network (Latora and Marchiori, 2001, 2003) (although for caveats

in this interpretation, see also Rubinov and Bassett, 2011). It can be

defined as follows (Achard and Bullmore, 2007):

ei5
1

N21

X

i 6¼j2N

1
Lij

; (5)

where Lij is the shortest weighted path length between nodes i and j,

where the length of each edge is the reciprocal of the edge weight, 1/wij.

FIGURE 2 Coronal slices of left MTL in a representative subject with (a) manual segmentation and (b) corresponding automated segmentation
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To characterize the network symmetry, we computed the Pearson

correlation coefficient between the network metrics for left and right

hemispheres, as well as the asymmetry indices ([Right – Left]/[Right

1 Left]) for each subregion for each of the three network metrics. To

summarize the degree of asymmetry in the network, we also defined a

network asymmetry index m as the mean of the absolute value of the

asymmetry indices across all subregions and across all three network

metrics as follows:

m5
1

3 � N
XN=2

i51

����
ki1N=22 ki
ki1N=21 ki

����1
����
ci1N=22 ci
ci1N=21 ci

����1
����
ei1N=22 ei
ei1N=21 ei

����; (6)

where the first N/2 nodes correspond to the left MTL subregions

and the last N/2 nodes correspond to the analogous right MTL

subregions. Like a standard asymmetry index, m can range from

0 to 1.

We also used the local network metrics to identify network

hubs that might serve as key facilitators of information transfer.

Although there is no one agreed upon definition of a network hub

(Zuo et al., 2012), it has been suggested that aggregating rankings

across multiple network metrics is a robust approach to defining a

hub (van den Heuvel and Sporns, 2013). We wanted to identify sub-

regions with relatively high strength, clustering, and efficiency.

Since the distributions of metric values were non-Gaussian, we

defined a network hub to be any subregion that had a local network

metric value at least 25% higher than the median value across

subregions, for all three computed metrics (strength, clustering, and

efficiency).

2.6.2 | Modular organization assessed by community

detection

Although the previous analysis focused on node-level network analysis,

additional characterization of global network topology was needed to

highlight the relationships between the MTL subregions. Therefore, we

characterized modular organization, which is a network property that

has previously been shown in whole-brain studies to vary across

development and in neurological diseases (Alexander-Bloch et al.,

2010; Doucet et al., 2014; Fair et al., 2009). Modules represent

“communities” within networks (Fortunato, 2010; Porter, Onnela, &

Mucha, 2009): subsets of nodes that are more strongly connected

among themselves than they are to nodes in other modules. To quantify

the degree to which a network can be partitioned into modules, one can

define a modularity quality function as follows (Newman, 2004):

Q05
X

i 6¼j2N

Aij2gPij
� �

d gi; gj
� �

; (7)

where Aij is the weighted adjacency matrix, d gi; gj
� �

51 if nodes i and j

are in the same module and 0 otherwise, and g is a resolution parameter

(chosen to be 1 as is standard). The element Pij is the expected weight of

the edge connecting node i to node j under the Newman-Girvan null

model defined by:

Pij5
kikj
2m

; (8)

wherem is the total weight of the edges in the matrix. The Louvain algo-

rithm was used to partition the MTL into modules, as this method is

computationally efficient and leads to higher modularity values

FIGURE 3 Network analysis approach: (a) MTL subregions were segmented. (b) Elements of the structural covariance matrix were
equivalent to Pearson correlations between normalized MTL subregion gray matter volume pairs across subjects (each data point in the
displayed plot represents one subject). (c) Elements of the subject-specific functional connectivity matrices were equivalent to Pearson
correlations of residual time series between MTL subregion pairs (these matrices were then averaged across subjects). (d) Matrices were
further processed via Fisher r-z transformation and analyzed using various graph-theoretic measures
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compared with other approaches (Blondel, Guillaume, Lambiotte, &

Lefebvre, 2008).

2.6.3 | Structure-function correlation

Given prior work suggesting topological isomorphism between whole-

brain structural covariance networks and resting-state fMRI networks

(Bassett et al., 2008; Liao et al., 2013), we wanted to determine to

what degree this finding is upheld in intra-MTL networks. This informa-

tion could clarify the degree to which structural and functional connec-

tivity provide complementary vs. equivalent information. The normal

structure–function correlation may also serve as an informative base-

line for future studies, as prior whole-brain studies have revealed

changes in structure–function relationship during neurological disease

(Liao et al., 2013) and in various cognitive states (Hermundstad et al.,

2013; Hermundstad et al., 2014). To directly quantify the relationship

between structure and function in the MTL network, we computed the

Pearson correlation coefficient between the edges in the group level

structural covariance matrix and the group-level functional connectivity

matrix. To minimize loss of information, we included anti-correlations

(edge weights less than zero) in this analysis. Furthermore, we repeated

the analysis using only the 24 subjects who had both structural and

functional scans (n524) to ensure robustness of findings over a com-

mon group of subjects.

2.7 | Statistical analysis

2.7.1 | MTL volumetry

Regions with significant volumetric asymmetry were determined using

a one-sample, two-tailed t-test, Bonferroni-corrected for multiple com-

parisons over the 12 regions (10 MTL subregions1 entire hippocam-

pus1 entire MTL).

2.7.2 | Network analysis

To assess the variability of our findings for both functional and struc-

tural networks, we carried out a bootstrapping procedure by randomly

sampling subjects with replacement. We generated 1,000 bootstrapped

samples such that each sample had the same number of subjects as the

original dataset (n531 for structural networks, n524 for functional

networks). For each of 1,000 bootstrapped samples, we generated a

functional and structural network as described in Section 2.5, leading

to a set of 1,000 functional and 1,000 structural bootstrapped matrices.

Variability in local network metrics and the network asymmetry meas-

urements was assessed by repeating these computations across the

bootstrapped networks. We determined the significance of network

symmetry by comparing the computed m-values to a null distribution of

m-values generated by randomly permuting the network nodes (1,000

permutations).

For modularity, we determined the significance of the partitions by

comparing the modularity of the partitioned networks with that of ran-

dom networks generated via random permutation of the network

edges (10,000 permutations) (Bassett et al., 2013). To verify the

replicability of the discovered modules, we also assessed modular

organization using alternative approaches. First, for both functional and

structural networks, we carried out modularity analysis for each of the

1,000 bootstrapped matrices. Specifically, we computed the partitions

for each of the 1,000 bootstrapped matrices and identified a consensus

partition (Bassett et al., 2013). The consensus partition is defined as

the partition that is most similar to the rest (Doron, Bassett, & Gazza-

niga, 2012), where similarity is defined as the z-score of the Rand simi-

larity coefficient (Traud, Kelsic, Mucha, & Porter, 2011). Second, for the

functional networks, we computed the partitions for each of the

subject-specific functional matrices (prior to averaging across subjects)

and identified a consensus partition.

Finally, we computed the significance of the structure–function

Pearson correlation by comparing the true correlation to a null distribu-

tion of correlations generated via random permutation of the network

edges (10,000 permutations).

We considered the possibility that subregion size and temporal

signal-to-noise ratio (tSNR) could be confounding factors for our

functional network findings. Therefore, we assessed the correlation

between mean subregion size and mean subregion tSNR with

functional node-level metrics to assess the effect of these variables.

Significance in these correlations was determined by permuting the

nodes of the network (i.e., subregions) to generate a null distribution of

correlations (1,000 iterations).

2.8 | Reproducibility analysis

We carried out additional analyses to evaluate robustness of our find-

ings to modifications in our analysis pipeline. First, we replicated our

functional network analyses omitting global signal regression, as this

pre-processing step has been a topic of much debate (Murphy and Fox,

2016). Second, we replicated our entire analysis after replacing any

manual segmentations with their corresponding automated segmenta-

tions. Third, since investigations of brain connectivity often utilize

binary graphs as input, we carried out analogous analyses on binary

networks derived using a range of thresholds (see Supporting Informa-

tion for a detailed description), to enhance interpretability and applic-

ability to future studies. Finally, since the CA2 and CA3 regions are

quite small and may have unreliable signal on their own, we repeated

analyses after combining them with CA1 to generate a “CA” region, as

well as removing them altogether.

2.9 | Software

Image processing and network analyses used a combination of SPM

(Friston et al., 1994), FSL (Smith et al., 2004), ANTS (Avants, Tustison,

& Song, 2009), the Brain Connectivity Toolbox (Rubinov and Sporns,

2010), and custom python scripts.

3 | RESULTS

3.1 | MTL volumetric analysis

Following atlas validation, we computed MTL subregion volumes (Table 2)

and asymmetry indices (Figure 4) across our healthy adult dataset.

Although normative MTL subregion volumes are unknown due to
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variation in subregion definitions and protocols, our volumes fall within

the range of values from various prior neuroimaging and histological stud-

ies (Supporting Information Table S1). Our total hippocampal volumes are

consistent with those of previous studies, including a meta-analysis which

incorporated data from 3,564 subjects (Pedraza, Bowers, & Gilmore,

2004).

As expected, most subregions exhibited hemispheric volumetric

symmetry; interestingly, we found significant asymmetries (p< .001) in

the dentate gyrus (R> L), CA3 (L>R), and hippocampus (R> L), using

a one-sample, two-tailed t-test, Bonferroni-corrected for multiple

comparisons over the 12 regions.

3.2 | MTL network findings

By relating the three subregion-level functional network metrics

(connectivity strength, clustering coefficient, and efficiency)

between left and right hemispheres, we found that there is a strong

degree of functional MTL symmetry, greater than what would be

expected by chance (r5 .97; m 5 0.026, p< .0001) (Figure 5a). There

is also a moderate degree of structural symmetry, greater than what

would be expected by chance (r5 .45–.67; m50.08, p5 .002),

though certain subregions—most notably the dentate gyrus—exhibit

strong structural network asymmetry (Figure 5b). Mean and SDs of

individual subregion-level network metric values and asymmetries,

based on the bootstrapped matrices, are presented in Supplemen-

tary Figure 1. As shown in Figure 5a, the bilateral CA1, subiculum,

and DG subregions exhibit substantially higher functional connectiv-

ity as measured by all 3 metrics, and serve as clear functional

network hubs. Using our definition of hubness, no subregions

emerge as structural hubs.

After analysis of subregion-level network properties, our next anal-

ysis focused on the relationship between subregions via modularity

detection. We found that both functional and structural networks

organize into two modules, determined to be significant via permuta-

tion testing (structural p5 .0006, functional p5 .0241) (Figure 6). The

functional networks subdivide into one module consisting of bilateral

hippocampi and a second module consisting of bilateral parahippocam-

pal regions. The structural networks subdivide into one module consist-

ing of bilateral CA1, DG, subiculum, and tail, and a second module

consisting of all remaining regions. Modularity detection and consensus

partitioning on the bootstrapped networks yielded the identical

functional and structural modules, as did modularity detection and

consensus partitioning on the subject-specific functional networks.

These results highlight the reproducibility of our findings across a range

of approaches for characterizing network modularity.

Finally, we determined the relationship between function and

structure by correlating the edge weights of the structural and mean

functional matrices. We found a subtle but significant correlation

(r5 .25, p< .0005 via permutation testing) between the structural and

functional networks (Figure 7). Re-computing the structure–function

correlation with only the 24 subjects who had both structural and func-

tional scans (n524) yielded nearly identical results (r5 .26, p< .0005).

Overall findings of network symmetry, hubness, modular

organization, and structure–function correlation were consistent after

replicating analysis with various modifications (omitting global signal

regression, utilizing all manual segmentations, carrying out binary net-

work analysis, and removing CA2/3 effects), with only minimal changes

in results (Supporting Information Figures S2–S5). We found no signifi-

cant correlation between mean subregion size and mean connectivity

strength (r5 .18, p5 .60), clustering coefficient (r5 .17, p5 .62), or

local efficiency (r5 .130, p5 .70). Similarly, we found no significant cor-

relation between mean subregion tSNR and mean connectivity

strength (r5 .19, p5 .59), clustering coefficient (r5 .20, p5 .57), or

local efficiency (r50.20, p5 .59).

TABLE 2 Mean and SDs of computed volumes for each MTL subre-
gion, entire hippocampus (CA1–3, DG, Tail, Sub) and entire MTL
over the healthy adult dataset

Computed volumes (mm3)

Left Right

CA1 8216 182 8046 160

CA2 26.268.70 30.4611.3

CA3 1076 19 88.9626.3

DG 6236 123 7406 128

Tail 3156 83.0 2966 69.9

Sub 8376 93.3 8536 97.7

ERC 6126 85.4 5886 81.5

BA35 6606 90.0 6086 110

BA36 18166 292 16466 235

PHC 10936 225 10476 271

HIPP 27296 347 28126 344

MTL 69116 787 67016 690

FIGURE 4 Mean and SDs of volumetric asymmetry indices
[(Right – Left)/(Right1 Left)] for each MTL subregion, entire
hippocampus (CA1–3, DG, Tail, Sub) and entire MTL over the
healthy adult dataset, *p<0.001 (one-sample, two-tailed t test,
Bonferroni corrected for multiple comparisons over 12 regions)
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Functional (a) and structural (b) local strength, clustering coefficient (Clust.), and efficiency (Eff.) plotted for each MTL subregion
between left (L) and right (R) hemispheres, along with correlation line (gray) and Pearson correlation values. Dotted red y5 x line shown for
comparison. Functional hubs (bilateral CA1, DG, and subiculum) are highlighted by dotted red circle. Overall network asymmetry (mÞ metric
is also displayed for functional (a) and structural (b) networks in relation to null distributions (with associated median and 95% CIs), which
demonstrates significantly lower network asymmetry compared with the null distribution (functional permutation p < .0001, structural
permutation p5 .002)

FIGURE 6 Detection of (a) functional and (b) structural modules within MTL connectivity matrices, along with visualization of modules
mapped onto MTL segmentation. We find that both networks subdivide into two significant modules (structural p5 .0241, functional
p5 .0006, permutation-based testing), one consisting primarily of hippocampal subfields (red) and the second including all extrahippocampal
subregions (blue)
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4 | DISCUSSION

The main goal of this study was to characterize the network architec-

ture of the MTL in healthy adults using high-resolution structural and

functional MRI. Using local network metrics, we demonstrated func-

tional and structural inter-hemispheric symmetry, and identified func-

tional and structural network hubs. We also found significant

community structure in our networks which revealed inter-hemispheric

connectivity and a delineation between hippocampal and extra-

hippocampal structures. Finally, we observed a significant correlation in

structural and functional network connectivity. Even with a moderate

sample size, our findings are robust to variations in processing and anal-

ysis steps. Our findings provide an approach to characterizing MTL net-

work structure and function that can be applied to future studies

examining disease-related changes in MTL networks.

4.1 | MTL volumetric and network findings

We found that while functional connectivity was largely symmetric

across hemispheres, there was considerably less symmetry in volume

and structural connectivity. Structural asymmetry was driven by den-

tate gyrus and, less substantially, CA3. The volumetric asymmetry in

dentate gyrus and CA3 also manifested as asymmetry in structural con-

nectivity, which is likely at least partially due to the fact that volumetric

information was used for structural network construction. Several prior

studies have revealed that right hippocampi are subtly larger than left

in healthy adults (Hou, Yang, & Yuan, 2013; Pedraza et al., 2004;

Woolard and Heckers, 2012), though subregion-level asymmetry has

not been previously evaluated. Our findings suggest that this asymme-

try is primarily localized to the dentate gyrus, though further studies

should be carried out on larger datasets to support this finding. Though

the underlying mechanism for hippocampal asymmetry is unknown, it

may relate to the functional specialization of the hemispheres, as the

left and right MTL are associated with verbal and nonverbal memory,

respectively (Kelley et al., 1998; Kennepohl, Sziklas, Garver, Wagner, &

Jones-Gotman, 2007). Although the functional connectivity networks

revealed a strong level of functional symmetry during the resting-state,

our methodology can be applied to memory task-based data to assess

the degree of hemispheric asymmetry based on known functional

lateralization.

Our analysis revealed that CA1, DG, and subiculum serve as func-

tional network hubs, suggesting that these subregions facilitate func-

tional integration within the MTL network. Indeed, CA1, DG, and

subiculum are implicated in a number of hippocampal pathways, includ-

ing the mossy fiber pathway (DG ! CA3), perforant path (entorhinal

cortex ! subiculum, DG, CA) and Schaffer collaterals (CA3 ! CA1)

(Lavenex and Amaral, 2000; Small et al., 2011; Zeineh et al., 2016). The

subiculum also forms a key transition zone between CA1 and the ento-

rhinal cortex (Stafstrom, 2005). Therefore, our finding of high func-

tional connectivity in these regions is in accordance with existing

knowledge of MTL physiology.

Community detection analyses revealed that the functional MTL

network subdivides into two modules—one consisting of bilateral hip-

pocampal subfields and the other consisting of bilateral parahippocam-

pal regions. Since modules exhibit high intra-modular statistical

dependence and high inter-modular statistical independence (Sporns,

2013), the modular organization suggests a functional segregation of

neuronal processing within the MTL. Our finding is supported by a

prior fMRI study which found a functional distinction between the

hippocampus and adjacent MTL cortices (Lacy and Stark, 2012). The

structural MTL covariance network subdivided similarly, although

surprisingly, bilateral CA2/CA3 fell in the structural module consisting

of otherwise parahippocampal structures. Given the relatively high var-

iance and low DSCs of these smallest subregions, this analysis should

be confirmed in future studies with larger and/or higher-resolution

datasets. Interestingly, we found that the bilateral CA1, DG, and subic-

ulum, which formed a structural module, also were the functional net-

work hubs. This highlights the complementary, yet indirect, relationship

between structure and function within the MTL.

Our demonstration of a significant structure–function correlation

further suggests that while MTL structure and function are clearly

linked, there is also considerable variance between these MTL attrib-

utes that warrants further exploration. Our dual structural–functional

approach is particularly relevant within the context of several recent

studies which reveal that the relationship between whole-brain struc-

tural and functional connectivity is implicated in both normal cognition

and in disease (Goni et al., 2014; Hermundstad et al., 2013; van den

Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009; Honey et al., 2009;

Liao et al., 2013; Wirsich et al., 2016; Zhang et al., 2011). Though a

significant correlation in whole-brain structural and functional

FIGURE 7 Relationship between functional and structural
connectivity networks, measured by Pearson correlation of
corresponding edge weights in group-level functional and structural
networks (Pearson r5 .25, p< .0005, permutation-based testing).
Distribution of edge weights are also portrayed [Color figure can
be viewed at wileyonlinelibrary.com]
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connectivity is observed in these studies, differences in imaging techni-

ques, parcellation schemes, and network methods prohibit direct quan-

titative comparisons in correlation strength.

Previous research in network neuroscience (Bassett and Sporns,

2017) has focused on mapping structural and functional “connectomes”

in healthy adults by rigorously characterizing connectivity between

regions of the cerebral cortex based on multi-modal neuroimaging (For-

nito, Zalesky, & Breakspear, 2013, 2015; Hagmann et al., 2007; Zuo

et al., 2012). Such work to establish valid normative data has spawned

an entire field of research mapping network changes across variables

such as intelligence, gender, and age, as well as in various neurological

and psychiatric diseases (Fair et al., 2009; Khambhati, Davis, Lucas, Litt,

& Bassett, 2016; Li et al., 2009; Lynall et al., 2010; Supekar et al.,

2008). In this study we extend this approach to map the MTL connec-

tome, which should lead to new insights into brain–behavior relation-

ships, particularly given the integral role of the MTL in cognition and

the increasing availability of high resolution MRI datasets.

4.2 | Methodological considerations and limitations

It is important to note that our measure of structural connectivity is

not a measure of direct white matter paths connecting various MTL

subregions, but rather a proxy for structural wirings based on covari-

ance in gray matter volumes. Although several studies have found

robust correlations between structural networks based on covariance

of morphometric features and structural networks based on anatomical

connections, there is no direct proof that correlations of gray matter

volumes across subjects indicate axonal connectivity (Mechelli et al.,

2005; Pezawas et al., 2005). Therefore, in our model, high structural

connectivity between an MTL subregion and its contralateral counter-

part does not necessarily support the presence of a direct inter-

hemispheric anatomical connection. In our case, such an approach is

necessary because diffusion tractrography, the primary alternative

approach to glean structural connectivity, does not have the resolution

to isolate pathways within the MTL. However, recent advances in

ultra-high resolution diffusion-weighted imaging (Modo, Hitchens, Liu,

Richardson, & Modo, 2015; Yassa, Muftuler, & Stark, 2010) may allow

researchers to employ our methods using diffusion tractography data

in future studies.

Another consideration relates to the fMRI data resolution.

Although most subregions have a substantial average number of voxels

in the fMRI space (e.g., CA1: 203, DG: 170), the smaller subregions

have relatively few voxels (CA2: 7, CA3: 24). Since neighboring voxels

in fMRI data are known to be highly correlated, signal from neighboring

subregions—particularly the smallest subregions—may be collinear. Our

processing pipeline aimed to mitigate this effect by co-registering to

the higher-resolution structural MRI space, which has been shown to

help maintain the effective resolution of the measured functional activ-

ity (Kang et al., 2007) and is common in high-resolution studies of hip-

pocampal subfields (Carr et al., 2010; Das et al., 2013; Suthana et al.,

2015). We also omitted spatial smoothing to maintain spatial specificity

of the measured functional activity and minimize collinearity. More-

over, we regressed out ventricular CSF and white matter to minimize

partial volume effects and ensure that the observed signals were not a

result of neighboring non-gray matter noise. Finally, we replicated our

analysis after removal of CA2 and CA3, and after merging CA2 and

CA3 with CA1, to ensure that partial volume effects in these two

regions were not driving our overall findings. Further studies should be

carried out on higher resolution fMRI data to confirm our findings

related to the smallest subregions.

A related consideration is that functional connectivity networks

were generated in this study using a different number of voxels per

subregion, since there is inherently a large range of sizes across the 10

MTL subregions. This means that the measurements for smaller subre-

gions are inherently noisier than larger subregions. We decided to keep

all voxels rather than eroding the larger regions to more closely approx-

imate the size of smaller regions, in order to minimize effects of biasing

results based on the chosen voxels within each subregion. Also, while

the small CA2 and CA3 hippocampal subfields had low connectivity

strength, so did the larger PHC, indicating that the correlation strength

is not merely a function of subregion size. It may also be possible that

central, rounded structures, such as dentate gyrus, may have more reli-

able SNR ratio than a more peripheral cortical ribbon-like structure

such as PHC. However, we are reassured that subregion size and tSNR

are not significant confounds, as they are not significantly correlated

with the computed node-level metrics.

A limitation of our 7T atlas set is that we were unable to include

intra-rater reliability measurements for validation. However, since our

atlas protocol was directly derived from an existing extensively vali-

dated 3T protocol, and since MTL subregion DSCs were comparable to

those of prior protocols, we believe it is of high reliability. Although our

atlas yielded high-quality automated segmentations, further studies

should be carried out to optimize atlas composition—such as number

and distribution of healthy vs. diseased subjects—for maximal applic-

ability to future investigations.

Several prior fMRI studies reveal differential connectivity patterns

along the gradient of the MTL’s anterior–posterior axis (Das et al.,

2015; Libby, Ekstrom, Ragland, & Ranganath, 2012; Maass et al., 2015).

Although our study focused on network connectivity among MTL

regions with clear anatomical delineations, further exploration of the

intra-MTL subregion connectivity along the anterior-posterior gradient

is warranted. Future higher-resolution studies may also allow for the

subdivision of the “tail” region into its component subfields to distin-

guish the detailed neuroanatomy in this region.

4.3 | Conclusion

We present a comprehensive in vivo neuroimaging study characterizing

intra-MTL network connectivity in healthy adults by applying graph-

theoretical techniques to high-resolution 7T MRI data. This study delin-

eates a methodological approach and provides normative data for a

range of future work involving neurological and psychiatric disorders

involving the MTL, in which MTL network measures potentially provide

insights into disease pathogenesis or serve as biomarkers.

Our network analysis scripts, associated visualizations, and raw

data are publicly available at https://github.com/shahpreya/MTLnet.
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