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Abstract

Endometrial cancer is the most common malignancy of the female genital tract. Progesterone (P4) 

has been used for several decades in endometrial cancer treatment, especially in women who wish 

to retain fertility. However, it is unpredictable which patients will respond to P4 treatment and 

which may have a P4 resistant cancer. Therefore, identifying the mechanism of P4 resistance is 

essential to improve the therapies for endometrial cancer. Mitogen-inducible gene 6 (Mig-6) is a 

critical mediator of progesterone receptor (PGR) action in the uterus. In order to study the function 

of Mig-6 in P4 resistance, we generated a mouse model in which we specifically ablated Mig-6 in 

uterine epithelial cells using Sprr2f-cre mice (Sprr2fcre+Mig-6f/f). Female mutant mice develop 

endometrial hyperplasia due to aberrant phosphorylation of STAT3 and proliferation of the 

endometrial epithelial cells. The results from our immunoprecipitation and cell culture 

experiments showed that MIG-6 inhibited phosphorylation of STAT3 via protein interactions. Our 
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previous study showed P4 resistance in mice with Mig-6 ablation in Pgr positive cells 

(Pgrcre/+Mig-6f/f). However, Sprr2fcre+Mig-6f/f mice were P4 responsive. P4 treatment 

significantly decreased STAT3 phosphorylation and epithelial proliferation in the uterus of mutant 

mice. We showed that Mig-6 has an important function of tumor suppressor via inhibition of 

STAT3 phosphorylation in uterine epithelial cells and the anti-tumor effects of P4 are mediated by 

the endometrial stroma. This data helps to develop a new signaling pathway in the regulation of 

steroid hormones in the uterus, and to overcome P4 resistance in human reproductive diseases, 

such as endometrial cancer.
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INTRODUCTION

Endometrial cancer is a well-known gynecologic malignancy of the female reproductive 

tract. In the United States, endometrial cancer affected 60,050 women and caused 10,470 

deaths in 2016. It comprises 7% of all cancer in women1. The majority of endometrial 

cancer is endometrioid adenocarcinoma, which is derived from epithelial cells of the 

endometrium2. The development of endometrial hyperplasia, a proliferative process in the 

epithelium, is a critical risk factor of endometrioid carcinoma3. The regulation of uterine 

epithelial cell and stromal cell proliferation is controlled by estrogen (E2) and progesterone 

(P4), both of which are ovarian steroid hormones4.

P4 is a steroid hormone produced by the ovaries. Luteinizing hormone and chorionic 

gonadotropin regulate the synthesis and secretion of P4 during the menstrual cycle and 

pregnancy5. Coordinated actions of the progesterone receptor (PGR) mediate the P4 

response in the endometrium6. Stromal-epithelial communication is important for uterine 

function7. PGR inhibits E2-mediated epithelial cell proliferation via mediating epithelial-

stromal cross talk6, 8. P4 lessens E2 stimulated uterine epithelial proliferation by modulating 

the gene expression in the uterine stromal cells9. While the effect of P4 on uterine function 

is mediated by epithelial-stromal cross-talk, the exact molecular mechanism of epithelial-

stromal cross-talk remains elucidated9.

A steroid hormone imbalance could lead to aberrant endometrial proliferation and 

endometrial cancer. P4 therapy is used against endometrial hyperplasia and early 

endometrial cancer in patients who want to preserve fertility10, 11. P4 and its analogues can 

have an effect on suppression of endometrial cancer proliferation. 12. However, many studies 

suggest limiting the use of P4 therapy due to its low response rates in endometrial cancer13. 

Despite previous studies on P4 therapy, the underlying mechanisms of P4 resistance are still 

poorly understood.

Mitogen-inducible gene 6 (MIG-6; also referred to as Receptor-Associated Late Transducer 

(RALT), ERBB receptor feedback inhibitor 1 (ERRFI1), and gene 33) is a 50 kDa 

cytoplasmic protein. MIG-6 is identified as an early-response gene that can be 

transcriptionally regulated by epidermal growth factor (EGF), transforming growth factor 
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alpha (TGF-α), and stress factors15, 16. MIG-6 is also induced by mitogenic stimuli in a cell 

cycle-dependent manner14. MIG-6 exhibits important tumor suppressor capabilities by 

regulating migration and invasion, cell proliferation, and the rate of G1-S phase 

progression17–20. The low level of Mig-6 is observed in human hepatocellular carcinoma19, 

breast carcinomas21, papillary thyroid cancer18, glioblastoma22, non-small cell lung 

cancer23, and endometrial cancer24.

Previously, we demonstrated that Mig-6 has a critical function in the development of 

endometrial hyperplasia and E2-induced endometrial cancer as a mediator of PGR functions 

to suppress E2 signaling in the uterus24, 25. Mig-6 suppress tumorigenesis of endometrial 

cancer that is related with Pten deficiency and ERK activation in endometrial cancer26. 

MIG-6 is identified as an adaptor protein that consists of important protein-protein 

interaction domains, an EGFR binding domain, an src homology 3 (SH3)-binding motif, a 

14-3-3-binding domain, and a Cdc42- and Rac-interactive binding (CRIB) domain27, 28, but 

it does not have a domain with enzymatic activity16. We identified signal transducers and 

activators of transcription 3 (STAT3) as a MIG-6 associated protein26. Inappropriate 

expression of phosphorylation of STAT3 leads to tumorigenesis29. STAT3 is phosphorylated 

by receptor-associated Janus kinases (JAK) in response to growth factors and cytokines, and 

is subsequently translocated to the cell nucleus where it acts as a transcriptional activator30. 

STAT3 is a key signal transducer and regulator of gene expression that is critical to routine 

cellular processes including cell proliferation, development, angiogenesis, differentiation, 

survival, and immune function31. It is reported that STAT3 is associated with tumorigenesis 

and acts as an oncogene32. Aberrant activation of STAT3 was identified in human 

endometrial cancer tissues as well as endometrial cancer cells33. Additionally, STAT3 has 

been used as a cancer therapeutic target because it plays a pivotal role in oncogenic function 

and immunosuppression34. The functional relationship between MIG-6 and STAT3 in 

endometrial cancer development, however, remains elusive.

We developed uterine epithelium specific Mig-6 knockout mice by crossbreeding floxed 

Mig-6 (Mig-6f/f) mice with Sprr2fcre mice to analyze the function of epithelial Mig-6 for 

endometrial tumorigenesis35. We demonstrated that Mig-6 plays an important role during 

the development of endometrial hyperplasia. In addition, P4 treatment prevents the 

development of endometrial hyperplasia in mutant mice. Furthermore, Mig-6 signaling has a 

critical role in regulating epithelial proliferation by mediating phosphorylation of STAT3. 

Our results demonstrate that activation of endometrial stromal P4 signaling, including 

stromal Mig-6, prevents endometrial hyperplasia of mutant mice by regulating STAT3 

activity.

RESULTS

The ablation of Mig-6 in the endometrial epithelial cells of mouse

In the previous study, we found that epithelial Mig-6 is a critical tumor suppressor in the 

uterus of Wnt7acre+Mig-6f/f mice25. However, Mig-6 is also expressed in skin, and deletion 

of Mig-6 results in skin tumor formation over a wound16, 36. Wnt7a-Cre activity was not 

only detected in uterine epithelia, but also in the ovary and skin. The ablation of Mig-6 by 

Wnt7a-Cre leads to tumor formation at any surgical wounds in the skin, which limits 
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surgical applications, including ovariectomy and subcutaneous injection of steroid hormone 

pellets for endometrial cancer studies in mice36. Therefore, we generated a mouse model in 

which we specifically ablated endometrial epithelial Mig-6 using Sprr2f-cre mice35 

(Sprr2fcre+Mig-6f/f) to study the function of epithelial Mig-6 in the uterus. The epithelium 

specific deletion of Mig-6 in mutant mice was proven by immunofluorescence analysis 

(Figure 1). MIG-6 was expressed in all compartments of the uterus in control mice. Mutant 

mice showed that MIG-6 levels were identified in the stromal cells but not the epithelial cells 

of the uterus, while MIG-6 was not observed in the epithelial cells or the stromal cells of the 

Pgrcre/+Mig-6f/f mice uterus. Our immunofluorescence analysis demonstrate our successful 

generation of uterine epithelial specific Mig-6 ablated mice.

Endometrial hyperplasia development by conditional epithelial Mig-6 ablation in the mouse 
uterus

According to our previous research, Pgrcre/+Mig-6f/f and Wnt7acre+Mig-6f/f mice display 

endometrial hyperplasia and cancer due to dysregulation of E2 and P424, 25. To examine the 

development and advancement of endometrial hyperplasia and cancer in the mutant mouse 

uterus, we investigated the uterine weight, gross appearance and histologic morphology in 

control and mutant mice at 9 weeks, 10 weeks, and 5 months of age. The weight of the 

mutant mouse uterus was significantly increased than in comparison to the control mice after 

10 weeks of age (Figure 2a and b). Histological analysis of these uteri showed a 

development of endometrial hyperplasia in the uterus of mutant mice from 10 weeks of age 

(Figure 2c). The uteri revealed a higher number of endometrial epithelial cells and an 

increase in the epithelium/stroma ratio in the uterus of mutant mice. Endometrial hyperplasia 

is caused by excessive proliferation of endometrial glands cells37. We next investigated 

whether endometrial hyperplasia in mutant mice is caused by excessive endometrial 

epithelial cell proliferation. The levels of Ki67, a proliferation marker, were examined in the 

uterus of control and mutant mice at 10 weeks of age by immunohistochemical staining. The 

level of Ki67 was significantly higher within the epithelium of mutant mice compared with 

control mice (Figure 3a and b), however, stromal proliferation was not different between the 

mice. These results showed that the uterus of the epithelial specific Mig-6 ablation mice 

develops endometrial hyperplasia caused by increased cell proliferation from 10 weeks of 

age. These microscopic anatomical changes indicate that the uterus of mutant mice exhibits 

endometrial hyperplasia, which can increase the chances of developing endometrial cancer 

in humans.

Inhibition of STAT3 by interaction with MIG-6

STAT3 is a MIG-6-associated protein26 and plays an important part in cell proliferation31, 38. 

Therefore, we examined the level of STAT3 by immunohistochemical analysis in the uterus 

of female control and mutant mice at 10 weeks of age. Levels of phosphorylated STAT3 

were significantly higher in the uterine epithelium of mutant mice compared with control 

mice (Figure 4a and b), however, phosphorylated STAT3 in stromal cells of mutant mice 

showed no change. In addition, total STAT3 levels were not different in uterine stromal and 

epithelial cells of female control and mutant mice (Figure 4c and d). In order to analyze 

whether MIG-6 physically interacts with STAT3 to suppress its phosphorylation, we 

cotransfected FLAG-tagged MIG-6 and/or V5-tagged STAT3 expression vectors to Ishikawa 
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human endometrial adenocarcinoma cell line, and the cell lysates were immunoprecipitated 

with FLAG antibodies (Figure 4e). Next, we performed immunoprecipitation using protein 

lysates from the uteri of control and Pgrcre/+Mig-6f/f mice. Immunoprecipitation was applied 

with anti-STAT3, anti-MIG-6, and anti-IgG antibodies, then examined by Western blot 

analysis to identify an interaction between MIG-6 and STAT3. We were able to demonstrate 

the interaction between MIG-6 and STAT3 in the mouse uterus (Figure 4f). The results 

showed that MIG-6 physically interacts with STAT3 protein.

MIG-6 suppresses STAT3 phosphorylation

To investigate whether MIG-6 affects phosphorylation of STAT3, we cotransfected a MIG-6 

expressed vector to Ishikawa cells, and treated with or without leukemia inhibitory factor 

(LIF), a known activator of STAT3, for 10 min39. Our Western blot analysis revealed that 

phosphorylation of STAT3 was increased by LIF. The MIG-6 overexpression significantly 

decreased STAT3 phosphorylation (Figure 5a and b). Our results indicate that MIG-6 

suppresses the phosphorylation of STAT3 in endometrial epithelial cells.

Prevention of the development of endometrial hyperplasia in epithelial Mig-6 ablated 
mouse uterus by P4 treatment

To determine the responsiveness of P4 on endometrial hyperplasia development in mutant 

mice, we treated 9-week old female control and mutant mice with vehicle or P4 for 1 week 

by subcutaneous injection. Mutant mice that were treated with vehicle exhibited a 

significantly higher uterine weight, and an increase in gross size compared to vehicle treated 

control mice. The histological analysis showed endometrial hyperplasia in mutant mice 

treated with vehicle. However, there was no difference in uterine weight and gross size 

between female control and mutant mice after P4 treatment (Figure 6a and b). While mutant 

mice treated with vehicle developed endometrial hyperplasia in the uterus, P4 treated mice 

showed normal endometrium (Figure 6c). We could not observe any differences between 

female control and mutant mice after the P4 treatment. These data propose that mutant mice 

were responsive to P4 and that this prevented the development of endometrial hyperplasia.

Inhibition of active phosphorylation of STAT3 in epithelial Mig-6 ablated mice uterus by P4 
treatment

To analyze if the observed prevention of hyperplastic phenotype was in response to 

recovered STAT3 signaling and proliferation, we investigated the level of epithelial cell 

proliferation and phosphorylation of STAT3 in the uterus of mutant mice treated for 1 week 

with vehicle or P4 at 9 weeks of age. Immunohistochemistry analysis results showed that 

levels of proliferation were significantly lowered in the P4-treated mutant mice uterus in 

comparison to vehicle-treated mutant mice. In addition, phosphorylation levels of STAT3 

were decreased in the uterus of mutant mice after P4 for 1 week as compared with vehicle. 

The level of total STAT3, however, was not affected by P4 treatment (Figure 7). These 

results demonstrate that P4 treatment prevents the endometrial hyperplasia development in 

uterine epithelial Mig-6 ablation by inhibiting STAT3 phosphorylation and endometrial 

epithelial cell proliferation.
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DISCUSSION

Mig-6 functions as a tumor suppressor through an anti-proliferative role in humans17–20. We 

previously classified Mig-6 as a target gene of the PGR 24. Uterine specific ablation of 

Mig-6 allows for the progression of endometrial hyperplasia and E2-dependent endometrial 

cancer due to an increase of endometrial epithelial cell proliferation by excessive E2 

signaling in mice24. To comprehend the function of epithelial Mig-6 in the uterus, we 

created a mouse model in which Mig-6 gene expression was ablated specifically in the 

Wnt7a-expressing cells (Wnt7acre+ Mig-6f/f mice)25. Wnt7acre+Mig-6f/f mice revealed a 

higher level of epithelial cell proliferation and an increase in the progression of endometrial 

hyperplasia and E2-dependent endometrial cancer25. However, Wnt7a-Cre mice showed cre 

recombinase activities in skin as well as in ovarian and uterine epithelium40. Wnt7acre+ 

Mig-6f/f mice have the limitation to examine the pathophysiology and tumorigenesis using 

steroid hormone pellets because of tumor formation at any surgical wounds in the skin. In 

the present study, we generated another uterine epithelial specific Mig-6 knockout mouse 

model to evaluate the function of epithelial Mig-6 using a Sprr2f-cre mouse model35. The 

small proline-rich protein 2F (Sprr2f) gene is specifically expressed in endometrial epithelial 

cells including both the luminal and glandular compartments, but not in endometrial stroma, 

myometrium, and skin35. Sprr2fcre+Mig-6f/f mice can overcome the limitation of the cre 

recombinase expression in skin of Wnt7acre+ Mig-6f/f mice.

Sprr2fcre+Mig-6f/f mice showed development of endometrial hyperplasia from 10 weeks of 

age as observed in Wnt7acre+Mig-6f/f mice. Endometrioid-type endometrial adenocarcinoma 

and hyperplasia are associated with unopposed E2 exposure and continually increased 

proliferation of epithelial cells3, 37. Levels of epithelial cell proliferation were significantly 

higher in the mutant mice compared with control mice at 10 weeks of age. These results 

suggest that increased proliferation in endometrial epithelial cells leads to the progression of 

endometrial hyperplasia and endometrial cancer.

Consistent activation of STAT3 leads to aberrant cell proliferation in carcinogenesis41, 

indicating that STAT3 is a critical regulator of cancer cell proliferation and apoptosis. Here, 

we demonstrated that levels of STAT3 phosphorylation were significantly higher in the 

endometrial epithelial cells of mutant mice compared with control mice at the development 

of endometrial hyperplasia. We demonstrated that MIG-6 negatively regulates STAT3 

phosphorylation through direct protein interactions in vivo and in vitro. Increased 

phosphorylation of STAT3 by LIF, which in turn induces further phosphorylation of STAT3, 

is significantly decreased by overexpressed MIG-6. These data indicate that MIG-6 inhibits 

uterine epithelial cell proliferation through inhibiting STAT3 phosphorylation. The 

progression and development of endometrial tumorigenesis is related to aberrant activation 

of STAT3 in endometrial epithelial cells of mutant mice.

P4 and E2, ovarian steroid hormones, are critical in the mediation of uterine events related to 

the establishment and maintenance of pregnancy42 as well as regulation of epithelial-stromal 

cross-talk through their cognate nuclear receptors6. An imbalance of steroid hormones 

initiated by elevated levels of E2 and/or decreased P4 action can lead to aberrant endometrial 

proliferation and endometrial cancer43. Clarifying the molecular mechanisms that regulate 
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E2 and P4 in the uterus is paramount to understanding the pathophysiology of endometrial 

cancer.

There have been attempts for fertility preservation in premenopausal women with 

endometrial cancer through conservative treatment with high-dose P444. P4 can suppress the 

proliferation of endometrial cancer through inhibition of E2 action45. The antagonistic effect 

of P4 on E2 supports the rationale for progestin-based therapy for endometrial cancer11. To 

address the preventative role of P4 on endometrial hyperplasia, we treated mice with P4 for 

1 week, beginning at 9 weeks of age. Female mutant mice did not exhibit an endometrial 

hyperplasia phenotype after P4 treatment. Mutant mice treated with 1 week of P4 showed a 

decrease in epithelial cell proliferation and phosphorylation level of STAT3 in uterine 

epithelium. The uterus is made up of heterogeneous cell types that go through dynamic 

changes in order to support embryo development and implantation. These changes primarily 

rely on coordinated interactions mediated by P4 and E2. E2 induces epithelial proliferation 

in the murine uterus46. Meanwhile, P4 inhibits E2-induced proliferation of the glandular and 

luminal epithelial cells. However, P4 or P4 with E2, leads to stromal cell proliferation in the 

uterus46. P4 suppresses E2 stimulated epithelial proliferation via regulating stromal cell gene 

expressions9. However, the mediators involved in these regulatory cell-cell interactions have 

not been known. We have shown that activation of stromal P4 signaling including Mig-6 
impacts endometrial tumorigenesis. These indicate that stromal Mig-6 is a mediator for the 

ability of P4 to regulate E2-induced uterine proliferation24. An understanding of the actions 

of hormones on the uterus requires elucidation of the mechanism of stromal and epithelial 

communication with each other and further, how this epithelial-stromal cross-talk is 

transformed by hormonal binding to stromal versus epithelial mediators. These results 

provide evidence that activated stromal P4 signaling along with Mig-6 may play a role in the 

prevention of endometrial hyperplasia of mutant mice by inhibition of STAT3 activity. 

Furthermore, these data suggest that treatment with a STAT3 inhibitor could be an 

alternative way to overcome epithelial proliferation in endometrial hyperplasia.

Overall, these findings show that loss of Mig-6 in the endometrial epithelial cells results in 

endometrial hyperplasia in response to an increase of epithelial cell proliferation. MIG-6 

negatively regulates the phosphorylation of STAT3 via direct protein interaction with 

STAT3. P4 treatment prevents the development of endometrial hyperplasia in mutant mice 

uteri through inhibition of epithelial cell proliferation and excessive activation of STAT3 by 

P4-induced stromal Mig-6. Therefore, our studies provide a framework for understanding 

endometrial cancer development, and a useful animal model for studying new therapies in 

the treatment and prevention of endometrial cancer.

MATERIALS AND METHODS

Mouse tissue samples

All Mouse experiments were cared for according to the protocol approved by the 

Institutional Animal Care and Use Committee (IACUC) of Michigan State University. The 

mice with epithelial-cell-specific Mig-6 knockout in the uterus were generated using the 

Sprr2f-cre mouse model35. To determine the endometrial hyperplasia development and P4 

effects, vehicle (beeswax) or P4 (40 mg/pellet) pellet was injected subcutaneously into 
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female control and mutant mice respectively, beginning at 9 weeks of age for 1 week before 

euthanization.

Immunohistochemistry and immunofluorescence analyses

Immunostaining analyses were performed as previously described47. Briefly, uterine 

sections were incubated with appropriate primary antibodies, anti-MIG-6 (Customized 

antibody by Dr. Jeong Lab), anti-pSTAT3 (CS-9131; Cell Signaling, Danvers, MA), anti-

STAT3 (CS-4904; Cell Signaling, Danvers, MA), and anti-Ki67 (ab15580; Abcam, 

Cambridge, MA), in 10% normal goat serum in PBS overnight at 4°C. For 

immunohistochemistry, sections were incubated with secondary antibody (Vector 

Laboratories, Burlingame, CA) and detected using the Vectastain Elite DAB kit (Vector 

Laboratories, Burlingame, CA). For immunofluorescence, sections were incubated with 

secondary antibody conjugated to Alexa Fluor 488-conjugated anti-mouse IgG (Invitrogen 

Crop., Carlsbad, CA) for 2 hours at RT. Then, sections were mounted with DAPI (Vector 

Laboratories, Burlingame, CA) to enable nuclear visualization. The immunohistochemical 

staining intensities were graded by H-Score. The H-score was calculated as previous 

reported48.

Cell culture and transient transfection

Ishikawa cells were cultured in Dulbecco’s modified Eagle’s medium/Nutrient Mixture F-12 

(DMEM/F12; Gibco BRL, Gaithersburg, MD) with 10% (v/v) fetal bovine serum (FBS; 

Gibco BRL, Gaithersburg, MD), and 1% (v/v) penicillin streptomycin (P/S; Gibco BRL, 

Gaithersburg, MD) at 37°C under 5% CO2. FLAG-tagging MIG-6 and V5-tagging STAT3 

expression vectors were transfected using Lipofectamine 2000 reagent (Invitrogen Crop., 

Carlsbad, CA) in accordance with the manufacturer’s instructions.

Immunoprecipitation

Immunoprecipitation was performed as described previously49. Briefly, 0.5 μg of lysates 

were immunoprecipitated with 1 μg of antibodies to FLAG (F1804; Sigma–Aldrich, St. 

Louis, MO), STAT3 (CS-4904; Cell Signaling, Danvers, MA), or MIG-6 (Customized 

antibody by Dr. Jeong Lab) with 30 μl of resuspended protein A-agarose (Pierce 

Biotechnology, Rockford, IL) and incubated overnight at 4°C. Immunocomplexes were 

applied to sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto 

polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA). The membrane was 

exposed to anti-V5 (A190-220A; Bethyl Laboratories, Montgomery, TX), anti-FLAG, and 

anti-STAT3 antibodies.

Statistical analysis

For all animal experiments, the samples were not predetermined using any statistical 

method. Based on our previous studies, 5 mice per group were used for all experiments to 

attain proper statistical power. A balance in sample size across groups were ensured by 

block randomization. To evaluate the result variations in group, the investigators were 

blinded to the group. There are no excluded samples and animals. In vitro experiments were 

conducted three times, and results are presented as the mean ± s.e.m. of three biological 
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replicates. Student’s t test was used for two groups. An analysis of variance (ANOVA) test 

was used for more than two groups, followed by Tukey or Bonferroni test for pairwise t-test. 

All statistical tests were analyzed by the GraphPad Prism 5(San Diego, CA). * p < 0.05, ** p 

< 0.01, and *** p < 0.001.
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Figure 1. 
Generation of Sprr2fcre+Mig-6f/f mice. Immunofluorescence analysis of MIG-6 in whole 

uterine of Mig-6f/f, Sprr2fcre+Mig-6f/f, and Pgrcre+Mig-6f/f mice at 6 weeks of age. Green 

fluorescent protein indicates MIG-6 protein expression.
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Figure 2. 
Development of endometrial hyperplasia in Sprr2fcre+Mig-6f/f mice uterus. (a) The ratio of 

uterine weight to body weight of Mig-6f/f and Sprr2fcre+Mig-6f/f mice at weeks 9, 10 and 5 

months. (b) Morphology Mig-6f/f and Sprr2fcre+Mig-6f/f mice during endometrial 

hyperplasia development and progression. (c) Histology of uteri from mice with epithelial 

Mig-6 ablation at weeks 9, 10 and 5 months. The results represent the mean ± SEM. *, p < 

0.05 and **, p < 0.01.
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Figure 3. 
Increase of epithelial cell proliferation by epithelial Mig-6 ablation in the mouse uterus. (a) 

Quantification of Ki67 positive cells in epithelial cells of Mig-6f/f and Sprr2fcre+Mig-6f/f 

mice. (b) Immunohistochemical analysis of Ki67 in Mig-6f/f and Sprr2fcre+Mig-6f/f mice. 

The results represent the mean ± SEM. ***, p < 0.001.
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Figure 4. 
Inhibition of STAT3 phosphorylation by interacting with MIG-6. Quantification of pSTAT3 

(a) and STAT3 (c) positive cells in epithelial cells of Mig-6f/f and Sprr2fcre+Mig-6f/f mice. 

Immunohistochemical analysis of pSTAT3 (b) and STAT3 (d) in Mig-6f/f and 

Sprr2fcre+Mig-6f/f mice. The protein interaction between MIG-6 and STAT3 by 

immunoprecipitation and Western blot analysis in vitro (e) and in vivo (f). The results 

represent the mean ± SEM. ***, p < 0.001.
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Figure 5. 
Regulation of STAT3 activity by MIG-6. (a) Flag-tagged MIG-6 transfected Ishikawa cell 

lysates were analyzed by Western blotting in the presence or absence of LIF (100 ng/ml) 

treatment for 10 mins. Intensity of pSTAT3 was obtained using Image J software for Western 

Blot analysis. The results represent the mean ± SEM. ***, p < 0.001.
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Figure 6. 
Prevention of endometrial hyperplasia in Sprr2fcre+Mig-6f/f mice uterus by progesterone 

treatment. (a) The ratio of uterine weight to body weight of Mig-6f/f and Sprr2fcre+Mig-6f/f 

mice after P4 treatment. (b) Morphology Mig-6f/f and Sprr2fcre+Mig-6f/f mice after P4 

treatment. (c) Histology of uteri from Mig-6f/f and Sprr2fcre+Mig-6f/f mice after P4 

treatment. The results represent the mean ± SEM. *, p < 0.05.

Yoo et al. Page 17

Oncogene. Author manuscript; available in PMC 2018 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Inhibition of active epithelial proliferation in Sprr2fcre+Mig-6f/f mice by progesterone 

treatment. (a) Quantification of Ki67, pSTAT3 and STAT3 positive cells in epithelial cells of 

Mig-6f/f and Sprr2fcre+Mig-6f/f mice after P4 treatment. (b) Immunohistochemical analysis 

of Ki67, pSTAT3, and STAT3 in vehicle and P4 treated Sprr2fcre+Mig-6f/f mice. The results 

represent the mean ± SEM. ***, p < 0.001.
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