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Climate change risk to forests in 
China associated with warming
Yunhe Yin   1, Danyang Ma1,2 & Shaohong Wu1,2

Variations in forest net primary productivity (NPP) reflects the combined effects of key climate variables 
on ecosystem structure and function, especially on the carbon cycle. We performed risk analysis 
indicated by the magnitude of future negative anomalies in NPP in comparison with the natural 
interannual variability to investigate the impact of future climatic projections on forests in China. 
Results from the multi-model ensemble showed that climate change risk of decreases in forest NPP 
would be more significant in higher emission scenario in China. Under relatively low emission scenarios, 
the total area of risk was predicted to decline, while for RCP8.5, it was predicted to first decrease and 
then increase after the middle of 21st century. The rapid temperature increases predicted under the 
RCP8.5 scenario would be probably unfavorable for forest vegetation growth in the long term. High-
level risk area was likely to increase except RCP2.6. The percentage area at high risk was predicted to 
increase from 5.39% (2021–2050) to 27.62% (2071–2099) under RCP8.5. Climate change risk to forests 
was mostly concentrated in southern subtropical and tropical regions, generally significant under high 
emission scenario of RCP8.5, which was mainly attributed to the intensified dryness in south China.

Climate change has been suggested as a major driver of the dynamics of terrestrial ecosystems through its influ-
ence on vegetation growth and distribution1–4. Ecosystems may be at risk if their resilience and ability to adapt 
are severely damaged. An increase in global warming will result in greater risks for ecosystems over the 21st 
century5,6. For example, if the temperature increases by more than 3 °C, 44% of global terrestrial ecosystems risk 
conversion from carbon sinks to carbon sources5. Forest, the most complicated of all terrestrial ecosystems7, plays 
an important role in the carbon cycle and accounts for 49% of terrestrial gross primary production8. The annual 
gross carbon uptake by global forests equates to roughly half of the carbon emitted from fossil fuels9. Research 
into the spatial and temporal patterns of the climate change risk faced by forests is crucial to determine priority 
areas that should be targeted for action to manage the consequences of climate change.

Because of higher temperatures and incidental droughts, tree mortality and related dieback may increase, pos-
ing threats to carbon storage, biodiversity, and production in forests10–12. Net primary productivity (NPP) refers 
to the net amount of carbon fixed by plants through photosynthesis per unit time and area, namely the difference 
between gross primary productivity and autotrophic respiration13,14. Because the loss of NPP is considered to be 
unfavorable for terrestrial carbon sinks and ecosystem functioning, it has been used to indicate the risks of cli-
mate change for ecosystems6,15,16. In general, NPP is an indicator of plant growth and reflects the capacity of vege-
tation to sequester and convert the products of photosynthesis17–19. Changes in the NPP of terrestrial ecosystems 
could effectively reflect the substantial spatial and temporal heterogeneity in climatic, ecological, geochemical, 
and human influences on the biosphere1,20–22.

The impacts of climate change on forest NPP are complex. Warming and prolongation of the growing season 
may enhance forest NPP in high latitude and alpine areas23–25. In contrast, other factors such as drought, heat 
waves, wildfire, and insect disturbances may cause extensive reductions in NPP in some forests26–31. Of these 
factors, drought or dryness have often resulted from increases in the atmospheric evaporative demand (AED) and 
soil water deficit, and from decreases in precipitation. However, there is uncertainty about whether the current 
trends of regional aridity will intensify or weaken, which partly reflect AED estimation methods32–37. Generally, 
there is risk if the reduction in NPP caused by the overall effects of climate change indicates possible damage or 
corruption, such as poor vegetation coverage, the expansion of desertification38 and the decline of ecosystem ser-
vices ability39, other than the lack of vegetation productivity and biomass. For example, based on version 2 of the 
Atmosphere Vegetation Interaction Model and the IPCC SRES B2 scenario, Shi et al.40 recently assessed the risks 
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to ecosystems mainly including forest, shrubland, grassland and cultivated land in China from climate change 
when (1) the adverse variance was beyond the typical natural variability of NPP, and (2) there was the possibility 
that, in the future, the NPP would fall below the minimum NPP during the baseline period. However, we have 
little information regarding how the risks might respond to climate change, though it is important when assessing 
future impacts in forests in China. More importantly, there have been few quantitative assessments of the rates at 
which risk might change as regional mean temperatures increase.

The primary objectives of this study were therefore to (1) quantify the spatio-temporal patterns of different 
levels of risks indicated by the loss of forest NPP under future climate change in China, (2) investigate how the 
rate of regional climate change risks would vary in response to warming in the future, and (3) address the relative 
contributions of climatic factors to the risks. To achieve these objectives, we modeled NPP by modifying the AED 
sub-model in the Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ-DGVM), which was driven by 
a set of general circulation models (GCMs) with representative concentration pathways (RCPs) that covered the 
period 1981–2100. Our research highlighted the different levels of risks to forests from climate change, and it 
should give us an improved understanding of how forest ecosystems will respond to future climate change.

Materials and Methods
Study area.  Forests in China cover about 21.63% (2009–2013) of the land surface and have a carbon stock of 
approximately 84.27 billion tons. They account for a significant component of terrestrial ecosystems in China and 
represent the largest afforested area in the world41. Hou42 reported that needleleaf forest, the most widespread for-
est vegetation type, extended from the cold temperate zone to the tropical zone, and was mainly concentrated in 
southwestern and northeastern China. This forest type is dominated by Pinaceae, Taxodiaceae, and Cupressaceae. 
Mixed needleleaf and broadleaf forest is mainly found in northeastern China (e.g. Pinus koraiensis) and moun-
tainous areas of southern China (e.g. Tsuga spp. and Chamaecyparis). Broadleaf forest is mainly concentrated in 
the eastern part of Northeast China, south of the Qinling Mountains, and in the southeastern part of the Tibetan 
Plateau.

We chose our study area from the distribution of forest types presented on the 1:1,000,000 vegetation map of 
China42 and the distribution of eco-geographical regions in China43, as shown in Fig. 1. We simulated NPP from 
1981 to 2099 at a spatial resolution of 0.5° × 0.5° with the modified LPJ-DGVM.

Risk assessment.  Changes in ecosystem state are generally described by the anomaly of future projections from 
the historical long-term average, with the assumption that the standard deviation of the state variable represents the 
ecosystem natural interannual variability (IAV)5,16,44,45. NPP is defined as the rate of accumulation of carbon after 
losses from plant respiration and other metabolic processes that maintain the plant’s living systems are taken into 
account46. In this study, we considered that there was risk when the absolute value of future negative anomaly of NPP 
exceeded the IAV for the period from 1981 to 2010, based on the LPJ simulations. The risks were ranked to corre-
spond with the multiple relationships between the decreases in the NPP and the baseline IAV. Using the simulated 
NPP, we judged the risk at each pixel and counted the area of forest at risk based on smoothed data, i.e. 30-year run-
ning mean NPP. Linear trends in the time series of risk were detected by the Ordinary Least Squares (OLS) method; 
the statistical significance of the trends was determined by the non-parametric Mann-Kendall test.

Figure 1.  Forest distribution and eco-geographical regions in China. I: Cold temperate humid region; II: Mid-
temperate humid/sub-humid region; III: Warm temperate humid/sub-humid region; IV, Northern subtropical humid 
region; V: Mid-subtropical humid region; VI: Southern subtropical humid region; VII: Tropical humid region; VIII: 
North semi-arid region; IX: Northwest arid region, and X: Tibetan Plateau region. The forest distribution data were 
obtained from the 1:1000000 vegetation map of China42. The eco-geographical regions boundary was adopted from 
Zheng43. The figure was generated using ArcGIS 10.1 software (http://www.esri.com/).

http://www.esri.com/
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Specifically, we calculated the anomalies of the forest NPP in China for future periods (from 2021 to 2050 and 
from 2071 to 2099) from the baseline period (from 1981 to 2010). Positive anomalies indicated no risk. Negative 
anomalies were compared with their baseline standard deviation to indicate different levels of risk for each pixel. 
In line with the criteria and indicators applied by Scholze et al.5 and Heyder et al.16, the risks were deemed low, 
medium, and high level when the absolute values of the negative NPP anomaly were less than half of the stand-
ard deviation (α < 0.5), greater than half but less than one standard deviation (0.5 < α < 1), or greater than one 
standard deviation (α > 1), respectively. In this study, we paid more attention to abnormal variabilities in the NPP 
that were less than the average minus a number of standard deviations, as a certain loss of productivity outside 
the typical natural NPP variability was perceived to be an unacceptable impact from climate change47. From this, 
we then classified the risk levels from the multiple relationships between the anomalies and standard deviation.

The standard deviation was computed as follows:
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where δ was the standard deviation at the pixel scale, xi was the annual NPP of year i, x  was the average NPP of 
the baseline period, and n was the total number of baseline years (n = 30).

The multiple α was determined by the following equation:
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The risk levels of forest productivity were classified from the above multiples.

LPJ Model.  Forest NPP in China was projected with the process-based LPJ model48. In the LPJ model, NPP 
is calculated by subtracting maintenance and growth respiration from GPP, which is computed by coupling the 
photosynthesis and water balance schemes. The formula is as follows:

= . − RNPP 0 75(GPP ) (3)m

where Rm is the maintenance respiration and 0.75 is the ratio of NPP in the remainder, considering 0.25 is the 
growth respiration coefficient.

Proven as a useful tool for simulating the structure and function of large-scale ecosystems, the LPJ is driven by 
data of monthly climate and soil texture. The model comprises 10 plant functional types (PFTs), defined by biocli-
matic limits and physiological optima, which compete for resources and determine vegetation composition. We 
used the method outlined by Zhao et al.49 to adjust a few of the PFT parameters, mainly including the maximum 
coldest monthly mean temperatures of boreal needle-leaved evergreen forest, boreal needle-leaved summergreen 
forest and boreal broad-leaved summergreen forest, to fit the characteristics of ecosystems in China.

The original method for calculating AED adds substantially to the uncertainty that is already associated with 
the climate change signal between GCMs50. McVicar et al.51 advocated that all four primary meteorological varia-
bles, i.e., wind speed, atmospheric humidity, radiation, and air temperature, should be considered when assessing 
trends in AED. However, temperature-based methods, such as the Thornthwaite empirical equation, tend to 
underestimate AED52,53. The Penman–Monteith model recommended by the Food and Agricultural Organization 
(FAO56-PM model) reference crop evapotranspiration method gave good estimations of spatial and seasonal 
variability in AED across Great Britain54. We therefore modified the original method for calculating AED in the 
evapotranspiration sub-model of the LPJ55 and used the physically-based FAO56-PM model56, which had been 
previously calibrated for the study area57. The original fire module in the LPJ assumed only a minimum fuel load 
for fire spread58. The model has been modified to include a maximum fuel load based on the linear relationship 
between the fuel load and the fire occurrence probability59, so that the influence of fuel availability on fire occur-
rence is better reflected. Li et al.60 obtained good results when they applied a similar approach to the fire module 
of CLM-DGVM (Community Land Model with the Dynamic Global Vegetation Model). We expressed the prob-
ability of fire based on the available fuel as:
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where Lag (g C m−2) is the fuel load (namely, the above-ground litter), and Llow (Llow = 200) and Lup (Lup = 1000) 
are the lower and upper fuel thresholds, respectively. Fire does not occur when Lag < Llow, and becomes more likely 
to occur as the fuel increases when Llow ≤ Lag ≤ Lup. The fuel load no longer limits the fire spread when Lag > Llow 
when the other conditions are satisfied.

To ensure carbon pools and vegetation coverage were in a state of equilibrium, we ran the LPJ model for an 
initial period of 1000 years48 using the climate data for the reference period from 1981 to 2010 repeatedly. We then 
ran the simulation from 2011 to 2099 using climate change scenario data and the atmospheric CO2 concentration 
for 2010.

Climate Projections.  Projections of climate change under various scenarios are useful for predicting future 
changes to ecosystems and their response to global change. We used scenario analysis to assess risk development 
and the impacts of climate change. Because of the uncertainty associated with GCMs, we simulated forest NPP 
with multiple GCM projections and used the mean from multiple models to characterize the risk under different 
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emission scenarios. We used five GCMs in this study from the Coupled Model Intercomparison Project Phase 5, 
including HadGEM2-ES, IPSL-CM5A-LR, GFDL-ESM2M, MIROC-ESMCHEM, and NorESM1-M61. The GCM 
outputs were bias-corrected by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) and down-
scaled to a spatial resolution of 0.5° 62,63. The climate variables were the average, maximum and minimum temper-
atures, precipitation, surface downwelling shortwave radiation, near-surface wind speed, and relative humidity.

We used four representative concentration pathways, namely RCP2.6, RCP 4.5, RCP 6.0, and RCP8.5 sce-
narios, which indicated that radiative forcing levels of 2.6, 4.5, 6.0, and 8.5 Wm−2 would be reached by 2100, 
respectively64. RCP8.5 was the highest emission scenario with a radiative forcing of around 8.5 Wm−2 in 2100, 
which was equivalent to an atmospheric CO2 concentration of about 1370 ppm64. By the end of the 21st century, 
the temperatures in forest areas of China were projected to increase by between 1.68 °C under RCP2.6 and 6.29 °C 
under RCP8.5 relative to the average temperature in the baseline period of 1981–2010 (Fig. 2).

Results
LPJ Model Evaluation.  The total NPP in China was estimated at 3.61 ± 0.13 Gt C a−1 during the baseline 
period of 1981–2010, which is consistent with the studies of Mao et al.65, Yuan et al.66, and Pan et al.67. The total 
NPP of forests in China for the past three decades was estimated at 1.40 ± 0.04 Gt C a−1, which is close to the 
results of Zhuang et al.68 and Ren et al.69. The 30-year averaged NPP varied spatially and gradually decreased from 
the southeast to the northwest (Fig. 3a); the vegetation type also varied and transitioned from woodland to grass-
land. Figure 3b showed the distribution of baseline standard deviation in NPP, which was basically opposite to the 
pattern of its multi-year mean value and was relatively higher in North China and Hainan Island. The simulated 
values essentially agreed with the field measurements of NPP for more than 700 sites spread across the different 
eco-geographical regions in China, published in the Global Primary Production Data Initiative Products data-
base70 (Fig. 4). At each field site, a relative error could be estimated from the difference between simulated value 
and observed value, which was then divided by the observed value and expressed as a percentage. The average rel-
ative error over the whole country was 9.94%, which was acceptable and shows that the modified LPJ model gave 
satisfactory simulations of terrestrial NPP in China, and could be used to predict carbon cycling in ecosystems.

Figure 2.  Temperature anomalies in forest areas of China during the 21st century relative to the baseline period 
(1981–2010). Solid lines indicate the five GCM ensemble means under the RCP scenarios, and the shading 
indicates one standard deviation of the ensemble mean. The time series were smoothed using a 10-year running 
mean.

Figure 3.  Net primary productivity in China for 1981–2010 and its standard deviation distribution. (a) 30-year 
mean NPP. (b) NPP standard deviation. Note that black spots in (a) indicate field sites. The field sites data were 
obtained from the Global Primary Production Data Initiative Products database70. The figure was generated 
using ArcGIS 10.1 software (http://www.esri.com/).

http://www.esri.com/
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Temporal change in risk in the future.  Changes in the areas of climate change risk faced by forest sys-
tems in China under the four RCPs are shown in Fig. 5. There was a general decrease in the forest area at risk in 
China in the future, especially under the relatively low emission scenarios. Under RCP2.6, RCP4.5 and RCP6.0, 
the risk area was predicted to decrease noticeably in the first half of the 21st century and then fluctuate gently in 
the second half. For the highest emission scenario RCP8.5, the risk area was first predicted to decrease and then 
to increase from around the 2050s, which was mainly determined by the change in the high-level risk area. The 
total areas at risk between 2011 and 2099 were predicted to average 15.58%, 23.64%, 33.22% and 36.07% under 
RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. For the different risk levels, the forest area at medium risk was 
less than that the area at low risk and did not exceed 10% over most periods, while the area at high risk exhibited 
significant increasing trends except RCP2.6. Toward the end of the 21st century, the high-risk area was projected 

Figure 4.  Comparison between simulated and measured net primary productivity in different eco-geographical 
regions of China. I: Cold temperate humid region; II: Mid-temperate humid/sub-humid region; III: Warm 
temperate humid/sub-humid region; IV, Northern subtropical humid region; V: Mid-subtropical humid 
region; VI: Southern subtropical humid region; VII: Tropical humid region; VIII: North semi-arid region; IX: 
Northwest arid region, and X: Tibetan Plateau region.

Figure 5.  Change of forest area in China at risk during the 21st century under (a) RCP2.6, (b) RCP4.5, (c) 
RCP6.0, and (d) RCP8.5.
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to increase at trends of 0.7% (p < 0.01), 1.7% (p < 0.01) and 3.2% (p < 0.01) per decade under RCP4.5, RCP6.0 
and RCP8.5, respectively.

Spatial change of risk in the future.  To reflect the change in spatial patterns of future risk, two typical 
periods of 2021–2050 and 2071–2099 were selected in this study, representing mid and long terms. Results from 
the other periods could be found in Supplementary Figure S1-S4. The risk of climate change to the forest NPP in 
China is predicted to be aggravated for all scenarios from 2021 to 2050 (Fig. 6). The risk area is predicted to be 
mainly concentrated in the tropical humid and southern subtropical humid regions under the two relatively low 
emission scenarios (RCP2.6 and RCP4.5). For the higher emission scenarios (RCP6.0 and RCP8.5), this area is 
likely to extend northward to the mid-subtropical humid region and the northern subtropical humid region. The 
total risk areas for the four RCPs covered 21.14%, 31.82%, 42.61%, and 40.24% of the whole forest area (Table 1). 
Moreover, the low risk area was predicted to account for the largest part of the total risk area, while the high-risk 
area was predicted to account for the smallest portion. The forest area at low risk was highest under RCP6.0 and 
was distributed continuously through the areas south of the middle and lower reaches of the Yangtze River. Under 
RCP8.5, the risks to the forest in the southeast and southwest areas were mainly medium and high. The areas 
predicted to have medium and high risk under RCP6.0 were predicted to increase significantly from 11.76% and 
1.19% to 14.35% and 5.39%, respectively, under RCP8.5.

The model predicted that the forest NPP risk pattern in China would be noticeably different for the period 2071–
2099 (Fig. 7) than for 2021–2050, with the total risk areas accounting for 8.95%, 16.94%, 28.48%, and 46.17% under 
RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively (Table 2). Decreases in the low and medium risk areas mainly 
explain the sharp decline in the total risk area predicted for the first three RCPs between the periods 2071–2099 and 
2021–2050. Some of the low and medium risk areas were predicted to translate into high risk, though this mainly 

Figure 6.  Distribution of forest area at risk in China from 2021 to 2050 under (a) RCP2.6, (b) RCP4.5, (c) 
RCP6.0, and (d) RCP8.5. The figure was generated using ArcGIS 10.1 software (http://www.esri.com/).

risk level RCP2.6 RCP4.5 RCP6.0 RCP8.5

low risk 13.05 21.04 29.67 20.50

medium risk 7.66 10.46 11.76 14.35

high risk 0.43 0.32 1.19 5.39

total risk 21.14 31.82 42.61 40.24

Table 1.  Percentage of forest area at risk in China from 2021 to 2050 under different RCPs.

http://www.esri.com/
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affected areas in southern China. Furthermore, the high-risk area accounted for the largest percentage of the total 
risk area under RCP6.0 and RCP8.5, while the medium risk area accounted for the smallest portion. The area of 
forest at risk under RCP8.5 was predicted to be greater during 2071–2099 than 2021–2050 under RCP8.5, mainly 
because of a significant increase in the high-risk area. This high-risk area was predicted to extend from southern and 
central China to northeastern China, accounting for 27.62% of the total forest area.

Rate of change in risk in response to warming.  Figure 8a shows changes in the percentage of the area 
at risk in response to variations in the temperature anomalies predicted by the different GCMs under RCP8.5, 
processed by quadratic curve fitting. The corresponding rates of change, namely the first derivative of the func-
tions shown in Fig. 8a, are shown in Fig. 8b. When the temperature increased by between 0.80 ± 0.21 °C and 
5.76 ± 1.40 °C relative to the baseline (9.76 ± 0.08 °C), the risk area was predicted to first decrease and then 
increase so that it covered half of the total forest area. The rate of change in the risk area percentage was pre-
dicted to first slow down and then accelerate, with the most obvious change predicted by the GFDL-ESM2M. The 
multi-model mean values show that the NPP risk area made up approximately 38% of the whole forest area in 
China when the temperature increased by about 3 °C under RCP8.5; for a temperature increase of about 6 °C, the 
NPP risk area was predicted to extend to almost 55% of the forest area, with a rate of change of 13% °C−1.

Rate of change in risk in response to precipitation change.  We further analyzed the rate of change in 
risk in response to precipitation change. Results showed that the percentage of risk area was projected to decrease 
in the future, as the precipitation anomaly ranged from −2.11 ± 2.46% to 10.13 ± 8.21% relative to the baseline 
period (Fig. 9a). For every additional percentage point increase in precipitation, the area at risk tended to decrease 
by 1.67% of the total forest area (Fig. 9b). In terms of the difference among GCMs, IPSL-CM5A-LR showed a 

Figure 7.  Distribution of forest area at risk in China from 2071 to 2099 under (a) RCP2.6, (b) RCP4.5, (c) 
RCP6.0, and (d) RCP8.5. The figure was generated using ArcGIS 10.1 software (http://www.esri.com/).

risk level RCP2.6 RCP4.5 RCP6.0 RCP8.5

low risk 6.26 6.47 10.14 9.82

medium risk 2.37 6.04 7.55 8.74

high risk 0.32 4.42 10.79 27.62

total risk 8.95 16.94 28.48 46.17

Table 2.  Percentage of forest area at risk in China from 2071 to 2099 under different RCPs.

http://www.esri.com/
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small range of precipitation change and a quick drop of NPP risk area; the area at risk was projected to turn from 
decreasing to increasing, when the precipitation increased by about 13% in the case of HadGEM2-ES.

Driving factors.  We attributed the IAV of NPP to different climatic factors by calculating the partial correla-
tion coefficients between NPP and precipitation (PRE), temperature (TEM), and aridity index (AED/PRE) for the 
period 2071–2099 under RCP8.5 (Fig. 10). There were significant positive correlations between temperature and 
forest NPP, mainly in northeastern China and in the eastern part of the Tibetan Plateau, which occupied 9.60% of 
the total forest area. Significant negative correlations between precipitation and forest NPP accounted for a larger 
proportion (15.53%) and were mainly limited to southern China. Substantial temperature rise was projected 
to occur in Northeast China, whereas the relatively slight increase of precipitation seemed to be distributed in 
Southeast China. The aridity index tended to increase obviously for these areas, implying potential droughts in 
the long term under high emission scenario. The aridity index and NPP were significantly and negatively cor-
related for nearly half of the forests (49.84%), ranging from northeastern China to southern China, indicating 
that increased dryness would limit forest growth in these regions. Therefore, of the three variables, the projected 
aridity index seemed to have a greater impact on the forest NPP, both in its degree and extent, which means that 
risks of a decrease in the forest NPP were mainly because of dryness.

Discussion
The pattern predicted in this study is spatially consistent with other recent findings. For example, Gang et al.71 
suggested that the terrestrial NPP would increase in the northern mid and high latitudes where warming would 
favor tree growth and expansion by the end of the 21st century, especially for temperate and boreal forests. 
Using the RCP4.5 scenario in the Integrated Biosphere Simulator, Yuan et al.72 found that the NPP of deciduous 
broad-leaved forest in the warm temperate zone in China would increase, while that of subtropical evergreen 
broad-leaved forests in southern China would decrease, and would be vulnerable from 2016 to 2050.

Figure 8.  Percentage of forest area affected by risk and its rate of change with temperature in China under 
RCP8.5. (a) Fitted percentage of forest area subject to climate change risk (%) for each model (dashed lines) 
and the multi-model mean (black solid line). (b) Rate of change in the risk area (% °C−1) as a function of the 
temperature anomaly relative to 1981–2010 for each model (dashed lines) and the multi-model mean (black 
solid line). Before quadratic curve fitting, data were smoothed using a 10-year running mean.

Figure 9.  Percentage of forest area affected by risk and its rate of change with precipitation in China under 
RCP8.5. (a) Fitted percentage of forest area subject to climate change risk (%) for each model (dashed lines) 
and the multi-model mean (black solid line). (b) Rate of change in the risk area (% %−1) as a function of the 
precipitation anomaly relative to 1981–2010 for each model (dashed lines) and the multi-model mean (black 
solid line). Before quadratic curve fitting, data were smoothed using a 10-year running mean.
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We found that the total area of forest in China at risk from climate change would first decrease and then 
increase as the warming accelerated under RCP8.5. The future projections of forest risk to climate change indi-
cate that climate warming may be beneficial to vegetation growth to a minor extent, but when the climate change 
exceeds a certain threshold, the impacts could be negative. While increases in temperature could enhance plant 
photosynthesis, they could also cause a water vapor pressure deficit. The leaf stomata would then close to prevent 
water loss and increase water use efficiency73. Several previous studies have reported that, without considering 
the CO2 fertilization effect, rapid temperature increases and increased frequency of drought events could cause 
a decrease in the NPP in tropical and subtropical forests, and even in the global terrestrial NPP, under relatively 
high emission scenarios71,74. Because of warming and changes in rainfall patterns, the decrease in the available soil 
water has slowed down the increase in the forest NPP in southern China over the past three decades75. From their 
analysis of 32 years of data from forest observation plots, Zhou et al.76 suggested that subtropical forests in China 
were threatened by their lack of resilience to long-term climate change manifested by rising temperatures and 
increased occurrence of soil drying. Also, studies of the impact of climate change on aridity during the 21st cen-
tury have predicted increased aridity over most tropical and mid-latitude land regions37, and, in particular, over 

Figure 10.  Anomalies of climatic factors during 2071–2099 relative to 1981–2010 under RCP8.5 and their 
partial correlation coefficients with forest NPP in China. (a,b) temperature. (c,d) precipitation. (e,f) aridity 
index. Note that black checkmarks indicate statistical significance (p < 0.05). The figure was generated using 
ArcGIS 10.1 software (http://www.esri.com/).

http://www.esri.com/
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most of Africa, the Americas, Australia, Southeast Asia, and the Mediterranean region77,78. This indicates that 
more intense droughts would limit future forest growth in low latitude regions. Climate change alone may lead 
to less overall tree coverage in the Tropics, while the competing effects of CO2 fertilization and climate change, 
along with the uncertainty of projected precipitation changes in the Tropics, mean that there is a large degree of 
uncertainty associated with projected future changes in vegetation79.

Moreover, shifts in forest disturbances such as wind, pests, and fire may adversely affect forest productivity 
under future climate change. The productivity of and carbon storage in Europe’s forests is likely to decrease as cli-
mate change and forest disturbances intensify31,80, though both increasing and decreasing trends have been found 
in the growth and productivity across Europe81–83. For example, the growth of European beech was observed to 
have declined because of droughts over the past 20th century80, and its NPP and water-use efficiency was pre-
dicted to reduce under future climate conditions (A1B scenario) due to aggravated water shortage and droughts84. 
As the risks from forest fire are predicted to become increasingly serious in China, mainly because of an increase 
in fire weather in central and southeastern China85, measures should be implemented to reduce the negative 
impacts of fire disturbance on forest productivity. The sensitivity of NPP to climate change is also the key to 
understanding how risk develops and evolves. Piao et al.21 found that the inter-annual correlation between terres-
trial productivity and temperature decreased in temperate regions because of an increase in drought over the past 
decade, while Heyder et al.16 reported that strong warming could amplify the sensitivity to declining precipitation 
in temperate and tropical ecosystems.

There are uncertainties in risk forecasts in vegetation productivity from several sources, including emission 
scenarios, climate models, and ecological models. For instance, due to the large discrepancy in future projec-
tions of precipitation from global to regional scale86,87, the difference in precipitation patterns and extreme events 
across CMIP5 models could be a vital source of uncertainty for terrestrial carbon flux and its impact from climate 
change88. As for China, the cross-model variability of future NPP was reported to be significantly contributed 
by the simulated precipitation on the local scale, especially in northwestern area89. From their assessment, Sitch 
et al.90 found that the responses of five DGVMs to climate change varied more widely than their responses to 
changes in CO2 concentrations. Nishina et al.91 considered that, if the uncertainty in the ISI-MIP results were to 
be reduced, the simulation capacity of vegetation models would need to improve. When estimating forest bio-
mass and productivity, accurate descriptions and determinations of allometry and allometric scaling parameters, 
respectively, are important92. We did not consider the direct effect of CO2 fertilization in our study even though 
it is an important influence on changes in vegetation NPP. The observed increase in photosynthetic water-use 
efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades has been closely 
associated with elevated atmospheric CO2 concentrations93. Water stress or decreased carbon gains from auto-
trophic respiration may result in decreased vegetation productivity and loss of forest cover when there are short-
ages of CO2

94. There was a considerable difference between the simulated and observed data in the forest NPP in 
the tropical humid region for the baseline period, which probably reflects the fact that there were only seven site 
records from this area, thereby causing high uncertainty. To measure this kind of uncertainty, the time series of 
observed NPP from 1981 to 2010 are needed to compute the standard deviation and to further calculate the risk. 
Nevertheless, due to the lack of time series data in the observed NPP across China70,95–97, we are unable to quan-
tify the uncertainty resulting from the difference between simulations and observations. Further, different ways 
of assessing risk may also create uncertainties. For example, baseline values may differ depending on whether 
they are derived from the global average or regional average, and variable values may exceed natural variability 
when they are beyond the mean plus or minus several standard deviations5,16,47. All these factors can produce 
different risk assessment results. van Oijen98,99 defined risk as the product of probability and vulnerability, and 
used the difference in NPP between hazardous condition and normal climate to indicate ecosystem vulnerability. 
Although the method is explicit in mathematics and easy to operate, it seems more suitable to the risk induced by 
single hazard factor and the distinction between hazardous and non-hazardous conditions mainly depended on 
the subjective experience. In addition to the impact of climate change, human activities like forest management 
measures may also drive changes in ecosystem100. It deserves more research on how to isolate the climate change 
risk from its complicated interactions with human factors.

Conclusion
In this study, we modified the AED and fire modules of the LPJ model and investigated spatial and temporal 
features of climate change risk faced by forest in China in the 21th century under different RCPs. The risk rating 
predicted in this study from the relationships between decreases in NPP and baseline variability (indicated by 
the standard deviation) highlighted the adverse impact of future climate change on vegetation productivity. The 
area of forest NPP at risk in China showed a general tendency to decrease from 2011 to 2099 relative to the base-
line period of 1981–2010, under RCP2.6, RCP4.5 and RCP6.0. High-level risk area would increase especially in 
RCP4.5 (0.7% per decade, p < 0.01) and RCP6.0 (1.7% per decade, p < 0.01).

The risk of climate change to forest in China is likely to be relatively obvious under RCP8.5 compared with low 
emission scenarios especially in the long term. In response to future climate change, the total risk area is predicted 
to first decrease and then increase after the middle of 21st century. The percentage area at high risk was predicted 
to increase from 5.39% (2021–2050) to 27.62% (2071–2099) with a trend of 3.2% per decade (p < 0.01). The forest 
vegetation growth would probably be weakened as the degree of warming increased under RCP8.5.

Spatial distributions show that climate change risk to forests was projected to be concentrated in south China. 
The risk of future climate change to forest in China is predicted to be mainly distributed in the low latitude south-
ern subtropical humid and tropical humid regions where there were intensified dryness and where the declines 
in productivity superimposed by natural hazards such as droughts and floods may bring huge losses to the local 
economy.
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