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Optimal swimming strategies and 
behavioral plasticity of oceanic 
whitetip sharks
Yannis P. Papastamatiou1, Gil Iosilevskii2, Vianey Leos-Barajas3, Edd J. Brooks4, Lucy A. 
Howey5, Demian D. Chapman1 & Yuuki Y. Watanabe6,7

Animal behavior should optimize the difference between the energy they gain from prey and the 
energy they spend searching for prey. This is all the more critical for predators occupying the pelagic 
environment, as prey is sparse and patchily distributed. We theoretically derive two canonical 
swimming strategies for pelagic predators, that maximize their energy surplus while foraging. They 
predict that while searching, a pelagic predator should maintain small dive angles, swim at speeds 
near those that minimize the cost of transport, and maintain constant speed throughout the dive. 
Using biologging sensors, we show that oceanic whitetip shark (Carcharhinus longimanus) behavior 
matches these predictions. We estimate that daily energy requirements of an adult shark can be met by 
consuming approximately 1–1.5 kg of prey (1.5% body mass) per day; shark-borne video footage shows 
a shark encountering potential prey numbers exceeding that amount. Oceanic whitetip sharks showed 
incredible plasticity in their behavioral strategies, ranging from short low-energy bursts on descents, 
to high-speed vertical surface breaches from considerable depth. Oceanic whitetips live a life of energy 
speculation with minimization, very different to those of tunas and billfish.

Sparse and patchily distributed prey make the pelagic environment the marine equivalent of the desert, yet some 
of the largest predators spend their entire lives in this ecosystem. To do so they must maintain a surplus between 
the energy they gain from prey E+ and the energetic costs associated with searching for prey E−

1.
Energy gained from prey can be expressed as

= ++E e T e X, (1)T X

where X is the distance covered by the predator during time T, whereas eT and eX are coefficients reflecting the 
prey density and mobility, as well as the probability of prey capture. The first term in (1) reflects the probability of 
prey arriving at the predators location without the predator moving, while the second reflects the probability of 
the predator finding prey through active searching. When the average swim speed of the predator

=v X T/ (2)x

is much greater than the average speed of its prey, eT becomes irrelevant.
The energy spent searching for prey is

=−E T P , (3)

where
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is the (instantaneous) routine metabolic rate, and the angular brackets denote an average with respect to time, so 
that

∫= .P
T

P t t1 ( )d (5)
T

0

The routine metabolic rate P includes the standard metabolic rate P0, which is a function of body temperature 
τ, and the metabolic cost of swimming vF/η. F is the hydrodynamic thrust, v is the swimming speed, η is the 
chemo-mechanical propulsion efficiency.

Combining (1) and (3) together, the energy surplus of a predator is

Δ = − = + − = + −+ −E E E T e v e P X e e v C( ) ( / ), (6)X x T X T x

where

= =−C E
X

P
v (7)x

is the cost of transport (energy spent per unit distance moved, COT). We would expect swimming strategies that 
result in ΔE ≥ 0. Nonetheless, there are two canonical swimming strategies: one that maximizes the energy sur-
plus per unit distance, eX + eT/〈vx〉 − C, and another that maximizes the energy surplus per unit time, 
eX〈vx〉 + eT − 〈P〉. By using the first strategy, a fast-moving predator (with 

v e ex X T) will maximize the energy 
gained from a given volume of water, whereas the second strategy will maximize the rate of this gain (but with a 
smaller yield). The two strategies become the same when ΔE → + 0 (i.e. when the energy surplus is very small).

Teleost pelagic predators (e.g. tuna) have elevated metabolic rates, increased gill surface areas, and muscle 
biochemistry enabling rapid recovery from exercise, all of which allow a decisive performance advantage over 
their prey2–4. However, notwithstanding their efficient propulsion (thunniform swimming gait, lunate caudal fin) 
and improved hydrodynamic shape (fusiform body, retractable fins), they pay a high energetic price to find prey. 
Their evolutionary design stresses maximization of the energy gained eX〈vx〉 + eT over minimization of the energy 
spent 〈P〉, leading to a life of high-energy turnover with large ΔE, and consequently, a rapid growth rate2,5. We 
hypothesize that they swim so as to maximize the energy surplus per unit time, eX〈vx〉 + eT − 〈P〉.

Pelagic ectothermic sharks (e.g. oceanic whitetip, blue sharks) likely have lower metabolic rates6, and lack the 
morphological and biochemical adaptations needed for rapid recovery from exercise. As such, they may have a 
less decisive performance advantage over prey, but may benefit from expending less energy to find prey. Their 
evolutionary design stresses minimization of energy spent over maximization of energy gained, and they likely 
live a life of low energy turnover with small energy surplus, and consequently, slow growth rates7. We hypothesize 
that they swim so as to maximize either the energy surplus per unit time or energy surplus per unit distance – if 
the energy surplus is small then both strategies should be practically the same.

First, we theoretically derive the optimal swimming strategies that pelagic predators should use if they aim 
to maximize the energy surplus per unit distance, or per unit time, respectively. We then use biologging sensors 
(speed/acceleration/depth/video) to see if the behavior of a representative ectothermic pelagic predator, the oce-
anic whitetip shark (Carcharhinus longimanus), matches these predictions. Oceanic whitetip sharks spend almost 
their entire lifecycle in pelagic waters, have slow growth rates, and can make predictable seasonal migrations8. We 
predict that their behavior aims to maximize their energy surplus.

Results
Theoretical analysis.  The two canonical strategies are formally derived in the Methods. They can be sum-
marized as follows:

Energy surplus per unit distance.  1. For a given eT and eX, the energy surplus per unit distance of an ectother-
mic predator is maximized by swimming at constant speed and depth, as deep (cold) as feasible. When eT → 0, 
the optimal swimming speed is that which minimizes the COT. This speed decreases in relation to standard 
metabolic rate, and hence the animal should swim slower as body temperature decreases. An increase in eT has 
the same effect as a reduction in the standard metabolic rate, and hence a slow moving predator (whose speed is 
comparable with the average speed of its prey) should swim slower than it would to minimize the COT.

2. When eT → 0 and when swimming optimally, the average active metabolic rate will be in excess of 1.5 
times the standard metabolic rate (see equation (38)). The excess depends on the morphology of the fins and 
buoyancy, increasing with the sinking factor (animal is less buoyant) and decreasing with increasing span of 
the pectoral fins.

3. Assuming the animal has to swim with a series of alternating dives (‘yo-yo’ diving), the optimal strategy 
would be diving at shallow angles relative to the horizon, with constant speed throughout the dive, and at the 
same speed that would minimize the COT if swimming at constant depth. The (relative) effect of diving on 
the COT is small - approximately half the variance of the dive angle (see equation (39)). The (relative) effect of 
possible variations in speed along the course is approximately the same as the variance of the (relative) speed 
fluctuations (see equation (39)).
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Energy surplus per unit time.  4. The above points apply to this swimming strategy as well, except swimming 
speed should be higher than the speed that maximizes the energy surplus per unit distance. The difference in 
speed is proportional to the energy surplus (there would be no difference if there is no energy surplus), and there-
fore swim speed should increase with prey density.

Field data.  Dive behavior and swim speeds.  We successfully recovered data-logger packages from four oce-
anic whitetip sharks, providing a total of 9 days of data (Table 1). All four sharks performed a series of continuous 
bounce (yo-yo) dives within the upper 250 m of the water column, swimming at average speeds of 0.6–0.7 m/s 
(Figs 1–3), but with occasional high-pitch bursts up to 4.6 m/s (Supplementary Figs S1 and S2). All four sharks 
used shallow dive angles, maintained near constant speed between descent and ascent portions of the dive, and 
swam within the speed range that should have minimized their COT (Figs 1–3). The smallest shark (OWT2) was 
also the fastest relative to its respective speed range. All sharks reduced their average swimming speed with depth, 
consistent with the animals maintaining swimming performance as the water temperature decreased (Fig. 2).

Video footage was obtained from two sharks (OWT3 and OWT4) for a total of 16 hours. Video was used to 
verify speed and acceleration measurements (by confirming that the segments of increased lateral motion seen on 
the video corresponded to the segments of increased swimming speed and lateral acceleration) and demonstrated 
that sharks encountered potential prey, such as mackerel scad (potentially Decapterus macarellus) and squid, at 
depths between 20–100 m (Fig. 1). OWT3 encountered a squid patch in excess of 10 individuals at 100 m depth 
(Supplementary video). The encounter rate with potential prey was 0–29 within a 30 minute block (median 4) for 
OWT3, and 0–2 within a 30 minute block (median 1) for OWT4. No other sharks were seen in any video footage.

Energetic costs and hunting tactics.  Based on the swimming speeds, we estimate an average routine metabolic 
rate 2.5 times the standard one (Fig. 4). The standard metabolic rate of a 100 kg shark at 26 °C is estimated at 15 
Kcal/hour (Supplementary Table S3). When calculated cumulatively throughout the diel cycle, it yields a daily 
energetic cost of approximately 900 Kcal. Assuming the energetic costs of excretion and egestion are 30% ingested 
energy, then sharks must consume approximately 1300 kcal/day, which is the equivalent of approximately 1.5 kg 
prey (e.g. squid), or 1–1.5% of the shark’s body weight per day. Energy requirements were noticeably lower during 
the descents vs ascents as sharks are negatively buoyant, and accelerometers showed much lower activity during 
the descent portions of dives (Fig. 4).

Deployment date Shark
Total 
length (m)

Pre-caudal 
length (m) Sex Sensors Duration (h)

May 8, 2013 OWT1 2.71 1.96 F A, D, S, T, H 72

May 1, 2014 OWT2 2.2 1.5 F A, D, S, T 22

May 3, 2014 OWT3 2.85 2.09 M A, D, S, T, V 48

May 5, 2014 OWT4 2.62 1.9 F A, D, S, T, V 43

Table 1.  Deployment information for oceanic whitetip sharks tagged in the Bahamas. Sensors: A-acceleration, 
H-magnetic heading, D-depth, S-speed, T-water temperature, V-video.

Figure 1.  Depth (top) and speed (bottom) of an oceanic whitetip shark (OWT3). Symbols identify when the 
shark encountered potential prey items as determined from a dorsal fin mounted video camera: fish in general 
(red triangles), mackerel scad (circles), squid (squares). Possible hunting events identified in the video footage 
by erratic behavior or by increased activity, have been marked by asterisks. The shark performed yo-yo dives at 
practically constant swim speed.



www.nature.com/scientificreports/

4SCIENTIFIC REPOrTs |  (2018) 8:551  | DOI:10.1038/s41598-017-18608-z

All four sharks initiated downward high-speed bursts (Fig. 5, Supplementary Fig. S2). However, shark OWT1 
either behaved similarly, or performed remarkable high-speed vertical ascents (11 in total). Some of these resulted 
in breaches where the shark cleared the water surface (at least 7). Incredibly, one of these daytime breaches was 
initiated from a depth of 160 meters with a vertical ascent at 4 m/sec before the animal cleared the surface (Fig. 5). 
Using equation (12), we estimate that this 40-sec breach is energetically equivalent to 50 min of normal swimming 
(Fig. 4a). 5 of the 7 surface breaches occurred during a moonless night (on May 8, 2013).

Discussion
Our model provides predictions as to how pelagic predators should behave in terms of diving angles and swim 
speeds, in order to maximize their energy surplus. Unconstrained by the necessity to search the water column 
vertically, the optimal strategy would be to swim at constant depth and speed, as deep (cold) as possible. Yet, 
almost all pelagic predators swim up-and-down, highlighting that yo-yo diving is a necessity for their survival8–11. 
Under the constraint that a predator has to search the water column vertically, the swimming strategy that maxi-
mizes the energy surplus (either per unit time or per unit distance) is to dive at small angles, and maintain almost 
constant speed throughout the dive. This optimal swim speed would be almost the same as the speed that would 
have minimized the cost of transport (COT) when swimming at constant depth – with subtle variations. It will 
be smaller if the speed of the predator is comparable to the average speed of its prey, and larger if the goal of 
the predator is to maximize the energy surplus per unit time, increasing with prey density. Indirect support for 
this conjecture comes from the behavior of blue sharks (Prionace glauca), another ectothermic pelagic predator. 
These sharks were consistently observed swimming at 0.3–0.4 m/s11, significantly slower than the speed (0.5 m/s) 
that would have minimized their COT12. However, at 0.3–0.4 m/s their swimming speed is comparable with the 
average speed of small prey, and hence slow swimming is consistent with an optimal swimming strategy (when 
eT > 0).

The four tagged oceanic whitetip sharks used small dive angles, their swimming speed was practically constant 
throughout the dive, and within the range that would have minimized their COT if they were swimming at con-
stant depth. There was variability in individual speeds, and we did not directly measure the buoyancy of each indi-
vidual (although we included error in buoyancy estimates for our speed predictions). However, for the two sharks 
where video was simultaneously recorded, the individual that was swimming at the faster range of predicted 
speeds (OWT3) had prey encounter rates almost four times those of OWT4, which swam at the lower range of 
speeds, as would be predicted by our model (optimal swim speed increases with prey density). Combined, these 
results suggest that oceanic whitetip sharks are likely maximizing their energy surplus, and possibly maximizing 

Figure 2.  Density distribution of shark’s swim speeds with depth (panels (a–d) correspond to sharks OWT1-
OWT4). The density is normalized so that the integral over the map area yields unity. The horizontal green bar 
represents the predicted swim speeds that minimize the cost of transport, including error bracketing. The green 
lines are the predicted change in optimal swim speed with depth (due to changes in water temperature).
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their energy surplus per unit time. Previous analysis of diving behavior in whale sharks also suggested that sharks 
were diving at small angles so as to reduce their COT9.

Our estimate of shark energy costs also suggests that oceanic whitetip sharks have low energy requirements 
and it is likely that low prey numbers are needed to meet maintenance rations. Assuming sharks are consuming 
squid (an important prey item13), then they would only need to consume approximately 1.5% BW daily, with a 
video equipped shark encountering squid patches far in excess of this requirement. Of course sharks must also 
catch prey they encounter, but nonetheless we show that encounter rates are far in excess of the minimum num-
bers they need. In addition to these behavioral strategies, oceanic whitetips have morphological adaptations to 
optimize their swimming performance. Their broad pectoral fins make their swimming performance less sensi-
tive to changes in buoyancy, which would be advantageous if the animal does go a long period without finding 
food (losing buoyancy12).

A likely function of yo-yo dive behavior is searching for prey, as previously suggested for tiger sharks10. 
Further evidence comes from the oceanic whitetip sharks with cameras, as potential prey were most commonly 
seen during the dive (and not when shallow) and at the apex of the dive, which was also when bursts of speed were 
common. Assuming bursts in swim speed are associated with foraging (and the video analysis seems to confirm 
this assumption – see Fig. 1), then the primary hunting tactic oceanic whitetip sharks use to catch prey were short 
bursts of speed while descending, which fits well with an energy minimizing strategy. However, one of the four 
tracked sharks (OWT1) displayed remarkable behavioral plasticity being also capable of performing high-speed 
ascents at speeds in excess of 4 m/sec. These included vertical ascents initiated at 160 m depth and ended with the 
shark breaching the surface. The energetic cost of a long breach are significant – a 40 sec breach at 4 m/s is ener-
getically equivalent to 50 min of swimming at the average cruising speed. While we cannot definitively address 
the cause of the behavioral plasticity, we suggest it is related to prey type. A stable isotope study indicated that 
oceanic whitetip diet is dominated by lower trophic level prey (e.g. squid) over the course of the year, but higher 
trophic level prey (e.g., marlin, tuna, dolphin fish) are regularly consumed during their residency period at Cat 
Island13. We hypothesize that the high-speed surface ambush is used for these larger pelagic fish. However, we 
also acknowledge that surface breaching has been seen in sharks that do not appear to be foraging, and there may 
be other functions of this behavior. Regardless, different behavioral strategies may vary widely in their energetic 
costs. Large predators from both terrestrial and marine systems show plasticity in hunting strategies at the indi-
vidual level, but only recently are we starting to identify these and quantify the energetic costs5,14,15.

Ectothermic sharks in general have lower standard metabolic rates than endothermic pelagic teleosts (tunas, 
billfish)3,6,16. The high metabolic rates and warm muscles of tunas and other endothermic fish enable them to 
have a large aerobic scope and swim at faster cruising speeds, while specialized muscle biochemistry allows rapid 

Figure 3.  Density distribution of shark swim speeds with dive angles relative to the horizon (panels (a–d) 
correspond to sharks OWT1-OWT4). The density is normalized so that the integral over the map area yields 
unity. The horizontal green bar is the predicted optimal swimming speed that minimizes the cost of transport, 
including error bracketing.
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recovery from exercise2,3,17. When combined with their fast rates of digestion, tunas and billfish are adapted for 
rapidly finding, digesting and assimilating prey, albeit at considerable energetic cost3,5,18. Hence, they gamble 
a lifestyle of high costs for a high rate of return (possibly maximizing the energy surplus per unit time), which 
leads to the fast growth rates of surviving individuals, termed ‘energy speculation with maximization’3. Oceanic 
whitetip sharks appear more suited to an ‘energy speculation with minimization’ strategy; lower risk for lower 
return, which is also displayed in their slow growth rates7,19.

Methods
Experimental guidelines.  Research and animal tagging was conducted under Cape Eleuthera Institute 
research permit (MAF/FIS/17 & MAF/FIS/34) issued by the Bahamian Department of Marine Resources under 
accordance with Cape Eleuthera Institute animal care protocols.

Tagging.  Fieldwork was conducted at Cat Island, Bahamas (N 24.2133, W 75.3645), in 2013 and 2014, where 
relatively high densities of oceanic whitetip sharks can be found from April to June. Sharks were caught on hook and 
line, restrained alongside the boat and morphometrics (pectoral fins width, length and span, total and pre-caudal 
lengths) were measured in some individuals. Seven sharks were tagged with multi-sensor data-loggers, attached 
to the dorsal fin via a tie-wrap threaded through two small holes. Data loggers (PD3GT, 21 × 15 mm, 60 g, Little 
Leonardo, Tokyo, Japan) measured 3D acceleration (32 Hz for one shark, and 16 Hz for the others), swim speed, 
depth and water temperature (1 Hz) and were combined with an HD video camera (DVL500, 640 × 480 pixels at 30 
frames/second, 5–11 h recording duration, Little Leonardo, Tokyo, Japan). Video cameras were programmed to turn 
on and start recording at 07:00 the day after the animal was released. One shark (OWT1) was fit with a 3MPD3GT 
data-logger (26 × 175 mm, 135 g, Little Leonardo), which in addition to the sensors above, also includes a magneto-
meter (1 Hz). At a pre-programmed time (1–4 days) the package released from the fin and floated to the surface; 
embedded VHF and satellite transmitters (SPOT 5, Wildlife Computers) facilitated the retrieval of the devices.

Data analysis.  The speed sensor contains a propeller, and rotations were converted to swim speed using the 
calibration equation described in20. The resolution of the speed and depth measurements was 0.02 m/s and 0.1 m, 
respectively. The first 10 hours of data from each shark were discarded to remove any periods associated with 

Figure 4.  Estimated routine metabolic rates of oceanic white sharks OWT1-OWT4 (a–d). Active metabolic 
rate (P) is given relative to standard metabolic rate (P0). Curves represent the relative amount of time sharks 
spent at a certain metabolic rate. Each curve signifies varying bracketed errors on morphometrics. A black 
rectangle at the bottom of each figure represents the average routine metabolic rates. The inset in (a) shows 
the metabolic rate of OWT1 during breaching events, which exceeded the average rate by almost two orders of 
magnitude. The double ‘hump’ shape of the curves manifests descent and ascent phases of the shallow dives.
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stress of capture. The vertical components of velocity and acceleration were obtained by differentiating a run-
ning parabolic fit of depth; axial acceleration was obtained by differentiating a running parabolic fit of speed. In 
both cases, the fitting window was 11 points, 5 points on each side. If the derivative of depth with respect to time 
exceeded the directly measured swimming speed, the vertical velocity component was set equal to the swimming 
speed. Dive angle was obtained from the vertical velocity and the swimming speed. Its derivative was found either 
by differentiating the respective parabolic fit, or by using the second derivative of depth and the first derivative 
of speed.

Dead reckoning using magnetometer, depth and speed measurements was used to generate a 3D track of shark 
OWT1. The combination of speed and vertical velocity furnished the horizontal velocity component; the com-
bination of the horizontal velocity component and the magnetic heading furnished the North and East velocity 
components; their respective integrals yielded the location; depth was measured directly. Finally, we used video 
camera footage to estimate encounter rates with potential prey. The definition of ‘potential prey’ included fish and 
invertebrates (except scyphozoans), but excluded pilot fish, which accompanied the sharks.

Theoretical analysis.  Adopting the hydrodynamic model of12 and the general approach of21, we derived two 
canonical swimming strategies of a yo-yo-diving-negatively-buoyant shark – one that maximizes the energy sur-
plus per unit distance and another that maximizes the energy surplus per unit time. The models predict the dive 
angle, swimming speed, and the associated routine metabolic rate and cost of transport. These predictions depend 
on span and area of the pectoral fins, submerged weight, drag coefficient and the standard metabolic rate, which is 
also a function of body mass and temperature. These parameters were estimated using statistical regressions and 
actual measurements taken from the field (see Supplementary Notes). All morphological parameters (body mass, 
span and chord of the pectoral fins) were bracketed ±10% about the nominal values to account for uncertainty of 
the estimation methods; parasite drag coefficient was bracketed between 100% and 125%, the sinking factor was 
bracketed between 0.025 and 0.05.

Optimal swimming strategies.  Formulation of the problem.  Consider a predator that forages for time 
T, covering horizontal distance X. It is implicitly assumed that T and X are large compared with tailbeat period 
and stride length, respectively. It is also assumed that either X or T are given, but not both. The predator’s energy 
surplus ΔE over T, which is the difference between the energy gained from prey and energy spent searching for 
it, is given by equation (6). We seek two canonical swimming strategies, manifested in speed v(·) and depth h(·) 
schedules over (0,T), that maximize the energy surplus per unit distance ΔE/X, or the energy surplus per unit 
time ΔE/T. These strategies will be derived in the next two sub-sections; the optimization problem is formalized 
herein.

The speed and depth schedules define the dive angle

Figure 5.  Hunting plasticity in shark OWT1. Dives are color coded by swim speed. All plates have been 
oriented so that the shark swims toward the upper right corner. Start- and end-times appear next to the 
respective points. The top row of panels shows upward bursts with possible surface breaching (circles on 
surface); the bottom row shows a downward burst and a long horizontal chase.
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for the average active (routine) metabolic rate. After a sufficiently long swimming interval (formally, when 
T → ∞), the last three terms fall out. Exploiting (9), the remaining terms can be recast as:
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where
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The first two quantities have the dimensions of speed, but they defer a simple interpretation12. The last quantity 
has the dimension of acceleration, and it can be interpreted as an initial vertical acceleration of the submerged 
(motionless) shark under the action of gravity. The final form of (19),

ϖ
γ
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ϖ
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follows by substitution

ϖ= +⟨ ⟩v t v t( ) (1 ( )), (24)x x

where ϖ can be interpreted as the dimensionless variation of the (reduced) horizontal speed. Note that

ϖ = 0 (25)

by definition.
As mentioned already, we seek two canonical swimming strategies that maximize either the energy surplus per 

unit distance ΔE/X or the energy surplus per unit time ΔE/T. Both quantities involve the specific energy densi-
ties eX and eT, which will be assumed known. eT enters ΔE only in combination 〈P〉 − eT – see (6) – its presence is 
equivalent to a reduction in the basic metabolic rate. By replacing 〈P0〉 in (18) and (20) with 〈P′0〉 = 〈P0〉 − eT (and 
marking the associated P and w by primes), eT is effectively eliminated from the formulation and the two optimi-
zation problems respectively reduce to those of maximizing ΔE/X = eX − C′ and ΔE/T = (eX − C′)〈vx〉 in which

′ = ′C P v/ (26)x

is the (modified) cost of transport (compare (7)).

Maximizing the energy surplus per unit distance.  Given eX and eT < 〈P0〉, the swimming strategy – now mani-
fested in ϖ(·) and γ(·) schedules and in the average horizontal velocity component 〈vx〉 – that maximizes ΔE/X 
will be the strategy that minimizes the modified cost of transport, C′. This problem is similar to that addressed 
in21 and it will be solved using a similar approach. The main (and major) difference between the two is in the 
modelling of the drag coefficient (it was assumed constant in21 but is allowed to change with speed herein), and 
in the average swimming speed becoming an inseparable part of the swimming strategy (the average swimming 
speed was not addressed in21).

We begin with an observation that, except for a few singular events of limited duration, the speed of the 
four tagged sharks was remarkably constant and their dive angles were small and changed slowly – see Figs 1–3. 
Consequently, we assume, subject to an a posteriori verification, that these features also characterize the optimal 
swimming strategy we are looking for. In other words, we assume that |ϖ| and γ are small as compared with unity, 
and that the characteristic time scale tγ on which γ changes exceeds 〈vx〉/a ≈ 2〈vx〉/gβ (see (22)), which is a few 
seconds (typical values of 〈vx〉 can be found in Table 2, typical values of β can be found in Supplementary Material 
Table 3). Under these assumptions,

Shark Duration (s) 〈v〉 (m/s) 〈vx〉 (m/s) 〈ϖ2〉 〈γ2〉 〈(dγ/dt)2〉 (1/s2)

OWT1 218428 0.66 0.66 0.035 0.014 5 10−4

OWT2 43932 0.74 0.73 0.010 0.021 5 10−4

OWT3 134977 0.76 0.75 0.029 0.014 2 10−4

OWT4 118001 0.63 0.63 0.010 0.005 9 10−5

Table 2.  Swimming statistics for the four oceanic whitetip sharks. Being based on the second derivative of 
depth, the values of 〈(dγ/dt)2〉 are sensitive to the number of points used in estimation of the derivative. The 
values found in the table are based on differentiating a running 11-point parabolic fit of the depth. Doubling 
the number of points reduces 〈(dγ/dt)2〉 eight-fold. Typical values of 〈vx〉2/a2 that multiply 〈(dγ/dt)2〉 in (27) are 
bounded between 8 and 32, depending on the sinking factor.
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where the ellipsis stands for the higher order averages of ϖ and γ(and dγ/dt). In deriving (27) we have exploited 
(25).

The optimal average horizontal speed component 〈vx〉 will be the one at which ∂C′/〈vx〉 = 0. In other words, 
it will be the solution of

ϖ γ ϖ γ′ −
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(28)x x
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where the ellipsis stands for the higher order terms with respect to ϖ and γ. The leading-order solution of this 
equation is
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where v'* satisfies

′ ′ − ′ + = .⁎ ⁎w v v u 0 (30)
3 4 4

By interpretation, v′* is the speed that minimizes the (modified) cost of transport when swimming at constant 
depth12. It can be closely approximated by
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(see Table 1 in12) for all practical combinations of u and w′, but the series
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follows (29) by (9), (25) and (30). Again, the ellipsis stands for the higher order terms with respect to ϖ and γ. 
When ′u w4 4, it becomes
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by (32); terms of the order 〈ϖ2〉(u4/w′4) and 〈γ2〉(u4/w′4) become masked behind the ellipsis.
The associated (modified) cost of transport
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is the minimal cost of transport when swimming at constant depth and speed12. It can be closely approximated by
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(the last row in the 6th column of Table 1 in12). Nonetheless, a series expansion
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applicable when ′u w4 4, will be more useful for a qualitative analysis. In this case, (35) becomes
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by (32); the term involving 〈(dγ/dt)2〉 turns to be of a higher order and hence negligible.
Noting that v′* exceeds both u and w′, equation (35) implies that variations in speed, dive angle and its rate of 

change increase the cost of transport. It recapitulates the conclusion of21 that the swimming strategy that mini-
mizes the cost of transport is swimming at constant speed and depth. Because no pelagic predator swims in this 
way, one must conclude that yo-yo diving (manifested in 〈γ2〉 > 0 and 〈(dγ/dt)2〉 > 0) increases the probability of 
capturing prey, eX. When yo-yo diving, the best strategy would still be swimming at constant speed (〈ϖ2〉 → 0), 
but slightly slower than would have been needed to minimize the cost of transport at constant depth (33).

The minimal (modified) cost of transport ′Cmin vx
 is practically the minimal cost of transport when swim-

ming at constant depth, C′*. It diminishes with the (modified) average basic metabolic rate, 〈P′0〉 = 〈P0〉 − eT (this 
conjecture has been formally demonstrated in12; it can be verified by setting u4 → 0 in (38)). Consequently, the 
swimming strategy that minimizes the cost of transport of an ectothermic predator would be swimming as deep 
(as cold) as possible. Because no pelagic shark swims in this way as well, swimming at shallower depth either 
increases the probabilities eX and eT, or accelerates the digestion rate.

The optimal swimming speed ′v Cmin  is practically the swimming speed that would have minimized the mod-
ified cost of stransport when swimming at constant depth. This speed decreases with the (modified) average basic 
metabolic rate (manifested here in w′, which is related with 〈P′0〉 by (20)) and hence decreases with decreasing 
temperature (increasing depth) and with increasing eT. In other words, the optimal swimming speed of a slow 
moving predator (for which eT is not negligible) will be slower than the speed that minimizes its (unmodified) 
cost of transport.

Maximizing the energy surplus per unit time.  Here, we seek the swimming strategy that maximizes ΔE/T = (eX〈
vx〉 − (〈P〉 − eT)) = 〈vx〉(eX − C′) under the assumption that eX and eT are given. The minimal energy density eX that 
may keep ΔE nonnegative is the minimal cost of transport found in (35), ′Cmin

vx

. Swimming at a speed that differs 

from the optimal swimming speed in (33), vx Cmin  will make the surplus negative. Hence, the optimal strategy 
that maximizes ΔE/T when = ′e CminX

vx

 is also the strategy that maximizes ΔE/X; in both cases, ΔE = 0.

When eX exceeds ′Cmin
vx

, the (horizontal) swimming velocity that maximizes ΔE/T is the one for which the 

derivative of ΔE/T with respect to 〈vx〉 vanishes; i.e.

− ′ −
∂ ′
∂

= .e C v C
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Here, eX − C′ is positive by assumption, and hence this equation can be satisfied only when ∂C′/∂〈vx〉 > 0. But 
∂C′/∂〈vx〉 = 0 at = ′v vx x Cmin  by definition, and therefore ∂C′/∂〈vx〉 will be positive only at > ′v vx x Cmin . In 
other words, provided a sufficient prey density, the swimming speed that maximizes the energy surplus rate 

Δvx E Tmax( / ) will be higher than the speed that minimizes the (modified) cost of transport ′vx Cmin .
Assuming that −Δ ′v vx E T x Cmax( / ) min  is sufficiently small, equation (40) can be solved asymptotically. To this 

end, we expand the (modified) cost of transport into a power series about ′vx Cmin
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the linear term falls out because ∂C′/∂〈vx〉 = 0 at = ′v vx x Cmin . Introducing (41) in (40) yields, in the leading 
order with respect to the energy surplus 
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In other words, the difference in the swimming speed between the two strategies increases proportionally to 
the energy surplus (per distance), − ′e CminX

vx

.

Data accessibility.  The datasets generated during and/or analyzed during the current study are available 
from the corresponding author on reasonable request.
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