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Introduction

Recent high-throughput deep sequencing has enabled 
genomic and transcriptomic sequencing with greater sen-
sitivity and accuracy than the previous technologies. High-
throughput RNA sequencing of whole genomes and tran-
scriptomes have revealed that ncRNAs constitute a majority 
(98%) of the transcriptome with protein-coding RNAs mak-
ing up the rest (2%). High-throughput sequencing has also 
enabled us to identify different types of non-coding RNAs 
(ncRNAs) and quantify their expression levels in different 
tissues, conditions, or developmental stages. ncRNAs have 
been demonstrated to have important roles in gene regula-
tion and growing evidence indicates that non-coding RNAs 
interact with each other and are co-regulated.

Long non‑coding RNA–microRNA interaction

LncRNAs are transcribed RNA molecules longer than 200 
nucleotides and lncRNA transcripts account for a large 
proportion of the non-coding transcriptome [1–3]. LncR-
NAs are differentially expressed in various tissues and have 
important functions in cellular processes such as cell pro-
liferation, motility, and apoptosis [4–6]. LncRNAs function 
through diverse molecular mechanisms [7] and a number 
of lncRNAs associate with chromatin-modifying complexes 
regulating gene expression [8–12].

MicroRNAs (miRNAs) are highly conserved, single 
stranded, non-coding RNAs of approximately 21–24 nucle-
otides that regulate gene expression by post-transcriptional 
silencing of specific target RNAs. They repress translation 
or cleave RNA transcripts by binding to the 3′ untrans-
lated region (3′UTR) of target messenger RNAs (mRNAs) 
through miRNA response elements (MREs) by integrating 
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into the RNA-induced silencing complex (RISC) that con-
tains members of the Argonaute (Ago) family of proteins 
which silence the integrated RNAs [13–16]. MiRNAs also 
regulate diverse biological processes such as cell-cycle pro-
gression, proliferation, apoptosis, and development [17, 18].

Competitive endogenous RNA (ceRNA)

It has been reported that miRNAs bind to transcribed pseu-
dogenes and lncRNA through MREs, which compete for 
the binding of these miRNAs to their mRNA-binding sites. 
These RNAs act as molecular sponges or decoys and sup-
press the targeting of mRNAs by miRNAs and thus are 
called competitive endogenous RNAs (ceRNAs). To be able 
to act as a ceRNA, an MRE in lncRNA requires incom-
plete complimentary to miRNA binding. Thus, the inter-
actions of lncRNAs with miRNAs do not trigger decay of 
the interacting RNAs or trigger only slow decays. CeRNA 
activity regulates diverse cellular processes in development 
and diseases (Table 1), and lncRNA-miRNA interactions 
form intertwined and complex regulatory networks. Pio-
neering works has been published in plants for (lncRNA), 
human cells (pseudogenes), and viruses (small ncRNAs) as 
described below.

CeRNA in plants

The first ceRNA reported was lncRNA IPS1 in plants. In 
Arabidopsis thaliana, the lncRNA IPS1 has a binding site 
for the phosphate starvation-induced miR-399 [19]. The 
mismatched sequence at the potential miRNA-binding site 
in IPS1 prevents miR-399 from cleaving IPS1. Therefore, 
IPS1 acts as a ceRNA for PHO2 that encodes an E2 ubiquitin 
conjugase-related protein, a target of miR-399 [19].

Pseudogene ceRNA

Pseudogenes are genomic DNA sequences similar to nor-
mal genes but do not express their gene. The non-coding 
PTENP1 pseudogene is highly homologous to the tumor 
suppressor, phosphatase, and tensin homolog (PTEN). 
Poliseno et al. have reported that the 3′UTR of PTENP1 
is targeted by multiple miRNAs (miR-20a, miR-19b, miR-
21, miR-26a, and miR-214) that also target the 3′UTR of 
PTEN. Therefore, PTENP1 functions as a ceRNA (sponge) 
for PTEN by preventing its repression by these miRNAs. 
Thus, the 3′UTR of PTENP1 functions as a tumor suppres-
sor [20]. In the normal tissue and prostate tumor samples, 
the correlation between PTEN and PTENP1 expression was 
found, suggesting ceRNA regulation in these genes [20]. 
This study also describes that the 3′UTR of KRAS1P pseu-
dogene has binding sites for miR-143 and the let-7 miRNA 
family, and acts as a ceRNA for KRAS, thereby functioning 

as an oncogene [20]. This was the first study to describe that 
pseudogenes have function and act as ceRNAs. However, the 
binding sequences in PTENP1 3′UTRs perfectly match the 
sequences of the miRNA seed regions which are contrast-
ing to ceRNA regulation by IPS1 (1.1.1) and circular RNA 
ciRS-7 (CDR1as) (1.1.5). These binding may also trigger a 
decay of PTENP1.

Also PTENP1 decoys oncogenic miRNAs, miR-17, 
miR-19b, and miR-20a, and reduces downregulation of 
their target gene, PTEN in hepatocellular carcinoma [21]. 
PTENP1 also rescues PH domain and leucine-rich repeat 
protein phosphatase (PHLPP, a negative AKT regulator), 
autophagy proteins Unc-51 like autophagy activating kinase 
1 (ULK1), autophagy-related 7 (ATG7), and sequestosome 1 
(p62), from downregulation by the miRNAs [21]. The mouse 
Pbcas4 pseudogene functions as a ceRNA for human breast 
carcinoma amplified sequence 4 (BCAS4) by sponging miR-
185 and suppressing the repression of miR-185 target genes, 
Bcl2, Il17rd, Pnpla3, Shisa7, and Tapbp [22]. LncRNA H19 
and insulin like growth factor 2 (Igf2) are targeted by high 
mobility group AT-hook 1 pseudogene 7 (HMGA1P7)-tar-
geting miRNAs (miR-15, miR-16, miR-214, and miR-761), 
and thus, HMGA1P7 functions as a ceRNA for H19 and 
Igf2 in mice [23]. In this study, widely used overexpression 
and knockdown were also applied, which may lead to un-
physiological conditions. However, HMGA1P7, H19, and 
IGF2 expression was found to clearly positively correlate 
in human breast cancer samples [23], indicating that the 
ceRNA regulation may potentially occur under physiologi-
cal condition.

Small ncRNA ceRNA

T cells transformed by Herpesvirus saimiri express small 
non-coding RNAs called viral U-rich non-coding RNAs 
(HSURs). HSURs 1 and 2 were found to have potential bind-
ing sites for three host-cell miRNAs, miR-142-3p, miR-27, 
and miR-16. Coimmunoprecipitation shows that HSURs 1 
and 2 interact with these miRNAs in T cells transformed by 
Herpesvirus saimiri. HSUR1 induces degradation of miR-
27 in a sequence-specific manner and prevents reduction of 
expression of forkhead box 1 (FOXO1), a target of miR-27 
[24]. This indicates that viral small ncRNAs have poten-
tial to manipulate host cells through ceRNA mechanisms. 
These results indicate that triggering decay of miRNA elic-
its ceRNA regulation, which is contrasting to other ceRNA 
mechanisms by which lncRNA are claim to only sequester 
miRNAs.

lncRNA ceRNA

LincRNA‑RoR ceRNA  LincRNA-RoR was identified as a 
lincRNA whose expression was increased in induced pluripo-
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tent stem cells (iPSCs) compared with embryonic stem cells 
(ESCs) using microarray [25]. It may inhibit cellular stress 
pathways through the p53 response and promote survival in 
iPSCs and ESCs [25]. This is the first report which demon-

strates that lincRNAs are capable of reprogramming ESCs to 
iPSCs [25]. LincRNA-RoR has also been reported to func-
tion as an oncogene [26, 27]. In stem cell field, an important 
ceRNA function of linc-RoR was reported. Linc-RoR has 

Table 1   Non-coding RNA partners in ceRNA regulatory mechanism

Non-coding RNA miRNA mRNA targets of miRNA Function Human disease, species, 
etc.

References

Pseudogene
 PTENP1 miR-20a, miR-19b, 

miR-21, miR-26a and 
miR-214

PTEN Tumor suppression Human [20]

 KRAS1P miR-143 and let-7 family KRAS Carcinogenesis Human [20]
 PTENP1 miR-17, miR-19b and 

miR-20a,
PTEN Tumor suppression Hepatocellular carcinoma [21]

 Pbcas4 miR-185 Bcl2, Il17rd, Pnpla3, 
Shisa7 and Tapbp

Mouse and human [22]

 HMGA1P7 miR-15, miR-16, miR-
214 and miR-761

H19 and Igf2 Carcinogenesis Mouse [23]

Small ncRNA
 HSURs 1 and 2 miR-142-3p, miR-27 and 

miR-16
FOXO1 Viral infection Human T cells [24]

Circular RNA
 ciRS-7 (CDR1as) miR-7 Brain development Human and mouse [40, 41]

Myrip Diabetes suppression Human and mouse [42]
 Sry miR-138 Mouse [40]
 lncRpa and circRar1 miR-671 CASP8 and P38 Apoptosis Mouse neuronal cell [110]
 circHIPK3 miR-124 IL6R and DLX2 Carcinogenesis Human [43]
 circRNA-CER miR-136 MMP13 Osteoarthritis Human chondrocytes [111]

lncRNA
 IPS1 miR-399 PHO2 Plant growth Arabidopsis thaliana [19]
 linc-ROR miR-145 Oct4, Nanog and Sox2 Self-renewing Human embryonic stem 

cell
[28]

miR-205 ZEB2 Carcinogenesis Breast cancer [26]
 HOTAIR miR-331-3p HER2 Carcinogenesis Gastric cancer [32]

miR-141 SKA2 Carcinogenesis Glioma [112]
 MALAT1 miR-124 GRB2 Carcinogenesis Cervical cancer [113]
 H19 miR-106a CDKN1A, DICER1, 

RB1, ARID4B, 
ANKRD52 and 
FAM102A

Myoblast differentiation Human myoblast [38]

miR-138 and miR-200a Vimentin, ZEB1, and 
ZEB2

Carcinogenesis Hepatocellular carcinoma [108]

miR-200b/c and let-7b Git2 and Cyth3 Carcinogenesis Breast cancer [114]
 HULC miR-372 PRKACB Carcinogenesis Liver cancer [44]
 linc-MD1 miR-133 and miR-135 MAML1 and MEF2C Myoblasts differentiation Mouse and human 

myoblasts
[45]

 BACE1-AS miR-485-5p BACE1 Alzheimer’s disease Human brain [46]
 lncRNA-ATB miR-200 family ZEB1 and ZEB2 Carcinogenesis Hepatocellular carcinoma [47]
 CCAT1 miR-218-5p Bmi1 Carcinogenesis Gallbladder cancer [115]
 ZFAS1 miR-150 ZEB1, MMP14 and 

MMP16
Carcinogenesis Hepatocellular carcinoma [116]

 lncRNA-BGL3 miR-17, miR-93, miR-
20a, miR-20b, miR-
106a and miR-106b

PTEN Tumor suppression Leukemia [117]
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binding sites for miR-145 which binds to the 3′UTR of tran-
scription factors, Oct4, Nanog, and Sox2 [28]. Linc-RoR func-
tions as a ceRNA to prevent degradation of these transcription 
factors by miR-145 targeting, and regulates transcriptional and 
epigenetic networks in human embryonic stem cell [28].

HOTAIR ceRNA  HOTAIR is an lncRNA which is local-
ized in the Homeobox C (HOXC) gene cluster on chromo-
some 12. It interacts with the polycomb repressive complex 2 
(PRC2) and lysine-specific demethylase 1 (LSD1) complex, 
enhancing H3K27 trimethylation and H3K4 demethylation, 
respectively, to suppress expression of multiple genes [29]. 
HOTAIR has been well studied and has been shown to pro-
mote cancer cell invasiveness [29, 30] and to increase cell 
proliferation, cell-cycle progression, and reduce apoptosis 
[31]. HOTAIR acts as a ceRNA for human epithelial growth 
factor receptor 2 (HER2) by binding to miR-331-3p to pre-
vent degradation of HER2, a target of miR-331-3p in gastric 
cancer [32]. In this study, HOTAIR was also shown to be 
a target of miR-124 [32]. This is the first HOTAIR ceRNA 
study and made another milestone in HOTAIR research.

LncRNA H19 ceRNA  LncRNA H19 is one of the most 
extensively studied lncRNAs. H19 is highly expressed 
maternally in the developing mouse embryo with the adja-
cent insulin like growth factor 2 (Igf2) gene being tran-
scribed from the paternal allele [33]. H19 is only abundant 
in skeletal muscle after birth [33], and H19 is developmen-
tally regulated and is activated very early during muscle cell 
differentiation [34]. H19 has been reported to be upregu-
lated and promoted various cancers [35]; however, tumor 
suppressing effects of H19 has also been reported [36, 37].

H19 ceRNA activity in myoblast differentiation has been 
reported. MiR-17-5p family members including miR-106a 
were found to bind H19 in HeLa cells and myoblasts using 
miRNA crosslinking and immunoprecipitation (miR-CLIP) 
as described in 1.4. During myoblast differentiation, H19 
level increases and level of miR-17-5p family members 
decreases, suggesting that H19 acts as a ceRNA for these 
miRNAs. Overexpression of miR-106a and H19 RNAi also 
supported the ceRNA activities [38].

Circular RNA ceRNA

Circular RNA (circRNA) is a non-coding loop RNA in 
which the 3′ and 5′ ends have been joined together. CircR-
NAs are resistant to endonuclease enzymatic degradation, 
since they do not have susceptible 5′ and 3′ ends; there-
fore, circRNAs are more stable than linear RNAs. The sex 
determining region Y (SRY) ncRNA was the first-reported 
mammalian circRNA which was found in mouse testis. 
Investigation of circRNAs is an early stage, although SRY 
was discovered about 25 years ago [39].

Notable ceRNA studies of circRNA were reported for 
cerebellar degeneration-related protein 1 (CDR1) antisense 
transcript, ciRS-7 (CDR1as). CiRS-7 contains more than 60 
selectively conserved target sites for miR-7 [40, 41]. A mis-
match at the central part of the target sites prevents miRNA-
mediated cleavage; thus, ciRs-7 acts as a sponge for miR-7 
and increases levels of miR-7 targets (Fig. 1A) [40, 41]. 
The high number of miR-7 target sites in ciRS-7 may have 
an advantage for eliciting ceRNA regulation. SRY was also 
found to function as a miR-138 sponge [40]. The ceRNA 
functions of CiRS-7 in diabetes have also been examined. 
MiR-7 targets myosin VIIA and Rab interacting protein 
(Myrip) which stimulates insulin release from plasma mem-
brane and paired box 6 (Pax6), a transcription factor that 
activates insulin transcription in pancreatic β cells. CiRS-7 
sponges miR-7 to improve β cell function by rescuing Myrip 
and Pax6 from their downregulation in diabetes [42].

Recent study shows that circHIPK3, circRNA derived 
from the HIPK3 gene Exon2, was found to be significantly 
abundant in various tissues compared with HIPK3 and 
upregulated in liver cancer compared with matched normal 
tissues [43]. The knockdown of circHIPK3 significantly 
inhibits human cell growth. CircHIPK3 was found to bind 
to 9 miRNAs with 18 potential binding sites [43]. Because 
of these high number of binding sites, circHIPK3 may poten-
tially have ceRNA function under natural conditions. In par-
ticular, it has been demonstrated that circHIPK3 functions 
as a ceRNA for miR-124 and inhibits miR-124 targeting of 
proliferation-promoting genes, IL6R and DLX2 [43].

Other lncRNA ceRNA  Computational analysis has shown 
that lncRNA HULC contains miR-372-binding sites [44]. 
HULC may act as a ceRNA, downregulating the activity 
of miR-372 which downregulates protein kinase C alpha 
(PRKACB) translation and induces phosphorylation of 
CREB in liver cancer [44].

Linc-MD1 was found to be expressed during myoblast 
differentiation, host precursors of muscle-specific miRNAs, 
miR-206, and miR-133b. Linc-MD1 contains two miR-135 
binding sites and one for miR-133. MiR-133 and miR-135 
downregulate the expression of their target genes, master-
mind like transcriptional coactivator 1 (MAML1), and myo-
cyte enhancer factor 2C (MEF2C), that activate muscle-spe-
cific genes in mouse and human myoblasts. Linc-MD1 acts 
as a ceRNA by binding to miR-133 and miR-135, and pro-
motes muscle differentiation [45]. A pre-miR-133b hairpin 
structure in linc-MD1 may limit miR-133 accessibility and 
the smaller number of the binding sites could limit ceRNA 
activity, which is contrasting to ciRS-7 ceRNA activity.

LncRNA has been show to involve in Alzheimer’s dis-
ease. LncRNA BACE1-AS, which is highly upregulated 
in brain samples from Alzheimer’s patients, acts as a 
ceRNA for beta-Secretase 1 (BACE1) mRNA by binding 
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Fig. 1   Representative interactions and cross-talk between non-cod-
ing RNAs. A Interaction and co-regulation between circular RNA, 
ciRS-7 (CDR1as), and miRNAs. (a) ciRS-7 (CDR1as) contains more 
than 60 binding sites for miR-7. A mismatch at the central part of the 
binding region prevents miRNA-mediated cleavage. Thus, ciRs-7 
acts as a sponge for miR-7 and increase levels of miR-7 targets [40, 
41]. (b) MiR-671 binds to ciRS-7 in a sequence-specific manner and 
suppresses ciRS-7 expression and function [48]. B Interactions and 
co-regulation between lncRNA H19 and miRNAs. (a) MiR-141 binds 
to H19 in a sequence-specific manner and suppresses H19 expres-
sion and its oncogenic function [107]. (b) H19 functions as a ceRNA 
for miR-138 and miR-200a, and reduces suppression of their targets 
Vimentin, ZEB1, and ZEB2 [108]. (c) MiR-675 which is encoded 

by H19 targets mRNAs of oncogenes and functions as a tumor sup-
pressor [82, 109]. C LncRNA SNHG5 encodes SNORD50A and 
SNORD50B which inhibit KRAS function. Expression of these 
snoRNAs may be dependent on the host lncRNA, SNHG5, and 
expression [90]. D HBII-239 (SNORD71) encodes miRNAs. Expres-
sion of these miRNAs may depend on the expression of the host 
snoRNA, HBII-239 (SNORD71). The C/D box snoRNA HBII-239 
(SNORD71)-derived miRNA precursors bind to fibrillarin protein, a 
component of a nucleolar small nuclear ribonucleoprotein (snRNP) 
[94]. E LncRNA GAS5 encodes snoRNAs that generate piwi-inter-
acting RNAs, piRNAs. Pi-snoRNA 75, a piRNA, activates tumor 
necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) [97]
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to miR-485-5p. A mismatch at the center of the binding site 
prevents downregulation of BACE1 mRNA, a target of miR-
485-5p, which was demonstrated by knockdown of miR-
485-5p and BACE1-antisense overexpression experiments 
[46].

Transforming growth factor beta (TGF-b)-inducing 
lncRNA-ATB functions as a decoy for the miR-200 family, 
which upregulates ZEB1 and ZEB2, targets the miR-200 
family and induces EMT and invasion in hepatocellular car-
cinoma [47]. However, lncRNA-ATB binds to the miR-200 
family through the perfect-matched seed regions of the miR-
NAs, which may also decay lncRNA-ATB.

MiRNA targeting of lncRNA

An increasing number of publications demonstrate that miR-
NAs interact with lncRNAs through MRE, thereby trigger-
ing decay of lncRNA or repressing its function (Table 2). 
The first evidence for an ncRNA as a miRNA target was 
the finding that MiR‐671 targets and cleaves circRNA, the 
cerebellar degeneration-related protein 1 (CDR1) antisense 
transcript, and ciRS-7 (CDR1as) in an Ago2‐dependent 
manner in human cells [48]. CiR-7 (CDR1as) was found 
to be formed via non-linear splicing [48]. There is positive 
correlation between the cerebellar degeneration-related pro-
tein 1 (CDR1) mRNA and ciR-7 (CDR1as) expression levels 
[48]. The decrease of ciR-7 (CDR1as) levels by miR-671 
also reduces the CDR1 mRNA levels [48]. As described in 
1.1.5, ciRS-7 functions as a ceRNA for miR-7 and also as 
a target of miR-671 leading to cleavage, which depends on 
the binding sequences between ciRS-7 and these miRNAs. 
Cleavage requires perfect or near perfect match of the bind-
ing site, while ceRNA mechanisms require mismatches in 
the binding sequences not to cleave the target (Fig. 1A).

LncRNA metastasis associated with lung adenocarcinoma 
transcript 1 (MALAT1) was originally found to be highly 
expressed in metastatic non-small-cell lung cancers and is a 
highly conserved lncRNA [102]. MALAT1 is upregulated in 
various cancers, and promotes proliferation and metastasis 
of tumor cells. MiR-9 targets lncRNA MALAT1 through its 
binding site in an Ago2-dependent manner in the nucleus 
which was revealed by in situ hybridization and confocal 
microscopy [49]. This study clearly shows that the miRNA 
interacts with the lncRNA in the nucleus. MiR-192 and miR-
204 were found to target HOTTIP in a sequence-specific and 
Ago2-dependent manner and inhibited proliferation of hepa-
tocellular carcinoma [50]. Microarrays identified glutami-
nase (GLS1), whose marked elevation in cancers has been 
observed as a downstream gene of HOTTIP [50]. In tissue 
specimens, miR-192 and miR-204 expressions are low and 
HOTTIP is high in hepatocellular carcinoma compared with 
normal tissues, showing a negative correlation between these 
miRNAs and HOTTIP expression [50]. This study indicates 

that interaction between lncRNA and miRNA is highly rel-
evant to cancer progression.

In neurodegenerative disorders, interaction between 
miRNA and lncRNA has been reported. A CAG repeat 
expansion in ATXN7, an essential component of the mam-
malian transcription coactivator complex, STAGA, causes 
spinocerebellar ataxia type 7 (SCA7), a neurodegenerative 
disorder. STAGA induces miR-124 which binds to the 3′UTR 
of lnc-SCA7 and ATX7, a component of STAGA, and sup-
presses the expression of these genes in a sequence-specific 
manner, showing intriguing feedback regulation [51].

Computational analysis of lncRNA–miRNA interaction

There have been a number of reports that demonstrate 
lncRNA–miRNA interaction identified by computational 
or data analysis (Table 2). The algorithms for miRNA tar-
get search are based on conserved, six-nucleotide interac-
tions between the 5′ end of the miRNA, the seed region, 
and the 3′UTR of the target mRNA. Since the miRNA tar-
get is predicted experimentally and computationally using 
various algorithms, the results vary in these different algo-
rithms [52]. Bioinformatic prediction of lncRNA-miRNA 
and ceRNA interactions depends on the algorithms used for 
miRNA target search; therefore, varied predictions are pro-
duced with different algorithms.

Experimental miRNA–lncRNA interactions: 
methodology and data base

Experimental validation is indispensable for documenting 
miRNA–lncRNA interactions and ceRNA mechanisms. 
Crosslinking immunoprecipitation (CLIP) with antibodies 
against components of the RNA-induced silencing complex 
(RISC), particularly the Argonaute (AGO) family, has been 
developed and widely used for RNA interaction studies. 
CLIP sequencing (CLIP-Seq) techniques, an application 
of high-throughput sequencing methodologies, have been 
used extensively to characterize biologically relevant pro-
tein–RNA interactions [40].

One of the important methods in miRNA–lncRNA 
interaction study, miRNA crosslinking, and immunopre-
cipitation (miR-CLIP), was developed with H19. In this 
method, miRNA with psoralen and biotin are transfected 
into cells. After photo-crosslinking, Ago2 immunoprecipi-
tation is performed, followed by streptavidin affinity puri-
fication of the miRNA-linked RNAs. The captured miRNA 
targets are then identified by deep sequencing. MiR-CLIP 
with pre-miR-106a, a miR-17-5p family member, was per-
formed and H19 was identified as an miR-106 target. MiR-
106a targets which TargetScan indicated were significantly 
enriched by miR-CLIP compared to non-targets, verifying 
that the method was effective [38].
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CLIP-Seq-based approaches have been applied to 
different types of cells and tissues in RNA research. 
Advanced CLIP-Seq techniques such as (1) high-
throughput sequencing of RNA isolated by crosslink-
ing immunoprecipitation (HITS-CLIP) [53, 54]; (2) 

photoactivatable-ribonucleoside-enhanced crosslinking and 
immunoprecipitation (PAR-CLIP) [55]; and (3) crosslink-
ing, ligation, and sequencing of hybrids (CLASH) [56] are 
able to identify a large number of Argonaute-bound target 
sequences that contain miRNA-binding sites in targeted 

Table 2   MiRNA targeting of lncRNA by direct interaction

LncRNA miRNA mRNA targets of miRNA Human disease, species, etc. References

circRNA ciRS-7 (CDR1as) miR‐671 Human cells [48]
Oncogenic lncRNA
 HOTAIR miR-130a-3p Gallbladder cancer [67]

miR-141 Kidney cancer [118]
miR-152 HLA-G Gastric cancer [119]
miR-34a Prostate cancer [120]
miR-326 FGF1 Glioma [121]
miR-1 Hepatocellular carcinoma [122]

 UCA1 miR-143 Breast cancer [123]
miR-507 FOXM1 Melanoma [124]

 MALAT1 miR-217 Lung cancer [125]
miR-125b SIRT7 Bladder cancer [126]
miR-9 Hodgkin lymphoma and glio-

blastoma
[49]

miR-9 Osteosarcoma [127]
 lincRNA-p21 let-7 Cervical carcinoma [128]
 H19 miR-141 Gastric cancer [107]
 TreRNA miR-190a Hepatoma [129]
 ENST00000515084 miR-370 Breast cancer [130]
 HOTTIP miR-125b Hepatocellular carcinoma [131]

miR-192 and miR-204 Hepatocellular carcinoma [50]
 lncRNA AC130710 miR-129-5p Gastric cancer [132]
 lincRNA NR_024015 miR-526b Gastric cancer [133]
 PCGEM1 miR-145 Prostate cancer [134]
 XIST miR-152 Glioblastoma [135]
 UFC1 miR-34a CTNNB1 Hepatocellular carcinoma [136]

Tumor suppressor lncRNA
 loc285194 miR-211 Colon cancer [137]
 GAS5 miR-21 Breast cancer [138]
 TUSC7 miR-23b Gastric cancer [139]
 CASC2 miR-21 Glioma [140]
 uc003opf.1 miR-149-3p Esophageal squamous cell 

carcinoma
[141]

Muscle differentiation
 H19 let-7 miRNA family Human and mouse [142]

Neurodegeneration
 lnc-SCA7 miR-124 SCA7 Mouse [51]

Computer analysis
 PVT1 (ceRNA) miR-200 family Normal breast tissues [143]
 FERIL4 (ceRNA) miR-106a-5p PTEN, RB1, RUNX1, VEGFA, 

CDKN1A,
E2F1, HIPK3, IL-10, PAK7 and 

RB1
Gastric cancer [144]

 7sl RNA miR-125b Zebra fish [145]
STXBP5-AS1 (ceRNA)   miR-190b ERG, STK38L and FNDC3A Breast cancer [146]
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RNAs. The databases have been developed by integrat-
ing these data and the public data resources for interac-
tions between lncRNA and miRNA and ceRNA as listed in 
Tables 3 and 4, respectively. 

Overlapping of ceRNA regulatory mechanisms 
and downregulation of lncRNA by direct miRNA–
lncRNA interactions

The interactions between lncRNAs and miRNAs which 
mediate ceRNA mechanisms may trigger silencing of lncR-
NAs under certain conditions, since lncRNAs may be inte-
grated into the RISC complex and potentially cleaved by 
Argonaute proteins. The cleavage requires perfect or near 
perfect match of the binding site. CeRNA mechanisms 
require mismatches in the binding sequences to avoid imme-
diate cleavage of the target. If the binding is long enough, it 
may trigger decay, although no information about require-
ment for binding duration is available. The majority of 

ceRNA studies show perfect or near perfect matches of bid-
ing sequences between lncRNAs and miRNAs. Therefore, 
these reported ceRNA interactions may also lead to cleavage 
of lncRNAs in addition to ceRNA regulation. In fact, viral 
small ncRNA HSUR1 induces degradation of miR-27 in a 
sequence-specific manner and functions as a ceRNA [24]. 
Every interaction between miRNA and lncRNA may trigger 
decay of lncRNA or inhibit lncRNA function and also may 
function as ceRNA. Therefore, these two mechanisms may 
overlap each other.

Indirect interaction and co‑regulation between lncRNA 
and miRNA

A number of reports indicate that inverse expression lev-
els between miRNA and lncRNA may occur without direct 
binding, suggesting cross-talk between these ncRNAs 
(Table 5).

Table 3   LncRNA–miRNA databases

Database URL Contents References

DIANA-LncBase v2 http://www.microrna.gr/LncBase Database provides two different miRNA–lncRNA interaction 
modules. One module is experimentally supported, and the 
other is in silico predicted interactions

Database is supported by low-yield experimental techniques, 
analysis of more than 150 CLIP-Seq libraries, and publica-
tions

[57, 58]

LNCediting http://bioinfo.life.hust.edu.cn/LNCediting/ Database provides information about RNA editing in lncRNAs. 
To predict the functional changes after RNA editing, it shows 
changes in the secondary structure and miRNA–lncRNA 
interactions

[59]

NPInter v3.0 http://www.bioinfo.org/NPInter/ Database provides information about interactions between 
ncRNAs (except tRNAs and rRNAs), lncRNAs and others. It 
offers various types of basic information about the interaction

Database is supported by in silico predictions from AGO CLIP-
Seq, 991 publications, and high-throughput technologies

[60–62]

lncReg http://bioinformatics.ustc.edu.cn/lncreg/ Database is derived from miRNA–lncRNA interaction informa-
tion in 259 research articles

Database provides basic information about lncRNA, genes, 
relationships, mechanisms from 1,081 entries, and lncRNA-
related regulatory networks

[63]

LNCipedia v4.0 http://www.lncipedia.org Database has comprehensive human lncRNA information which 
contains RNA sequence, structure, local conservation, and 
transcript information

Database also offers information about possible miRNA–
lncRNA interactions. This prediction analysis is supported 
using the Mir Target2 algorithm

[63, 65]

lncRNASNP http://bioinfo.life.hust.edu.cn/lncRNASNP/ Prediction of effects on SNPs in lncRNA secondary structure 
and lncRNA–miRNA interaction

[66]

starBase v2.0 http://starbase.sysu.edu.cn/ Database provides comprehensive interaction networks of ncR-
NAs (lncRNAs, miRNAs, and ceRNAs), mRNA, and RNA-
binding proteins in normal tissues and cancer cells based on 
108 CLIP-Seq

[68]

LncRNAMAP http://lncRNAMap.mbc.nctu.edu.tw/ Database of putative regulatory functions of lncRNAs
Database is supported by publicly available deep sequencing 

data

[69]

http://www.microrna.gr/LncBase
http://bioinfo.life.hust.edu.cn/LNCediting/
http://www.bioinfo.org/NPInter/
http://bioinformatics.ustc.edu.cn/lncreg/
http://www.lncipedia.org
http://bioinfo.life.hust.edu.cn/lncRNASNP/
http://starbase.sysu.edu.cn/
http://lncRNAMap.mbc.nctu.edu.tw/
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Interestingly, lncRNA HULC was found to regulate 
lipid metabolism. HULC upregulates the transcrip-
tional factor peroxisome proliferator-activated receptor 
alpha (PPARA) which increases acyl-CoA synthetase 
long-chain family member 1 (ACSL1), leading to tri-
glycerides and cholesterol production and proliferation 
of hepatoma cells [74]. Cholesterol upregulates HULC 
expression through the retinoid receptor RXRA, which 
also increases HULC expression by activating the HULC 
promoter, indicating a positive feedback [74]. HULC also 
increases methylation of CpG islands in the miR-9 pro-
moter and suppressed miR-9 targeting of PPARA. Thus, 
HULC promotes lipogenesis and malignancy in hepatoma 
cells [74].

Single-nucleotide polymorphisms (SNP) in lncRNA 
were reported to affect its function. LncRNA CCAT2 
which contains the colorectal cancer-risk-associated 

rs6983267 SNP transcriptionally upregulates MYC, 
miR-17-5p, and miR-20a by physically interacting with 
TCF7L2. This activates the WNT signaling pathway and 
causes metastatic progression and chromosomal instabil-
ity in colon cancer [75]. CCAT2 is also a WNT down-
stream target, suggesting the existence of a feedback loop 
[75]. The rs6983267 G allele was found to produce more 
CCAT2 transcript than T allele [75].

Non‑coding RNA as precursors for shorter 
non‑coding RNA

High-throughput deep sequencing of transcriptomes shows 
that certain lncRNAs encode miRNAs and other ncRNAs 
encode shorter ncRNAs which is discussed below. The 
expression of these ncRNAs may be correlated.

Table 4   CeRNA databases

Database URL Content References

spongeScan http://spongescan.rc.ufl.edu Database predicts miRNA response elements in lncRNAs and pre-
sumes lncRNA function as miRNA sponges

Sequence complementarity underlies this database

[70]

SomamiR 2.0 http://compbio.uthsc.edu/SomamiR Database contains functional analysis of expected miRNA–ceRNA 
(including mRNAs, circular RNAs and lncRNA) interaction/
changes caused by somatic mutations in cancer

[71, 72]

ceRNABase http://starbase.sysu.edu.cn/mrnaCeRNA.php Part of starBase v2.0 [68]
lnCeDB http://gyanxet-beta.com/lncedb/ Database of human lncRNAs that act as ceRNAs. This database 

assesses lncRNA–mRNA interactions which are potentially con-
trolled by common miRNAs

[73]

Table 5   Indirect interaction between lncRNA and microRNA

LncRNA miRNA mRNA targets of miRNA Human disease, species, etc. References

Oncogenic lncRNA
 UCA1 miR-143 Bladder cancer [147]
 HULC miR-9 PPARA Hepatoma [74]
 HOTAIR miR-125a-5p CASP2 Colon cancer [148]

miR-7 SETDB1 Breast cancer stem cells [149]
miR-568 NFAT5 Breast cancer [150]

 H19 miR-141 Osteoblasts [151]
 BANCR miR-9 NF-kB1 Gastric cancer [152]
 ANRIL miR-99a and miR-449a Gastric cancer [153]
 ncNRFR let-7 Mouse colonic epithelia [154]
 CCAT2 miR–17–5p and miR–20a Colon cancer [75]

Tumor suppressor lncRNA
 MEG3 miR-29a and miR-185 DNMT1, 3A and 3B Hepatocellular carcinoma [155]

miR-29a DNMT1 and 3B Hepatocellular carcinoma [156]
miR-148a DNMT1 Gastric cancer [157]
miR-181b 12/15-LOX Mouse [158]

http://spongescan.rc.ufl.edu
http://compbio.uthsc.edu/SomamiR
http://starbase.sysu.edu.cn/mrnaCeRNA.php
http://gyanxet-beta.com/lncedb/
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LncRNA encoding miRNA

Microarray profiling of miRNAs has demonstrated that miR-
NAs are frequently coexpressed with their host genes [76]. 
In addition, miRNAs have been found to be located in the 
exons of ncRNAs and the introns of protein-coding genes 
[77]. For example, antiPeg11 (antiRtl1) encodes miR-431, 
miR-433, miR-127, miR-432, and miR-136 [78, 79]. Thus, 
lncRNAs may regulate their encoding miRNAs as precur-
sors (Table 6).

LncRNA H19 encodes miR‑675

H19/miR-675 function has been well studied and estab-
lished. H19 exon1 encodes miRNAs, miR-675-3p, and miR-
675-5p, which are induced during skeletal muscle differen-
tiation [80]. Reintroduction of miR-675-3p and miR-675-5p 
rectifies abnormal skeletal muscle regeneration after injury 
in H19-deficient mice [80]. miR-675-3p and miR-675-5p 
promote skeletal muscle differentiation and regeneration by 
targeting the anti-differentiation Smad transcription factors 
[80]. This study clearly demonstrated the H19/miR675 role 
in vivo.

H19/miR-675 has been reported to be an oncogene. 
TGF-β and hypoxia were shown to induce H19, miR-675, 
and EMT markers such as Snail and Slug. TGF-β induces 
Slug, H19, and miR-675 through the PI3K/AKT pathway, 
while H19 induces Slug and suppresses E-cadherin in cancer 
cells [81]. H19/miR-675 has also been reported to be a tumor 

suppressor. The release of miR-675 from H19 is inhibited 
by the stress-response RNA-binding protein, ELAV Like 
RNA-Binding Protein 1 (HuR) [82]. MiR-675 potentially 
targets growth-promoting Igf1r and inhibits proliferation of 
embryonic and extra-embryonic cell lines [82]. Both tumor 
suppressor and oncogenic functions have been reported for 
H19/miR-675, suggesting that its function depends on cell 
type.

Other lncRNAs which encode miRNAs

MiRNA profiling shows that let-7c and miR125b are encoded 
in an intron of the lncRNA LINC00478, and are found to 
be elevated in the estrogen-dependent human breast cancer 
cell line compared with its estrogen-independent derivative 
[83]. In breast cancer cell lines, miR125b and let-7c directly 
target the HER2 3′UTR, downregulating HER2, an oncogene 
which has been shown to play an important role in the pro-
gression of breast cancer [83]. LncRNA Ftx hosts the miR-
374b/421 and miR-545/374a clusters in its intron. The miR-
545/374a cluster was found to be upregulated in Hepatitis 
B virus (HBV)-related hepatocellular carcinoma tissues in 
comparison to matched non-cancerous liver tissue specimens. 
Overexpression and knockdown of miR-545/374a show that 
the miR-545/374a cluster may promote tumorigenesis of 
HBV-related hepatocellular carcinoma [84]. DEAD-box 
RNA helicase 6, DDX6 (p54/RCK), which is accumulated 
in processing bodies (P-bodies), promotes the degrada-
tion of lncRNA NCR143/145 RNA, a host gene of tumor 

Table 6   LncRNA encoding miRNA

LncRNA miRNA mRNA targets of miRNA Human disease, species, etc. References

antiPeg11 (antiRtl1) miR-431, miR-433, miR-127, miR-
432 and miR-136

Mouse [78, 79]

Oncogenic lncRNA
 H19 miR-675 Mouse myoblast [80]

RUNX1 Gastric cancer [159]
RUNX1 Gastric cancer [160]

Human cancers [81]
CALN1 Gastric cancer [161]
c-Cbl and Cbl-b Breast cancer [162]
RB Colorectal cancer [163]
CDH13 Glioma cell [164]

 LncRNA Ftx miR-374b/421 and miR-545/374a Hepatocellular carcinoma [84]
 NCR143/145 miR-143 and miR-145 Human cancer [85]
 LOC554202 miR-31 Breast cancer [165]
 MONC miR-125b-2, miR-99a and let-7c Acute megakaryoblastic leukemia [166]
 MIR100HG miR-100, miR-125b-1 and let-7a-2 Acute megakaryoblastic leukemia [166]

Tumor suppressor lncRNA
 H19 miR-675 Igf1r Mouse embryonic and trophoblast stem cells [82]

TGFBI Prostate cancer [109]
 LINC00478 Let-7c, miR99a and miR125b HER2 Breast cancer [83]
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suppressors miR-143/145. The post-transcriptional down-
regulation of miR-143/145 promotes malignancy in cancer 
cells [85]. These studies including H19/miR-675 indicate that 
the miRNAs encoded in lncRNA have functional roles.

LncRNA encoding small nucleolar RNA

Small nucleolar RNAs (snoRNAs) are non-coding RNAs 
of approximately 60–200 nucleotides, which chemically 
modify other RNAs, ribosomal RNAs (rRNAs), transfer 
RNAs, and small nuclear RNAs, and are primarily required 
for maturation of rRNAs. Two main classes, box C/D snoR-
NAs and box H/ACA snoRNAs, have been identified. The 
box C/D snoRNAs and H/ACA snoRNAs guide by base 
pairing 2′-O-ribose methylation and pseudouridylation of 
specific rRNAs, respectively (reviewed in [86]). In addition 
to these functions, snoRNAs have been reported to have non-
canonical functions such as splicing and editing (reviewed in 
[87]). Dysregulation of snoRNA expression has been dem-
onstrated in various diseases including cancer (reviewed in 
[88]). LncRNAs have also been found to encode snoRNAs 
(Table 7).

LncRNA small nucleolar RNA host genes (SNHGs) 
encode snoRNAs, as indicated in Table 7. SNHG4 hosts 
small nucleolar RNA (snoRNA) U19 (SNORA74A) in 
intron 3 [89]. SNHG5 hosts snoRNAs, SNORD50A, and 
SNORD50B which were found to be deleted in various 
cancers, also bind KRAS protein, and inhibit RAS-ERK1/
ERK2 signaling (Fig. 1C) [90]. In this study, the hosting and 
function of SNHG5 was not studied; however, significant 
tumor suppressing effects of SNORD50A and SNORD50B 
were demonstrated [90]. ZFAS1 which encodes SNORD12, 
SNORD12B, and SNORD12C functions as a tumor sup-
pressor and is potentially a marker for breast cancer [91]. 
The expression level between ZFAS1 and the encoded snoR-
NAs was found to be not correlated [91]. There has been 
no report regarding functional interaction between lncRNA 
and its encoding snoRNA as far as we know. However, long 
ncRNAs with snoRNA ends (sno-lncRNAs) were discovered 
[92]. Sno-lncRNAs are intron-derived and have snoRNAs 
on both ends. The genomic region encoding one abundant 
class of sno-lncRNAs is specifically deleted in Prader–Willi 
Syndrome (PWS). SnoRNAs are known to localize to Cajal 
bodies or nucleoli; however, sno-lncRNAs are localized in 
subnuclear sites near their sites of synthesis in the PWS 
region. Thus, these sno-lncRNAs interact with Fox2 splicing 
factor and modify splicing [92]. These results indicate that 
cooperation of snoRNA and lncRNA enables this function.

SnoRNA encoding miRNA

Deep sequencing has identified short RNAs derived from 
snoRNAs. H/ACA box snoRNAs generate RNAs of 17–19 

nt in length and C/D box snoRNAs generate RNAs longer 
than 27 nt. SnoRNAs have been found to encode miRNAs 
and their expression is likely to be dependent on the host 
snoRNAs. A combination of deep sequencing and bioin-
formatics has discovered snoRNA-generated miRNAs (sno-
miRNAs) (Table 8).

Generation of miRNA AKA45S from the H/ACA box 
snoRNA ACA45 was found to be DICER-dependent and 
AKA45S potentially targets the mRNA of Cyclin-Dependent 
Kinase 19 (CDC2L6) in HEK293 cells [93]. This suggests 
that AKA45S functions as an miRNA [93]. Computational 
analyses also identified 84 miRNAs that box C/D snoRNAs 
or their precursors encode, and have similarity to box C/D 
snoRNAs. Of these miRNAs, C/D box snoRNA HBII-239 
(SNORD71)-derived miRNA precursors, miR-27b, miR-16-
1, mir-28, miR-31, and let-7g were found to bind to fibrilla-
rin protein, a component of a nucleolar small nuclear ribonu-
cleoprotein (snRNP), suggesting that these miRNAs evolved 
from the snoRNA (Fig. 1D) [94]. Deep sequencing revealed 
that C/D box snoRNAs generated sno-miRNAs [95]. Experi-
mental analysis shows that C/D snoRNAs, ACA36b, HBI-
61, and ACA34, encode sno-miRNAs, miR-664, miR-1248, 
and miR-1291, respectively, which function in gene silenc-
ing [95]. These studies indicate that miRNAs may have 
evolved from snoRNAs and gained their functions.

SnoRNA encoding Piwi‑interacting RNA

Piwi-interacting RNAs (piRNAs), 24–31 nucleotides in 
length, are the largest class of small non-coding RNA mol-
ecules expressed in animal cells. PiRNAs form silencing 
complexes by interacting with piwi proteins, a subfamily of 
the Argonaute proteins, and the complexes repress transpo-
sons and other genetic elements in germ line cells, especially 
genetic elements in spermatogenesis through transcriptional 
or post-transcriptional mechanisms. A combination of deep 
sequencing and bioinformatics also has discovered snoRNA-
generated piRNAs (sno-piRNAs) (Table 8).

Two studies have notably demonstrated that snoRNA-
derived piRNAs are functional in human cells. Deep 
sequencing has identified 20 C/D snoRNAs-derived piR-
NAs (sno-piRNAs) in human CD4 primary T lymphocytes 
[96]. One sno-piRNA, piR30840, downregulates the expres-
sion of IL-4 by binding to the pre-mRNA intron of IL4 in 
a sequence-specific manner [96]. This downregulation was 
found to be associated with Piwil4 and Ago4, which further 
interacts with Trf4–Air2–Mtr4 Polyadenylation (TRAMP) 
complex [96]. Another study has shown that lncRNA GAS5 
hosts several snoRNAs and some of them generate sno-piR-
NAs. One of these, pi-sno75 upregulates the transcription 
of tumor necrosis factor (TNF)-related apoptosis inducing 
ligand (TRAIL), a proapoptotic protein, by binding to its 
promoter. Pi-sno75 interacts with the PIWIL1/4 proteins and 
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Table 7   LncRNA encoding snoRNA and miRNA

Based on University of California, Santa Cruz (UCSC) Genome Browser

LncRNA snoRNA and miRNA Human dis-
ease, species 
etc.

References

SNHG1 SNORD22, SNORD25, SNORD26, SNORD27, SNORD28, SNORD29, SNORD30, and 
SNORD31

GAS5 (SNHG2) SNORD44, SNORD47, SNORD74, SNORD75, SNORD76 SNORD77, SNORD78, SNORD79, 
SNORD80, SNORD81, and SNORA103

SNHG3 SNORA73A and SNORA73B
SNHG4 snoRNA U19 (SNORA74A) and SNORA74 Human [89]
SNHG5 SNORD50A and SNORD50B Human cancer [90]
SNHG6 SNORD87
SNHG7 SNORA17, SNORA17A, SNORA17B and SNORA43
SNHG8 SNORA24
SNHG9 SNORA78
SNHG10 SCARNA13
SNHG11 SNORA60 and SNORA71E
SNHG12 SNORA16A, SNORA44, SNORA61, and SNORD99
DANCR SNORA26
SNHG14 SNORD115 cluster, SNORD116 cluster, SNORD109A, and SNORD109B
SNHG15 SNORA9
SNHG16 SNORD1A, SNORD1B, and SNORD1C
SNHG17 SNORA71, SNORA71A, SNORA71B, SNORA71C, and SNORA71D
SNHG18 SNORD123
SNHG19 snoR1 and SNORD60
SNHG20 SCARNA16 and miR-6516
SNHG21 SCARNA15
SNHG22 SCARNA17 and SCARNA18
SNHG23 SNORD113 cluster and SNORD114 cluster
SNHG24 SNORD114 cluster
SNHG25 SNORD104, SNORA50, SNORA50C, and SNORA76C
MEG8 SNORD112, SNORD113-1, SNORD113-2, SNORD113-3, and miR-370
ZFAS1 SNORD12, SNORD12B, and SNORD12C Breast cancer [91]

Table 8   SnoRNA encoding 
miRNA and piRNA

snoRNA miRNA or piRNA Human disease, species, etc. References

HBII-239 (SNORD71) miR-27b, miR-16-1, 
miR-28, miR-31 and 
let-7g

HeLa cells [94]

ACA45 ACA45 sRNA HEK293 cells [93]
ACA36B (SNORA36B) miR-664 Human [95, 167]
ACA34 miR-1291 Human [95, 167]
HBI-61 (SNORA81) miR-1248 Human [95, 167]
SNORD63 piR30840 Human CD4 primary T lymphocytes [96]
SNORD44 pi-sno44 Breast cancer [97]
SNORD74 pi-sno74 Breast cancer [97]
SNORD75 pi-sno75 Breast cancer [97]
SNORD78 pi-sno78 Breast cancer [97]
SNORD81 pi-sno81 Breast cancer [97]
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recruits the MLL3/hCOMPASS complex to the promoter 
region of TRAIL which leads to H3K4 methylation and 
H3K27 demethylation and induces TRAIL mRNA (Fig. 1E) 
[97]. Interestingly, pi-sno75 upregulates TRAIL by bind-
ing to its promoter; however, it may also have suppression 
effects on other genes.

The other study has shown that small RNA sequencing of 
breast cancer and normal breast tissues revealed snoRNAs 
which were potential biomarkers for overall survival and/or 
recurrence-free survival. Six snoRNAs were found to host 
miRNAs and 48 snoRNAs were found to host piRNAs that 
potentially target oncogenes in breast cancer [98]. These 
studies have indicated that piRNAs are generated from 
snoRNA and these snoRNA-derived piRNAs are functional. 
Study in sno-piRNA is in an early stage and further investi-
gations are awaited.

Conclusion and perspectives

RNA sequencing of whole genomes has revealed that ncR-
NAs constitute 98% of the human genome. Originally, the 
majority of DNA and ncRNAs were thought to be non-
functional. The discovery of functional roles for these ncR-
NAs has been remarkable. Networking between ncRNAs 
has opened a complex regulatory world, adding to their sig-
nificance in the regulation of diverse biological functions. 
Integration of networks of protein, non-coding, and coding 
RNA is of great importance requiring further investigation. 
Here, we described some of the interactions and cross-talk 
between ncRNAs.

MiRNA–lncRNA interaction including ceRNA stud-
ies has been done using overexpression or knockdown of 
lncRNA or miRNA. These methods disrupt physiologi-
cal conditions in cells. Any overexpressed lncRNA may 
trigger ceRNA regulation or serve as a target of miRNAs 
because of high copy numbers. In siRNA knockdown, the 
high concentration of siRNA could bind to off-targets and 
also perturb the RISC complex. The CRISPR/Cas9-gRNA 
complex system, a recently developed genome editing sys-
tem, could disrupt miRNA-binding sites and be used for 
miRNA–lncRNA interaction studies with a precise targeting, 
although no experimental method is without its drawbacks.

It has been reported that changes in ceRNAs are too small 
to influence miRNA-mediated repression, since the number 
of MREs is too high for the number of targeting miRNAs 
using miR-122 targets in hepatocytes and livers as a model 
[99, 100]. It is questionable that a single miR-122 study may 
be used to generalize to ceRNA regulation. Another study 
using Ago2 individual-nucleotide resolution UV crosslink-
ing and immunoprecipitation (iCLIP) has demonstrated that 
highly expressed miRNA families such as miR-294 and let-7 

are likely not function in ceRNA mechanisms because of 
the high miRNA and target concentrations [101]. In con-
trasted to miR-294 and let-7, high-affinity lncRNA targets 
of miRNAs of low abundance such as miR-92/25 may func-
tion as ceRNAs physiologically [101]. This study is more 
likely applicable to ceRNA regulation. The ratio between the 
number of miRNA-binding sites and miRNA molecules is 
essential for ceRNA regulation and changing the ratio could 
trigger ceRNA regulation. Since the expression of ncRNAs 
is specifically regulated with regard to time and location, the 
changes in cellular status such as disease incidence, devel-
opment, or stimulation from extracellular sources cause the 
changes in ncRNA expression and trigger ceRNA regulation.

A number of reports using clinical samples demonstrate 
that inverse expression levels between lncRNAs and miR-
NAs which may interact with each other, which suggest that 
these interactions and targeting take place at physiologi-
cal levels, although no direct evidence has been presented. 
Various studies with clinical samples also indicate that 
ceRNA regulation may occur physiologically, which also 
has not been directly proven. As discussed in “Overlap-
ping of ceRNA regulatory mechanisms and downregulation 
of lncRNA by direct miRNA–lncRNA interactions”, the 
interactions between lncRNAs and miRNAs which medi-
ate ceRNA mechanisms may partially overlap with those of 
miRNAs and lncRNAs triggering lncRNA decay of or inhib-
iting lncRNA function. This possible overlap may prevent 
precise explanation of these experimental data.

MiRNAs are generated in the cytoplasm, bind to the 
3′UTR of mRNAs in a sequence-dependent manner, and 
trigger decay of the mRNAs. In addition to this cytoplasmic 
activity, miRNAs have been shown to interact with lncRNAs 
in both the cytoplasm and nucleus. The interaction between 
miRNA and lncRNA may depend on the concentration of 
these non-coding RNAs in specific subcellular compart-
ments. These interactions need to be investigated in mouse 
models for resolving these unsolved issues at physiological 
levels. Identification of miRNA–target interactions in spe-
cific cellular compartments using techniques such as HITS-
CLIP and PAR-CLIP and integration of these data with 
computational analysis would lead to elucidation of ceRNA 
function and how the intertwined network is regulated.

There have been studies for other ncRNA types. Interest-
ingly, oncogenic lncRNA MALAT1 yields a small tRNA-
like cytoplasmic RNA by 3′ end processing [103]. tRNA-
derived small RNAs have been reported to significantly 
silence RNAs by associating with Argonautes 3 and 4 [104]. 
These studies indicate that tRNA may have gene suppres-
sion effects in cancer cells. SnoRNA HBII-52 (SNORD115) 
has been shown to regulate splicing by binding to the sero-
tonin receptor 2C mRNA [105]. Ultraconserved regions 
(T-UCRs) are consistently and significantly altered at the 
genomic level in leukemias and carcinomas, and miRNAs 
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may interact with T-UCRs with significant antisense com-
plementarity [106]. Other small RNAs such as Y RNA, 
spliced leader RNA (SL RNA), etc. may target other mRNAs 
and ncRNAs, regulate their expression, and form regula-
tory networks. Further investigation in the expanding field 
of ncRNA interaction will reveal its biological function and 
regulation, and may lead to therapeutic strategies for cancers 
and other diseases.
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