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Abstract Great amounts of omics data are generated
in aging research, but their diverse and partly
complementary nature requires integrative analysis
approaches for investigating aging processes and
connections to age-related diseases. To establish a
broader picture of the genetic and epigenetic land-
scape of human aging we performed a large-scale
meta-analysis of 6600 human genes by combining 35
datasets that cover aging hallmarks, longevity,
changes in DNA methylation and gene expression,
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and different age-related diseases. To identify biolog-
ical relationships between aging-associated genes we
incorporated them into a protein interaction network
and characterized their network neighborhoods. In
particular, we computed a comprehensive landscape
of more than 1000 human aging clusters, network
regions where genes are highly connected and where
gene products commonly participate in similar pro-
cesses. In addition to clusters that capture known aging
processes such as nutrient-sensing and mTOR signal-
ing, we present a number of clusters with a putative
functional role in linking different aging processes as
promising candidates for follow-up studies. To enable
their detailed exploration, all datasets and aging
clusters are made freely available via an interactive
website (https://gemex.eurac.edu/bioinf/age/).

Keywords Human aging - Meta-analysis - Age-
related disease - Network analysis - Protein complex -
Network cluster

Introduction

Age is an important risk factor for a number of
diseases (Cutler and Mattson 2006; Niccoli and
Partridge 2012). A better understanding of the con-
nections between the diverse aging processes and the
onset and progression of age-related diseases is
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expected to have an impact on individual health span
and population health (Demetrius and Fraifeld 2014).
A common foundation of the complex aging-related
changes on a cellular and molecular level has been
proposed via the nine hallmarks of aging (Lopez-Otin
et al. 2013), but while key mechanisms and processes
have been identified, their molecular foundations
remain largely uncharacterized (Kenyon 2010). At
the same time technological advances and falling costs
have enabled large-scale assessments of a wide range
of aging processes and have led to a great number of
publicly available omics datasets (de Magalhaes and
Tacutu 2016). One area that has been intensely studied
in recent years are aging-related changes in DNA
methylation, an epigenetic process associated with
controlling gene expression (Jones et al. 2015). The
studies observed a genome-wide decrease in the
methylation of cytosine guanine dinucleotides (CpGs)
with increasing age, while a number of gene promoters
were increasingly methylated in a tissue-dependent
manner (Teschendorff et al. 2013). More specifically,
the methylation status of certain CpG sites in the
genome was found to be predictive for the chrono-
logical age of a person (Hannum et al. 2013; Horvath
2013) and was also linked to biological age and overall
lifetime mortality (Marioni et al. 2015). The limited
overlap between individual DNA methylation studies,
however, requires the joint analysis of multiple
datasets in order to fully interpret partial and poten-
tially contradicting results. For example, two meta
analyses reported 11 and 41 high-confidence CpG
markers, respectively, that were found in at least four
different studies and identified common biological
processes and cellular pathways of differentially
methylated genes (Steegenga et al. 2014; Jones et al.
2015).

Interaction networks, in which genes and their
products are represented as nodes, which are con-
nected by edges that represent different relationships,
are valuable tools for integrative data analysis and for
identifying disease associations (Barabasi et al. 2011;
Menche et al. 2015). Integrative network-based anal-
yses have also been performed in aging research
[reviewed in (Simké et al. 2009; Peysselon and
Ricard-Blum 2011; de Magalhdes and Tacutu
2016)]. Notable example applications identified
highly connected and important hub proteins (Soti
and Csermely 2007; Wolfson et al. 2009), reported
connections between longevity-associated genes
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(Budovsky et al. 2007), investigated links between
aging genes and age-related diseases (West et al.
2013b; Fernandes et al. 2016), and made network data
available as part of dedicated aging databases (de
Magalhaes et al. 2005; Tacutu et al. 2010). West et al.
developed a network clustering algorithm and applied
it to the integration of DNA methylation datasets,
identifying a number of clusters that were enriched in
stem-cell differentiation pathways (West et al. 2013a).

In the present study we extended this approach in
various ways and performed the largest and most
diverse meta-analysis of human aging genes. In
particular, by using substantially larger networks and
incorporating more DNA methylation and other aging-
related datasets than any previous study, we were able
to uncover novel gene-aging associations, which were
made available via an online resource for easy
exploration.

Results

The largest and most diverse compilation of human
aging genes

The meta-analysis presented here unifies 35 datasets
related to a wide range of aging aspects, grouped into
the four categories DNA methylation changes (ME),
gene expression changes (EX), age-related diseases
(ARD), and curated aging data (AGE). In total,
associations with 6600 human genes are reported,
with 3498 genes in sets of the ME category, 2130 in
EX, 1207 in ARD, and 1154 in AGE (Table 1). The
great majority of genes are only reported in a single
category (Fig. l1a), 1050 genes are associated with
two, 159 genes with three, and seven genes with all
four categories. Those seven genes are APOE
(apolipoprotein E), CCT7 (chaperonin containing
TCP1 subunit 7), ERBB2 (erb-b2 receptor tyrosine
kinase 2), PRKCA (protein kinase C alpha), RASSF1
(Ras association domain family member 1), SREBF1
(sterol regulatory element binding transcription factor
1), and TNF (tumor necrosis factor). APOE, ERBB2,
and TNF are also among the genes associated with the
highest number of aging datasets (Fig. 1b). Two other
genes in this list are EDARADD (EDAR associated
death domain) and LAG3 (lymphocyte activating 3),
which have the strongest overall evidence for aging-
associated DNA methylation changes with reports in
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Table 1 Aging datasets
used in this analysis

Set name

Reported genes

Reference

8 curated aging sets (AGE)
AGE_Chaperones
AGE_Co_Chaperones
AGE_GenAge
AGE_GenAge_Indirect
AGE_Longevity
AGE_Longevity_HT
AGE_Senescence
AGE_mTOR

10 age-related disease sets (ARD)
ARD_HGMD_Cancer
ARD_HGMD_Cardio
ARD_HGMD Diabetes
ARD_HGMD_Neuro
ARD_HPO_Ageing
ARD_HPO_Cancer
ARD_HPO_Cardio
ARD_HPO_Diabetes
ARD_HPO_ Neuro
ARD_HPO_Stroke

4 gene expression sets (EX)
EX_Magalhaes
EX_Mercken
EX_Peters
EX_Sood

13 DNA methylation sets (ME)
ME_Bacalani
ME_Bell
ME_Bocklandt
ME_Florath
ME_Hannum
ME_Heyn
ME_Horvath
ME_Marttila
ME_Rakyan
ME_Steegenga
ME_Teschendorff
ME_Weidner
ME_Xu

35 aging sets in total (ALL)

1154 curated aging genes

88

244
100
198
195
144
342
60

Brehme et al. (2014)
(Brehme et al. (2014)
Tacutu et al. (2013)
Tacutu et al. (2013)
Tacutu et al. (2013)
Tacutu et al. (2013)
Zhao et al. (2016)
Kanehisa et al. (2016)

1207 age-related disease genes

226
402
83
34
126
427
164
28
74
34

Stenson et al. (2014)
Stenson et al. (2014)
Stenson et al. (2014)
Stenson et al. (2014)
Kohler et al. (2014)
Kohler et al. (2014)
Kohler et al. (2014)
Kohler et al. (2014)
Kohler et al. (2014)
Kohler et al. (2014)

2130 differentially expressed genes

73
485
1497
153

de Magalhaes et al. (2009)
Mercken et al. (2013)
Peters et al. (2015)

Sood et al. (2015)

3498 differentially methylated genes

44
444
81
122
117
1445
344
239
138
436
591
105
679

Bacalini et al. (2015)
Bell et al. (2012)
Bocklandt et al. (2011)
Florath et al. (2014)
Hannum et al. (2013)
Heyn et al. (2012)
Horvath (2013)
Marttila et al. (2015)
Rakyan et al. (2010)
Steegenga et al. (2014)
Teschendorff et al. (2010)
Weidner et al. (2014)
Xu and Taylor (2014)

6600 distinct genes associated with aging

nine different ME datasets. Notably, of the 117 genes
that are reported in four or more ME sets, the criterion
used in previous studies for selecting high-confidence
markers, 87 genes are exclusively annotated to the ME

category and have no additional association with any

other aging dataset.

More than two-thirds of all 6600 aging-associated
genes are only reported in a single dataset (Table S1).

@ Springer
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(A) ARD

AGE

693
\\/ F

2631

42 37
144

(B) Gene #sets # sets in category
symbol total AGE ARD EX ME
EDARAD 10 1 9

APOE 9 3 4 1 1
TNF 9 4 1 1 3
LAG3 9 9
ERBB2 8 2 2 1 3
PPARG 8 3 4 1
WRN 8 4 3 1
PTEN 8 3 5

Fig. 1 a Gene-based overlaps of all aging dataset categories. AGE: curated aging; ARD: age-related disease; EX: gene expression;
ME: DNA methylation. b List of genes with eight or more aging dataset associations

The percentage of overlapping genes between datasets
is generally low (Fig. S1), and datasets with significant
overlaps are usually from the same category. In the
AGE category examples are the curated mTOR
pathway (AGE_mTOR), where about half of the
genes are also reported in the longevity database
(AGE_Longevity), in the ARD category the datasets
from the Human Gene Mutation Database (HGMD)
and the Human Phenoype Ontology (HPO) that
capture related diseases, such as ARD_HPO_Stroke
and ARD_HGMD_Cardio, and in the ME category the
datasets ME_Weidner and ME_Bocklandt, where
about one-third of the genes are also reported in the
datasets ME_Teschendorff and ME_Xu. There are
very few overlaps between datasets in the EX category
or between datasets from different categories, the most
notable exception are the DNA methylation changes
reported in ME_Martilla, which are largely covered by
the gene expression changes reported in EX_Peters.
To assess if the observed dataset overlaps are
different from those that would be expected when
comparing datasets of these particular sizes, they were
compared to a randomized background distribution
(see “Materials and methods” for details). A great
number of dataset overlaps were significantly larger
than what would be expected, including all the
abovementioned examples (Fig. 2). The most signif-
icant overlaps were found within the ME, AGE, and
ARD categories, but also between datasets of the AGE
and ARD categories. Examples for the latter are the
overlaps between the two cancer sets (ARD_HGMD_-
Cancer and ARD_HPO_Cancer) and the majority of
curated aging sets, the caloric restriction gene expres-
sion markers reported in EX_Mercken and the two
cardiovascular disease sets (ARD_HGMD_Cardio
and ARD_HPOQO_Cardio), and the methylation markers
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reported in ME_Heyn, which significantly overlap
with the two longevity sets AGE_Longevity and
AGE_Longevity_HT.

Aging datasets are well connected through
network neighborhoods

To identify further connections between all aging
genes and datasets, they were then incorporated into a
combined human interaction network composed of
371,847 interactions between 17,451 genes. Only
genes with at least one reported interaction were
included in the network, which was the case for 5949
of the 6600 aging-associated genes. Different metrics
allowed for assessing how central or important a node
in this network is. The node degree, for example, lists
the number of direct interaction partners; betweenness
centrality indicates how many of all the shortest paths
between all the nodes in a network pass through a
certain node. The higher network degrees and
betweenness centralities of the aging-associated genes
(Fig. S2, Fig. S3) in general confirmed that they
occupy more central and important positions in the
combined human interaction network. Aging genes
with the lowest degrees are in datasets from the ME
and EX categories, while genes reported in the ARD
and in particular the AGE category have degrees that
are substantially higher than the average background.
The highest degrees are found in genes from the
curated AGE_GenAge and AGE_GenAge_Indirect
datasets, followed by AGE_Senescence and AGE_m-
TOR. The outliers in the AGE category, which contain
genes with average degrees close to the overall
background, are the datasets AGE_Longevity  HT
and AGE_Co_Chaperones. It is notable that a number
of datasets such as AGE_HPO_Stroke and
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Fig. 2 Pairwise gene-based overlaps of all aging datasets. The
35 aging datasets and the four dataset categories are listed on
both axes, intersecting cells list the number of overlapping
genes. Cells are colored with a blue-white-red gradient that

ARD_HGMD_Neuro have mean degrees and
betweenness centralities that are considerably higher
than their medians, which indicates that these datasets
contain few genes that are exceptionally well con-
nected hubs or that are involved in a great number of
shortest paths.

The landscape of network clusters involved
in human aging

Network clusters are parts of the network where the
nodes have more interactions with other nodes from
the cluster than they have with neighboring nodes
outside of it. Depending on the edge relationship
captured in the underlying network, these clusters
might represent proteins that work together in com-
plexes or that participate in a common biological
process. The combined human protein interaction
network used in this study contains 1263 clusters
composed of four or more genes (see “Materials and
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represents the z-score of the observed overlap compared to a
randomized background distribution, with shades of blue
representing negative z-scores, white z-scores around 0, and
shades of red positive z-scores. (Color figure online)

methods” for details). Of these, 1079 contain at least
one and 803 clusters at least two aging-associated
genes (Table S2). The clustering algorithm used in this
study enables individual genes to be part of multiple
clusters. The resulting overlaps can be observed in the
visualization of the landscape of all human aging
clusters (Fig. 3), where 885 clusters share between one
and 64 genes with another cluster and 610 of those
form one large connected component.

A web resource was developed to provide access to
all 35 datasets and visualization of the 1079 aging
clusters (https://gemex.eurac.edu/bioinf/age/). Exam-
ple visualization created with this resources are the
four boxes in Fig. 3, which represent selected network
clusters that either capture known aging processes
(c0201) or provide promising candidates for follow-up
inspections based on a combination of aging associa-
tions, enrichment in relevant biological processes or
the presence of drug targets (c0197, c0358, c1210).
Cluster c0201 is almost exclusively composed of
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genes with a known aging association, with 12 of its 13
genes associated with longevity and eight of those
genes reported in the aging-associated nutrient-sens-
ing mTOR-signaling pathway. In contrast, cluster
c0197 does not contain a single known or curated
aging gene. However, in this cluster, which has strong
associations with nucleotide metabolic processes,
two-thirds of the 30 genes are annotated to a set from
the ARD (one), EX (13), or ME (8) category and 13
genes are targets of approved drugs. Cluster c1210
includes genes involved in organism development and
cell differentiation. In particular, nine out of its ten
genes are annotated to an aging set, combining anno-
tations from 12 different sets that partly confirm each
other (e.g. LDB2 is a high-confidence methylation
marker reported in the sets ME_Florath, ME_Heyn,
ME_Horvath, and ME_Marttila) and partly comple-
ment (e.g. IL36RN or LHX1 are only reported in
single datasets). In cluster c0358, half of the 42 genes
are annotated to 18 different aging sets from all four
categories. Notably, this cluster, which is enriched in
inositol phosphate metabolic process and signaling,
joins 12 genes that are reported in nine different ME
sets and additionally connects ARD genes associated
with different neurodegenerative and cardiovascular
disorders, diabetes, and cancer.

Discussion

Limited, but significant agreement between human
aging datasets

Limited agreement between aging datasets, in partic-
ular those investigating changes in DNA methylation,
has been previously reported (Steegenga et al. 2014;
Jones et al. 2015). This partial complementarity could
be interpreted as lack of data quality, since there are
also reports on unreproducible DNA methylation
markers (Marioni et al. 2015). However, the differ-
ences can also be attributed to variations in study
designs and experimental procedures, the sampled cell
types and tissues, the methylation arrays, the statistical
analysis and normalization techniques, and to the
mapping procedures between CpG positions and gene
identifiers. In addition, while the overlaps in terms of
reported genes are limited, we found that they are very
significant compared to a randomized background, in
particular between sets of the curated aging (AGE),
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Fig. 3 Landscape of all 1079 human aging clusters in thep
combined interaction network. The aging clusters are depicted
as nodes in the main network, edges indicate genes that are
shared between the connected clusters. Node size and edge
width represent the cluster size and the number of shared genes,
respectively. Each cluster is filled with two circles: the inner
circle represents the percentage of aging genes in the cluster,
ranging from a small black slice (one gene) to full black (all
genes in the cluster), the outer circle describes the categories
represented by those aging genes, with red for curated aging
(AGE), yellow for age-related disease (ARD), blue for gene
expression (EX), and violet for DNA methylation (ME). The
four boxes provide visualizations of selected aging clusters,
where nodes represent genes and edges represent physical
protein interactions, protein co-complex relationships, or
functional associations. Genes without an aging association
are depicted as rectangles with grey fill color, no border, and
black text labels. Genes in the AGE category have a solid red
border, ARD genes yellow fill color, EX genes blue text color,
and ME genes a violet dotted border; genes reported in an AGE
and ME set have a red dotted border. Drug targets are depicted as
octagonal nodes. All clusters can be visualized and interactively
explored at our web resource. (Color figure online)

age-related disease (ARD), and DNA methylation
(ME) categories (Fig. 2). In this respect, it is reassur-
ing to observe considerable relative overlaps between
most ME sets. From the three exceptions that show
lower relative overlaps to other ME sets, two are based
not only on DNA methylation but also gene expression
data (ME_Steegenga and ME_Marttila) and the third
is based on a comparison between just a single
newborn to centenarian (ME_Heyn). The lower rela-
tive overlap between EX sets can be a result of the
different sampling techniques and experimental
designs. EX_Peters is by far the largest set, and is
based on whole blood expression, EX_Sood is based
on gene expression in multiple tissues, EX_Magalhaes
is based on multiple datasets from different tissues in
different organisms, and EX_Mercken focuses on
differential gene expression in muscle tissue upon
caloric restriction. In summary, meta-analyses that
combine multiple datasets provide a valuable tool for
linking partly complementary data and for helping to
establish a more comprehensive picture. The study
presented here is able to uncover more relationships
than any previous approach due to its size and the
diversity of datasets that represent a wide range of
aging processes.
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Distinct network topologies of aging genes

Interaction networks provide an additional layer for
linking proteomic and genomic data. Consequently,
integrative network analyses have been used to
uncover associations in different applications. An
example is guilt-by-association, which is commonly
used to infer associations between genes based on
known relationships. For example, a gene previously
not associated with a certain disease or signaling
pathway might be a candidate if it is reported to
physically interact with a protein that has a known role
in the same disease or pathway. There have been
intense debates about the reliability of certain inter-
action types, for example, reporting that physical
protein interactions that have been curated from the
published literature are substantially more biased than
large-scale experiments (Cusick et al. 2009; Salwinski
etal. 2009). In our study we combine different types of
interaction networks not only to capture various
aspects of the underlying biology, but also to correct
for potential shortcomings of individual detection
techniques. In particular, we incorporate experimen-
tally determined and literature-curated protein inter-
actions, protein co-complex relationships, and
functional associations such as interactions inferred
from other species or extracted using text-mining
techniques. Overall, the combined human network has
more than 370,000 interactions, making it substan-
tially larger than the networks used in previous
analyses (West et al. 2013a).

By investigating the topology of interaction net-
works, genes that occupy central or important posi-
tions can be identified. For example, West et al.
previously reported that aging genes tend to be located
in bridging positions within protein interaction net-
works, connecting otherwise disjoint parts (West et al.
2013b). We analyzed network topological properties
of aging genes and found that node degrees and
betweenness centralities of genes in AGE and ARD
sets are significantly higher than values of genes in EX
and ME sets. Since AGE and ARD datasets largely
consist of manually-curated data, while EX and ME
sets have mostly been determined on a large- or even
genome-wide scale, a possible explanation could be a
literature or curation bias: genes that have been studied
for historic reasons or that have a disease relevance
will continuously receive more attention than genes
that are poorly characterized, leading to more reported
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interactions, more annotations with Gene Ontology
terms, or a higher likelihood of being manually
curated into specific datasets (Schaefer et al. 2015).
In this respect it is noteworthy that AGE_Longevi-
ty_HT, which contains results of a single large-scale
study, shows degrees and betweenness centralities
significantly lower than all other curated datasets.

Network clusters as robust means for identifying
aging hotspots

The differing network topological parameters demon-
strate that network neighborhood-based approaches
can easily be biased by hub genes with exceptionally
high degrees (Wolfson et al. 2009). Network clusters,
which represent parts of the interaction network where
the nodes are more densely connected with each other
than with the surrounding regions, offer an additional
way for linking genes and for providing functional
interpretations (West et al. 2013a; Menche et al.
2015). Importantly, these clusters are more robust to
few highly connected outliers, since they are not
sufficient to change the overall cluster connectivity
(Nepusz et al. 2012). The main characteristic of
ClusterONE, the cluster detection algorithm that was
used in our study, is that it allows for overlapping
clusters, where genes can take part in multiple clusters.
In our view this is a more accurate representation of
the biological reality than algorithms that separate the
network into disjoint groups. In addition, ClusterONE
is among the tools with the best overall performance in
a recent comparison (Wiwie et al. 2015).

From the more than 1000 computed aging clusters
some are very promising candidates for further
inspection, either because they contain genes with a
strong aging association or because they link a great
number of aging datasets. Cluster c0201 (Fig. 3, top-
left box) is one example of the former category,
capturing many genes of the mTOR signaling path-
way, which has been associated with biological age
and longevity in a great number of studies and is
central to the deregulated nutrient sensing occurring
with age (Lopez-Otin et al. 2013). Another cluster
with a strong aging-association is c0283. Among its 16
constituting genes is WRN (Werner syndrome RecQ
like helicase), one of only two genes that have a direct
aging-association in the human GenAge database.
Mutations in WRN can cause Werner syndrome, a rare
disease associated with premature aging (Gray et al.
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1997). In accordance with the increased genomic
instability reported in this disease, almost all genes of
the cluster are associated with DNA recombination
and DNA repair.

The main strength of the data integration approach
presented in this study is using network clusters for
uncovering new associations between different aging
genes and datasets. This is exemplified by cluster
c1210 (Fig. 3, bottom-left box). Six of its ten genes are
associated with differential DNA methylation in
aging, however, since these associations are from six
different datasets, the connections would have been
overlooked by individual investigations or by com-
bining them in network neighborhoods instead of
network clusters. Two of the differentially methylated
genes in this cluster encode for enhancers of insulin
gene expression and are associated with peripheral
nervous system development, which in model organ-
isms has been reported as a regulator of longevity
(Wolkow et al. 2000). Another integrative cluster
example is c0680, which connects LAG3, one of the
two genes reported in the highest number of DNA
methylation datasets, with five additional differen-
tially methylated genes and seven genes reported to be
differentially expressed in aging. None of the genes in
this cluster have yet been curated into an aging
database or connected to an age-related disease,
although a recent report suggests a connection of
LAG3 to Parkinson’s disease (Mao et al. 2016). A
more intriguing example is cluster c0197 (Fig. 3, top-
right box), which also does not contain any genes
previously associated with aging in a curated dataset.
However, it links eight genes reported as differentially
methylated with age with seven genes reported to have
expression changes under long-term caloric restric-
tion, a process that has been found to have a conserved
effect on aging in humans and a number of model
organisms (Fontana and Partridge 2015). Interest-
ingly, a very recent study in rhesus monkeys reported
that caloric restriction delays age-related DNA methy-
lation changes (Maegawa et al. 2017) and clusters such
as c0197 could help to unravel the underlying
mechanisms. In addition, the availability of multiple
approved drugs targeting respective gene products in
this cluster provides opportunities for further explor-
ing their potential in improving health trajectories and
in the prevention of age-related diseases.

An online resource facilitating research of human
aging genes

Since the number of network clusters with a putative
association to aging processes is too large for a
detailed exploration in the context of this study, we
developed an online resource to make all data publicly
available to the biogerontology community. To the
best of our knowledge, this is this first resource that
provides access to a comprehensive collection of
annotated aging clusters, whereas previous studies at
most provided source code. All 1079 aging clusters
can be sorted by different criteria such as the number
of aging genes of a specific category or can be filtered
for particular genes of interest. For each cluster an
interactive visualization is available, complemented
with additional information. For genes this includes
Gene Ontology annotations or the information
whether it is the target of an approved drug; for
interactions this includes links to the source publica-
tion or confidence scores. In addition, biological
processes are listed that are enriched among the genes
in the cluster. To enable further exploration in
standalone tools such as Cytoscape, all clusters can
be exported as raw networks and high-resolution
visualizations in the portable network graphic (PNG)
format can be generated. We believe that the resource
fosters downstream analysis of aging data and helps to
test hypotheses about particular genes of interest.

It is foreseeable that more aging-related large-scale
datasets will be made available in the future. Consid-
ering the diversity and richness of the data it will
remain crucial to provide computational frameworks
that aid users in integrating and jointly analyzing such
data. We plan to maintain the online resource
presented here by updating the underlying network
data and functional annotations. We also intend to
extend its functionality from the prototypic version to
a comprehensive computational aging platform, where
users can configure the available data or upload their
own data for individual analyses.

Materials and methods
Data integration and identifier conversion

Genes and their products are identified using a wide
range of identifier systems, such as genomic
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coordinates, gene symbols, Ensembl and Entrez gene
identifiers, or UniProtKB protein accession numbers.
To combine the different aging datasets and protein
interaction networks, their respective input identifier
systems were converted to Entrez gene identifiers. The
conversion was done using the Dintor software
platform (Weichenberger et al. 2015) with gene
mappings for 25,788 unique Entrez identifiers from
Ensembl release 75 (Yates et al. 2016). Ambiguous
input identifiers that could not be manually resolved
were excluded. Entrez gene identifiers that were
reported in an aging dataset or an interaction network
were included even if they were not present in the
Dintor mappings. As a result of one-to-many map-
pings in the identifier conversion process, some gene
numbers mentioned in our study differ from the
numbers reported in the original publications. DNA
methylation studies that reported CpG positions were
mapped to gene identifiers using data from the
Bioconductor  package IlluminaHumanMethyla-
tion450k.db, following the procedures described in
the respective publication.

Aging datasets

The 35 aging datasets listing associations between
human genes and various aging aspects are briefly
described in the following. Based on the type of data
they contain, the sets are grouped into one of the four
categories curated aging (AGE), age-related disease
(ARD), gene expression (EX), or DNA methylation
(ME). All sets are named using a combination of
category abbreviation, an underscore, and a short set
label, e.g., AGE_mTOR.

Curated aging (AGE) sets

All data in this category have been manually curated
by the respective study authors or database curators.
Genes with diverse aging associations in humans and
models organisms were retrieved from GenAge (Ta-
cutu et al. 2013). Build 17 was downloaded and
separated into gene associations with direct evidence
levels (human, mammal, model, cell, human link)
(AGE_GenAge) and those with indirect evidence
levels (functional, downstream, putative)
(AGE_GenAge_Indirect). Gene associations with
longevity were retrieved from build 1 of Longevi-
tyMap (Tacutu et al. 2013). The downloaded file was
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separated into results originating from a single high-
throughput study (Sebastiani et al. 2012) (AGE_Lon-
gevity_HT) and genes reported in various small-scale
studies (AGE_Longevity). The remaining curated
aging sets focus on specific hallmarks of aging. The
nutrient-sensing insulin/IGF-1-like receptor pathway
centered around the mechanistic target of rapamycin
(mTOR) is represented by the respective KEGG
pathway map (AGE_mTOR) (Kanehisa et al. 2016).
Age-related deregulation of cellular proteostasis, a
hallmark that is largely maintained by chaperone
proteins, is represented by 88 human chaperones
(AGE_Chaperones) and 244  co-chaperones
(AGE_Co_Chaperones) obtained from the Chaper-
ome Database (Brehme et al. 2014). The aging
hallmark of cellular senescence is covered by the
literature-curated CSGene database (Zhao et al. 2016).
All genes with at least one reported literature reference
were included (AGE_Senescence).

Age-related disease (ARD) sets

The sets in this category contain associations between
human genes and different age-related diseases. The
associations were retrieved from the commercial
Human Gene Mutation Database (HGMD) Stenson
et al. (2014) and the Human Phenotype Ontology
(HPO) (Kohler et al. 2014). A local MySQL installa-
tion of HGMD Professional version 2015.03 was
queried using the Dintor platform (Weichenberger
etal. 2015), retrieving all genes that were annotated as
causative for different cardiovascular diseases
(ARD_HGMD_Cardio), neurological  disorders
(ARD_HGMD_Neuro), diabetes or metabolic syn-
drome (ARD_HGMD_Diabetes), and cancers
(ARD_HGMD_Cancer). Due to HGMD license
restrictions only a limited dataset can be made
available. HPO gene-disease associations were down-
loaded from version 2016.01.13 of the HPO ontology
browser. The associations were grouped into cardio-
vascular diseases (ARD_HPO_Cardio), neurodegen-
eration (ARD_HPO_Neuro), type II diabetes mellitus
(ARD_HPO_Diabetes), cancers (ARD_HPO_Can-
cer), stroke (ARD_HPO_Stroke), and mortality/aging
(ARD_HPO_Ageing).
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Gene expression (EX) sets

The four datasets in this category report gene expres-
sion changes associated with aging processes or
interventions. Genes representing a common gene
expression signature of aging (EX_Magalhaes) were
obtained from a meta-analysis of multiple studies from
mouse, rat, and human (de Magalhies et al. 2009). A
meta-analysis of gene expression studies of peripheral
whole-blood in humans (Peters et al. 2015) provided
genes with different expression profiles in chronolog-
ical age (EX_Peters). Genes associated with healthy
aging (EX_Sood) were taken from a study investigat-
ing RNA profiles in aging muscle tissues (Sood et al.
2015). Genes differentially expressed under condi-
tions of caloric restriction were obtained from a study
that investigated human muscle biopsies collected
from 15 middle-aged individuals practicing long-term
caloric restriction and ten age-matched non-obese
controls following a normal western diet (Mercken
etal. 2013). We analyzed the part of their data that was
publicly accessible under Gene Expression Omnibus
(GEO) accession GSE38012 with GEO2R (Barrett
et al. 2013), using an adjusted p value < 0.05 and an
absolute expression change z-score > 2 as selection
criteria (EX_Mercken).

DNA methylation (ME) sets

All datasets in this category report age-related changes
in the methylation of cytosine guanine dinucleotides
(CpGs) in the DNA. The great majority of studies
measured the methylation in human blood cells using
Ilumina 27 K BeadChip or Infinium 450 K arrays.
ME_Rakyan contains aging-associated differentially
methylated genomic regions that were determined in
whole blood of 93 healthy women from 49 to 75 years
(Rakyan et al. 2010). Whole blood samples of 261
postmenopausal women provided a DNA methylation
signature of aging consisting of 589 CpGs
(ME_Teschendorff) (Teschendorff et al. 2010).
ME_Bocklandt is based on 88 CpG sites that showed
a significant age association in the saliva of 34 male
twins (Bocklandt et al. 2011). ME_Bell contains
differentially methylated regions associated with age
in whole-blood DNA methylation profiles (Bell et al.
2012). Based on a comparison of methylation profiles
of a centenarian and a newborn, ME_Heyn contains
the subset of the data reporting differential

methylation markers found with whole-genome bisul-
fite sequencing and Infinium arrays (Heyn et al. 2012).
ME_Horvath is based on the “aging clock”, a multi-
tissue predictor for DNA methylation levels composed
of 353 CpG sites (Horvath 2013). ME_Hannum
contains 71 CpG markers that predicted chronological
age in a study analyzing whole blood of 656 individ-
uals (Hannum et al. 2013). ME_Florath contains 162
CpG sites that were reported with significant age-
associations in a cohort of 965 people (Florath et al.
2014). ME_Steegenga lists genes reported with gene
expression and DNA methylation changes in periph-
eral blood mononucleated cells from ten participants
(Steegenga et al. 2014). ME_Weidner contains 102
age-associated CpG sites found in human blood
(Weidner et al. 2014). ME_Xu contains 749 age-
related CpG sites determined in blood samples from
women between the age of 35 and 76 (Xu and Taylor
2014). ME_Bacalini is based on a re-analysis of
published DNA methylation data from three previous
studies (Bacalini et al. 2015). ME_Marttila contains
377 CpG sites found with changes in the DNA
methylation and gene expression profiles in blood
leukocytes (Marttila et al. 2015).

Gene annotation and process enrichment

Data from the Gene Ontology (GO) (Ashburner et al.
2000) release 2015.09 were incorporated to identify
the biological and cellular roles of all genes. The
Dintor software platform (Weichenberger et al. 2015)
was used to access all gene annotations from the three
GO categories biological process (BP), cellular com-
ponent, and molecular function, and to compute BP
enrichments. In particular, hyper-geometric tests were
used to compare the GO terms annotated to the genes
in a dataset (e.g., a network cluster) to the terms
annotated to the full network background. Multiple
testing corrections were done using a false-discovery
rate < 0.05 (Benjamini and Hochberg 1995). To
determine if genes or their prducts are targeted by
approved drugs, data from DrugBank (Wishart et al.
2006) release 5.0.3 were incorporated.

Interaction networks
The interaction networks used in this study are

composed of genes, represented as network nodes,
and different types of relationships, represented by
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edges connecting two nodes. The majority of gene
relationships are physical protein interactions or co-
complex associations of the encoded proteins, com-
plemented by different types of functional relation-
ships. In particular, the interaction data were retrieved
from the resources mentha, BioPlex, and STRING.
Human release 2015.11.27 of mentha was used as an
integrated interaction network that combines experi-
mentally determined and literature-curated physical
protein interactions and co-complexes from a number
of different primary interaction databases (Calderone
etal. 2013). BioPlex is an ongoing effort to unravel the
landscape of all human protein complexes (Huttlin
et al. 2015). The initial release v2 is included in
mentha, the more complete release v4 was included as
a separate network. The STRING database was
included as a it combines experimentally determined
and literature-curated protein interactions with various
types of functional associations, such as interactions
inferred from other species, extracted using text-
mining techniques, or associations based on gene co-
expression (Szklarczyk et al. 2015). Due to potentially
spurious functional associations included in the
STRING database, only a high-confidence network
(string_0.9) was used, which was created by filtering
version v10 of the human interaction data and keeping
only interactions with a combined confidence score of
at least 900 out of 1000, a threshold recommended by
the authors. The combined interaction network (bio-
plex,mentha,string_0.9) was created by integrating the
three individual networks.

Computational resources

All network analyses were computed with Python
programs based the Dintor software platform (We-
ichenberger et al. 2015) and the network library
igraph-python (Csardi and Nepusz 2006). Network
clusters were determined using the standalone Java
version of ClusterONE (Nepusz et al. 2012) with
default parameters, adjusting the minimum cluster size
to four genes. Connections between network clusters
were visualized using the Cytoscape (Shannon et al.
2003) application enhancedGraphics (Morris et al.
2014). The web resource for visualizing network
clusters (https://gemex.eurac.edu/bioinf/age/) was
implemented using a combination of Hypertext
Markup Language (HTML), Cascading Style Sheets
(CSS), and JavaScript and has been tested in all major
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browsers. Interactive network visualizations are ren-
dered using Cytoscape.js (Franz et al. 2016).

Statistical significance of set overlaps and cluster
composition

To determine if the observed gene-based set overlaps
are defined by the sizes of the respective datasets, they
were compared to a background distribution. This
distribution was created by replacing all 35 datasets
with randomly sampled datasets of the same size and
computing the respective pairwise overlaps. Repeat-
ing this process 1000 times provided sufficient back-
ground values to compute reliable z-scores for the
observed overlap values. In addition, p-values were
computed for all clusters using Fisher’s exact test to
assess if the number of aging-associated genes were
significantly greater than what would expected.
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