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Abstract Great amounts of omics data are generated

in aging research, but their diverse and partly

complementary nature requires integrative analysis

approaches for investigating aging processes and

connections to age-related diseases. To establish a

broader picture of the genetic and epigenetic land-

scape of human aging we performed a large-scale

meta-analysis of 6600 human genes by combining 35

datasets that cover aging hallmarks, longevity,

changes in DNA methylation and gene expression,

and different age-related diseases. To identify biolog-

ical relationships between aging-associated genes we

incorporated them into a protein interaction network

and characterized their network neighborhoods. In

particular, we computed a comprehensive landscape

of more than 1000 human aging clusters, network

regions where genes are highly connected and where

gene products commonly participate in similar pro-

cesses. In addition to clusters that capture known aging

processes such as nutrient-sensing and mTOR signal-

ing, we present a number of clusters with a putative

functional role in linking different aging processes as

promising candidates for follow-up studies. To enable

their detailed exploration, all datasets and aging

clusters are made freely available via an interactive

website (https://gemex.eurac.edu/bioinf/age/).

Keywords Human aging � Meta-analysis � Age-
related disease � Network analysis � Protein complex �
Network cluster

Introduction

Age is an important risk factor for a number of

diseases (Cutler and Mattson 2006; Niccoli and

Partridge 2012). A better understanding of the con-

nections between the diverse aging processes and the

onset and progression of age-related diseases is
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expected to have an impact on individual health span

and population health (Demetrius and Fraifeld 2014).

A common foundation of the complex aging-related

changes on a cellular and molecular level has been

proposed via the nine hallmarks of aging (López-Otı́n

et al. 2013), but while key mechanisms and processes

have been identified, their molecular foundations

remain largely uncharacterized (Kenyon 2010). At

the same time technological advances and falling costs

have enabled large-scale assessments of a wide range

of aging processes and have led to a great number of

publicly available omics datasets (de Magalhães and

Tacutu 2016). One area that has been intensely studied

in recent years are aging-related changes in DNA

methylation, an epigenetic process associated with

controlling gene expression (Jones et al. 2015). The

studies observed a genome-wide decrease in the

methylation of cytosine guanine dinucleotides (CpGs)

with increasing age, while a number of gene promoters

were increasingly methylated in a tissue-dependent

manner (Teschendorff et al. 2013). More specifically,

the methylation status of certain CpG sites in the

genome was found to be predictive for the chrono-

logical age of a person (Hannum et al. 2013; Horvath

2013) and was also linked to biological age and overall

lifetime mortality (Marioni et al. 2015). The limited

overlap between individual DNA methylation studies,

however, requires the joint analysis of multiple

datasets in order to fully interpret partial and poten-

tially contradicting results. For example, two meta

analyses reported 11 and 41 high-confidence CpG

markers, respectively, that were found in at least four

different studies and identified common biological

processes and cellular pathways of differentially

methylated genes (Steegenga et al. 2014; Jones et al.

2015).

Interaction networks, in which genes and their

products are represented as nodes, which are con-

nected by edges that represent different relationships,

are valuable tools for integrative data analysis and for

identifying disease associations (Barabási et al. 2011;

Menche et al. 2015). Integrative network-based anal-

yses have also been performed in aging research

[reviewed in (Simkó et al. 2009; Peysselon and

Ricard-Blum 2011; de Magalhães and Tacutu

2016)]. Notable example applications identified

highly connected and important hub proteins (S}oti

and Csermely 2007; Wolfson et al. 2009), reported

connections between longevity-associated genes

(Budovsky et al. 2007), investigated links between

aging genes and age-related diseases (West et al.

2013b; Fernandes et al. 2016), and made network data

available as part of dedicated aging databases (de

Magalhães et al. 2005; Tacutu et al. 2010). West et al.

developed a network clustering algorithm and applied

it to the integration of DNA methylation datasets,

identifying a number of clusters that were enriched in

stem-cell differentiation pathways (West et al. 2013a).

In the present study we extended this approach in

various ways and performed the largest and most

diverse meta-analysis of human aging genes. In

particular, by using substantially larger networks and

incorporating more DNAmethylation and other aging-

related datasets than any previous study, we were able

to uncover novel gene-aging associations, which were

made available via an online resource for easy

exploration.

Results

The largest andmost diverse compilation of human

aging genes

The meta-analysis presented here unifies 35 datasets

related to a wide range of aging aspects, grouped into

the four categories DNA methylation changes (ME),

gene expression changes (EX), age-related diseases

(ARD), and curated aging data (AGE). In total,

associations with 6600 human genes are reported,

with 3498 genes in sets of the ME category, 2130 in

EX, 1207 in ARD, and 1154 in AGE (Table 1). The

great majority of genes are only reported in a single

category (Fig. 1a), 1050 genes are associated with

two, 159 genes with three, and seven genes with all

four categories. Those seven genes are APOE

(apolipoprotein E), CCT7 (chaperonin containing

TCP1 subunit 7), ERBB2 (erb-b2 receptor tyrosine

kinase 2), PRKCA (protein kinase C alpha), RASSF1

(Ras association domain family member 1), SREBF1

(sterol regulatory element binding transcription factor

1), and TNF (tumor necrosis factor). APOE, ERBB2,

and TNF are also among the genes associated with the

highest number of aging datasets (Fig. 1b). Two other

genes in this list are EDARADD (EDAR associated

death domain) and LAG3 (lymphocyte activating 3),

which have the strongest overall evidence for aging-

associated DNA methylation changes with reports in
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nine different ME datasets. Notably, of the 117 genes

that are reported in four or more ME sets, the criterion

used in previous studies for selecting high-confidence

markers, 87 genes are exclusively annotated to the ME

category and have no additional association with any

other aging dataset.

More than two-thirds of all 6600 aging-associated

genes are only reported in a single dataset (Table S1).

Table 1 Aging datasets

used in this analysis
Set name Reported genes Reference

8 curated aging sets (AGE) 1154 curated aging genes

AGE_Chaperones 88 Brehme et al. (2014)

AGE_Co_Chaperones 244 (Brehme et al. (2014)

AGE_GenAge 100 Tacutu et al. (2013)

AGE_GenAge_Indirect 198 Tacutu et al. (2013)

AGE_Longevity 195 Tacutu et al. (2013)

AGE_Longevity_HT 144 Tacutu et al. (2013)

AGE_Senescence 342 Zhao et al. (2016)

AGE_mTOR 60 Kanehisa et al. (2016)

10 age-related disease sets (ARD) 1207 age-related disease genes

ARD_HGMD_Cancer 226 Stenson et al. (2014)

ARD_HGMD_Cardio 402 Stenson et al. (2014)

ARD_HGMD_Diabetes 83 Stenson et al. (2014)

ARD_HGMD_Neuro 34 Stenson et al. (2014)

ARD_HPO_Ageing 126 Köhler et al. (2014)

ARD_HPO_Cancer 427 Köhler et al. (2014)

ARD_HPO_Cardio 164 Köhler et al. (2014)

ARD_HPO_Diabetes 28 Köhler et al. (2014)

ARD_HPO_ Neuro 74 Köhler et al. (2014)

ARD_HPO_Stroke 34 Köhler et al. (2014)

4 gene expression sets (EX) 2130 differentially expressed genes

EX_Magalhaes 73 de Magalhães et al. (2009)

EX_Mercken 485 Mercken et al. (2013)

EX_Peters 1497 Peters et al. (2015)

EX_Sood 153 Sood et al. (2015)

13 DNA methylation sets (ME) 3498 differentially methylated genes

ME_Bacalani 44 Bacalini et al. (2015)

ME_Bell 444 Bell et al. (2012)

ME_Bocklandt 81 Bocklandt et al. (2011)

ME_Florath 122 Florath et al. (2014)

ME_Hannum 117 Hannum et al. (2013)

ME_Heyn 1445 Heyn et al. (2012)

ME_Horvath 344 Horvath (2013)

ME_Marttila 239 Marttila et al. (2015)

ME_Rakyan 138 Rakyan et al. (2010)

ME_Steegenga 436 Steegenga et al. (2014)

ME_Teschendorff 591 Teschendorff et al. (2010)

ME_Weidner 105 Weidner et al. (2014)

ME_Xu 679 Xu and Taylor (2014)

35 aging sets in total (ALL) 6600 distinct genes associated with aging
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The percentage of overlapping genes between datasets

is generally low (Fig. S1), and datasets with significant

overlaps are usually from the same category. In the

AGE category examples are the curated mTOR

pathway (AGE_mTOR), where about half of the

genes are also reported in the longevity database

(AGE_Longevity), in the ARD category the datasets

from the Human Gene Mutation Database (HGMD)

and the Human Phenoype Ontology (HPO) that

capture related diseases, such as ARD_HPO_Stroke

and ARD_HGMD_Cardio, and in the ME category the

datasets ME_Weidner and ME_Bocklandt, where

about one-third of the genes are also reported in the

datasets ME_Teschendorff and ME_Xu. There are

very few overlaps between datasets in the EX category

or between datasets from different categories, the most

notable exception are the DNA methylation changes

reported inME_Martilla, which are largely covered by

the gene expression changes reported in EX_Peters.

To assess if the observed dataset overlaps are

different from those that would be expected when

comparing datasets of these particular sizes, they were

compared to a randomized background distribution

(see ‘‘Materials and methods’’ for details). A great

number of dataset overlaps were significantly larger

than what would be expected, including all the

abovementioned examples (Fig. 2). The most signif-

icant overlaps were found within the ME, AGE, and

ARD categories, but also between datasets of the AGE

and ARD categories. Examples for the latter are the

overlaps between the two cancer sets (ARD_HGMD_-

Cancer and ARD_HPO_Cancer) and the majority of

curated aging sets, the caloric restriction gene expres-

sion markers reported in EX_Mercken and the two

cardiovascular disease sets (ARD_HGMD_Cardio

and ARD_HPO_Cardio), and the methylation markers

reported in ME_Heyn, which significantly overlap

with the two longevity sets AGE_Longevity and

AGE_Longevity_HT.

Aging datasets are well connected through

network neighborhoods

To identify further connections between all aging

genes and datasets, they were then incorporated into a

combined human interaction network composed of

371,847 interactions between 17,451 genes. Only

genes with at least one reported interaction were

included in the network, which was the case for 5949

of the 6600 aging-associated genes. Different metrics

allowed for assessing how central or important a node

in this network is. The node degree, for example, lists

the number of direct interaction partners; betweenness

centrality indicates how many of all the shortest paths

between all the nodes in a network pass through a

certain node. The higher network degrees and

betweenness centralities of the aging-associated genes

(Fig. S2, Fig. S3) in general confirmed that they

occupy more central and important positions in the

combined human interaction network. Aging genes

with the lowest degrees are in datasets from the ME

and EX categories, while genes reported in the ARD

and in particular the AGE category have degrees that

are substantially higher than the average background.

The highest degrees are found in genes from the

curated AGE_GenAge and AGE_GenAge_Indirect

datasets, followed by AGE_Senescence and AGE_m-

TOR. The outliers in the AGE category, which contain

genes with average degrees close to the overall

background, are the datasets AGE_Longevity_HT

and AGE_Co_Chaperones. It is notable that a number

of datasets such as AGE_HPO_Stroke and
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Fig. 1 a Gene-based overlaps of all aging dataset categories. AGE: curated aging; ARD: age-related disease; EX: gene expression;

ME: DNA methylation. b List of genes with eight or more aging dataset associations
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ARD_HGMD_Neuro have mean degrees and

betweenness centralities that are considerably higher

than their medians, which indicates that these datasets

contain few genes that are exceptionally well con-

nected hubs or that are involved in a great number of

shortest paths.

The landscape of network clusters involved

in human aging

Network clusters are parts of the network where the

nodes have more interactions with other nodes from

the cluster than they have with neighboring nodes

outside of it. Depending on the edge relationship

captured in the underlying network, these clusters

might represent proteins that work together in com-

plexes or that participate in a common biological

process. The combined human protein interaction

network used in this study contains 1263 clusters

composed of four or more genes (see ‘‘Materials and

methods’’ for details). Of these, 1079 contain at least

one and 803 clusters at least two aging-associated

genes (Table S2). The clustering algorithm used in this

study enables individual genes to be part of multiple

clusters. The resulting overlaps can be observed in the

visualization of the landscape of all human aging

clusters (Fig. 3), where 885 clusters share between one

and 64 genes with another cluster and 610 of those

form one large connected component.

A web resource was developed to provide access to

all 35 datasets and visualization of the 1079 aging

clusters (https://gemex.eurac.edu/bioinf/age/). Exam-

ple visualization created with this resources are the

four boxes in Fig. 3, which represent selected network

clusters that either capture known aging processes

(c0201) or provide promising candidates for follow-up

inspections based on a combination of aging associa-

tions, enrichment in relevant biological processes or

the presence of drug targets (c0197, c0358, c1210).

Cluster c0201 is almost exclusively composed of

Fig. 2 Pairwise gene-based overlaps of all aging datasets. The

35 aging datasets and the four dataset categories are listed on

both axes, intersecting cells list the number of overlapping

genes. Cells are colored with a blue–white–red gradient that

represents the z-score of the observed overlap compared to a

randomized background distribution, with shades of blue

representing negative z-scores, white z-scores around 0, and

shades of red positive z-scores. (Color figure online)
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genes with a known aging association, with 12 of its 13

genes associated with longevity and eight of those

genes reported in the aging-associated nutrient-sens-

ing mTOR-signaling pathway. In contrast, cluster

c0197 does not contain a single known or curated

aging gene. However, in this cluster, which has strong

associations with nucleotide metabolic processes,

two-thirds of the 30 genes are annotated to a set from

the ARD (one), EX (13), or ME (8) category and 13

genes are targets of approved drugs. Cluster c1210

includes genes involved in organism development and

cell differentiation. In particular, nine out of its ten

genes are annotated to an aging set, combining anno-

tations from 12 different sets that partly confirm each

other (e.g. LDB2 is a high-confidence methylation

marker reported in the sets ME_Florath, ME_Heyn,

ME_Horvath, and ME_Marttila) and partly comple-

ment (e.g. IL36RN or LHX1 are only reported in

single datasets). In cluster c0358, half of the 42 genes

are annotated to 18 different aging sets from all four

categories. Notably, this cluster, which is enriched in

inositol phosphate metabolic process and signaling,

joins 12 genes that are reported in nine different ME

sets and additionally connects ARD genes associated

with different neurodegenerative and cardiovascular

disorders, diabetes, and cancer.

Discussion

Limited, but significant agreement between human

aging datasets

Limited agreement between aging datasets, in partic-

ular those investigating changes in DNA methylation,

has been previously reported (Steegenga et al. 2014;

Jones et al. 2015). This partial complementarity could

be interpreted as lack of data quality, since there are

also reports on unreproducible DNA methylation

markers (Marioni et al. 2015). However, the differ-

ences can also be attributed to variations in study

designs and experimental procedures, the sampled cell

types and tissues, the methylation arrays, the statistical

analysis and normalization techniques, and to the

mapping procedures between CpG positions and gene

identifiers. In addition, while the overlaps in terms of

reported genes are limited, we found that they are very

significant compared to a randomized background, in

particular between sets of the curated aging (AGE),

age-related disease (ARD), and DNA methylation

(ME) categories (Fig. 2). In this respect, it is reassur-

ing to observe considerable relative overlaps between

most ME sets. From the three exceptions that show

lower relative overlaps to other ME sets, two are based

not only on DNAmethylation but also gene expression

data (ME_Steegenga and ME_Marttila) and the third

is based on a comparison between just a single

newborn to centenarian (ME_Heyn). The lower rela-

tive overlap between EX sets can be a result of the

different sampling techniques and experimental

designs. EX_Peters is by far the largest set, and is

based on whole blood expression, EX_Sood is based

on gene expression in multiple tissues, EX_Magalhaes

is based on multiple datasets from different tissues in

different organisms, and EX_Mercken focuses on

differential gene expression in muscle tissue upon

caloric restriction. In summary, meta-analyses that

combine multiple datasets provide a valuable tool for

linking partly complementary data and for helping to

establish a more comprehensive picture. The study

presented here is able to uncover more relationships

than any previous approach due to its size and the

diversity of datasets that represent a wide range of

aging processes.

cFig. 3 Landscape of all 1079 human aging clusters in the

combined interaction network. The aging clusters are depicted

as nodes in the main network, edges indicate genes that are

shared between the connected clusters. Node size and edge

width represent the cluster size and the number of shared genes,

respectively. Each cluster is filled with two circles: the inner

circle represents the percentage of aging genes in the cluster,

ranging from a small black slice (one gene) to full black (all

genes in the cluster), the outer circle describes the categories

represented by those aging genes, with red for curated aging

(AGE), yellow for age-related disease (ARD), blue for gene

expression (EX), and violet for DNA methylation (ME). The

four boxes provide visualizations of selected aging clusters,

where nodes represent genes and edges represent physical

protein interactions, protein co-complex relationships, or

functional associations. Genes without an aging association

are depicted as rectangles with grey fill color, no border, and

black text labels. Genes in the AGE category have a solid red

border, ARD genes yellow fill color, EX genes blue text color,

and ME genes a violet dotted border; genes reported in an AGE

andME set have a red dotted border. Drug targets are depicted as

octagonal nodes. All clusters can be visualized and interactively

explored at our web resource. (Color figure online)
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Distinct network topologies of aging genes

Interaction networks provide an additional layer for

linking proteomic and genomic data. Consequently,

integrative network analyses have been used to

uncover associations in different applications. An

example is guilt-by-association, which is commonly

used to infer associations between genes based on

known relationships. For example, a gene previously

not associated with a certain disease or signaling

pathway might be a candidate if it is reported to

physically interact with a protein that has a known role

in the same disease or pathway. There have been

intense debates about the reliability of certain inter-

action types, for example, reporting that physical

protein interactions that have been curated from the

published literature are substantially more biased than

large-scale experiments (Cusick et al. 2009; Salwinski

et al. 2009). In our study we combine different types of

interaction networks not only to capture various

aspects of the underlying biology, but also to correct

for potential shortcomings of individual detection

techniques. In particular, we incorporate experimen-

tally determined and literature-curated protein inter-

actions, protein co-complex relationships, and

functional associations such as interactions inferred

from other species or extracted using text-mining

techniques. Overall, the combined human network has

more than 370,000 interactions, making it substan-

tially larger than the networks used in previous

analyses (West et al. 2013a).

By investigating the topology of interaction net-

works, genes that occupy central or important posi-

tions can be identified. For example, West et al.

previously reported that aging genes tend to be located

in bridging positions within protein interaction net-

works, connecting otherwise disjoint parts (West et al.

2013b). We analyzed network topological properties

of aging genes and found that node degrees and

betweenness centralities of genes in AGE and ARD

sets are significantly higher than values of genes in EX

and ME sets. Since AGE and ARD datasets largely

consist of manually-curated data, while EX and ME

sets have mostly been determined on a large- or even

genome-wide scale, a possible explanation could be a

literature or curation bias: genes that have been studied

for historic reasons or that have a disease relevance

will continuously receive more attention than genes

that are poorly characterized, leading to more reported

interactions, more annotations with Gene Ontology

terms, or a higher likelihood of being manually

curated into specific datasets (Schaefer et al. 2015).

In this respect it is noteworthy that AGE_Longevi-

ty_HT, which contains results of a single large-scale

study, shows degrees and betweenness centralities

significantly lower than all other curated datasets.

Network clusters as robust means for identifying

aging hotspots

The differing network topological parameters demon-

strate that network neighborhood-based approaches

can easily be biased by hub genes with exceptionally

high degrees (Wolfson et al. 2009). Network clusters,

which represent parts of the interaction network where

the nodes are more densely connected with each other

than with the surrounding regions, offer an additional

way for linking genes and for providing functional

interpretations (West et al. 2013a; Menche et al.

2015). Importantly, these clusters are more robust to

few highly connected outliers, since they are not

sufficient to change the overall cluster connectivity

(Nepusz et al. 2012). The main characteristic of

ClusterONE, the cluster detection algorithm that was

used in our study, is that it allows for overlapping

clusters, where genes can take part in multiple clusters.

In our view this is a more accurate representation of

the biological reality than algorithms that separate the

network into disjoint groups. In addition, ClusterONE

is among the tools with the best overall performance in

a recent comparison (Wiwie et al. 2015).

From the more than 1000 computed aging clusters

some are very promising candidates for further

inspection, either because they contain genes with a

strong aging association or because they link a great

number of aging datasets. Cluster c0201 (Fig. 3, top-

left box) is one example of the former category,

capturing many genes of the mTOR signaling path-

way, which has been associated with biological age

and longevity in a great number of studies and is

central to the deregulated nutrient sensing occurring

with age (López-Otı́n et al. 2013). Another cluster

with a strong aging-association is c0283. Among its 16

constituting genes is WRN (Werner syndrome RecQ

like helicase), one of only two genes that have a direct

aging-association in the human GenAge database.

Mutations inWRN can causeWerner syndrome, a rare

disease associated with premature aging (Gray et al.
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1997). In accordance with the increased genomic

instability reported in this disease, almost all genes of

the cluster are associated with DNA recombination

and DNA repair.

The main strength of the data integration approach

presented in this study is using network clusters for

uncovering new associations between different aging

genes and datasets. This is exemplified by cluster

c1210 (Fig. 3, bottom-left box). Six of its ten genes are

associated with differential DNA methylation in

aging, however, since these associations are from six

different datasets, the connections would have been

overlooked by individual investigations or by com-

bining them in network neighborhoods instead of

network clusters. Two of the differentially methylated

genes in this cluster encode for enhancers of insulin

gene expression and are associated with peripheral

nervous system development, which in model organ-

isms has been reported as a regulator of longevity

(Wolkow et al. 2000). Another integrative cluster

example is c0680, which connects LAG3, one of the

two genes reported in the highest number of DNA

methylation datasets, with five additional differen-

tially methylated genes and seven genes reported to be

differentially expressed in aging. None of the genes in

this cluster have yet been curated into an aging

database or connected to an age-related disease,

although a recent report suggests a connection of

LAG3 to Parkinson’s disease (Mao et al. 2016). A

more intriguing example is cluster c0197 (Fig. 3, top-

right box), which also does not contain any genes

previously associated with aging in a curated dataset.

However, it links eight genes reported as differentially

methylated with age with seven genes reported to have

expression changes under long-term caloric restric-

tion, a process that has been found to have a conserved

effect on aging in humans and a number of model

organisms (Fontana and Partridge 2015). Interest-

ingly, a very recent study in rhesus monkeys reported

that caloric restriction delays age-related DNAmethy-

lation changes (Maegawa et al. 2017) and clusters such

as c0197 could help to unravel the underlying

mechanisms. In addition, the availability of multiple

approved drugs targeting respective gene products in

this cluster provides opportunities for further explor-

ing their potential in improving health trajectories and

in the prevention of age-related diseases.

An online resource facilitating research of human

aging genes

Since the number of network clusters with a putative

association to aging processes is too large for a

detailed exploration in the context of this study, we

developed an online resource to make all data publicly

available to the biogerontology community. To the

best of our knowledge, this is this first resource that

provides access to a comprehensive collection of

annotated aging clusters, whereas previous studies at

most provided source code. All 1079 aging clusters

can be sorted by different criteria such as the number

of aging genes of a specific category or can be filtered

for particular genes of interest. For each cluster an

interactive visualization is available, complemented

with additional information. For genes this includes

Gene Ontology annotations or the information

whether it is the target of an approved drug; for

interactions this includes links to the source publica-

tion or confidence scores. In addition, biological

processes are listed that are enriched among the genes

in the cluster. To enable further exploration in

standalone tools such as Cytoscape, all clusters can

be exported as raw networks and high-resolution

visualizations in the portable network graphic (PNG)

format can be generated. We believe that the resource

fosters downstream analysis of aging data and helps to

test hypotheses about particular genes of interest.

It is foreseeable that more aging-related large-scale

datasets will be made available in the future. Consid-

ering the diversity and richness of the data it will

remain crucial to provide computational frameworks

that aid users in integrating and jointly analyzing such

data. We plan to maintain the online resource

presented here by updating the underlying network

data and functional annotations. We also intend to

extend its functionality from the prototypic version to

a comprehensive computational aging platform, where

users can configure the available data or upload their

own data for individual analyses.

Materials and methods

Data integration and identifier conversion

Genes and their products are identified using a wide

range of identifier systems, such as genomic
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coordinates, gene symbols, Ensembl and Entrez gene

identifiers, or UniProtKB protein accession numbers.

To combine the different aging datasets and protein

interaction networks, their respective input identifier

systems were converted to Entrez gene identifiers. The

conversion was done using the Dintor software

platform (Weichenberger et al. 2015) with gene

mappings for 25,788 unique Entrez identifiers from

Ensembl release 75 (Yates et al. 2016). Ambiguous

input identifiers that could not be manually resolved

were excluded. Entrez gene identifiers that were

reported in an aging dataset or an interaction network

were included even if they were not present in the

Dintor mappings. As a result of one-to-many map-

pings in the identifier conversion process, some gene

numbers mentioned in our study differ from the

numbers reported in the original publications. DNA

methylation studies that reported CpG positions were

mapped to gene identifiers using data from the

Bioconductor package IlluminaHumanMethyla-

tion450k.db, following the procedures described in

the respective publication.

Aging datasets

The 35 aging datasets listing associations between

human genes and various aging aspects are briefly

described in the following. Based on the type of data

they contain, the sets are grouped into one of the four

categories curated aging (AGE), age-related disease

(ARD), gene expression (EX), or DNA methylation

(ME). All sets are named using a combination of

category abbreviation, an underscore, and a short set

label, e.g., AGE_mTOR.

Curated aging (AGE) sets

All data in this category have been manually curated

by the respective study authors or database curators.

Genes with diverse aging associations in humans and

models organisms were retrieved from GenAge (Ta-

cutu et al. 2013). Build 17 was downloaded and

separated into gene associations with direct evidence

levels (human, mammal, model, cell, human link)

(AGE_GenAge) and those with indirect evidence

levels (functional, downstream, putative)

(AGE_GenAge_Indirect). Gene associations with

longevity were retrieved from build 1 of Longevi-

tyMap (Tacutu et al. 2013). The downloaded file was

separated into results originating from a single high-

throughput study (Sebastiani et al. 2012) (AGE_Lon-

gevity_HT) and genes reported in various small-scale

studies (AGE_Longevity). The remaining curated

aging sets focus on specific hallmarks of aging. The

nutrient-sensing insulin/IGF-1-like receptor pathway

centered around the mechanistic target of rapamycin

(mTOR) is represented by the respective KEGG

pathway map (AGE_mTOR) (Kanehisa et al. 2016).

Age-related deregulation of cellular proteostasis, a

hallmark that is largely maintained by chaperone

proteins, is represented by 88 human chaperones

(AGE_Chaperones) and 244 co-chaperones

(AGE_Co_Chaperones) obtained from the Chaper-

ome Database (Brehme et al. 2014). The aging

hallmark of cellular senescence is covered by the

literature-curated CSGene database (Zhao et al. 2016).

All genes with at least one reported literature reference

were included (AGE_Senescence).

Age-related disease (ARD) sets

The sets in this category contain associations between

human genes and different age-related diseases. The

associations were retrieved from the commercial

Human Gene Mutation Database (HGMD) Stenson

et al. (2014) and the Human Phenotype Ontology

(HPO) (Köhler et al. 2014). A local MySQL installa-

tion of HGMD Professional version 2015.03 was

queried using the Dintor platform (Weichenberger

et al. 2015), retrieving all genes that were annotated as

causative for different cardiovascular diseases

(ARD_HGMD_Cardio), neurological disorders

(ARD_HGMD_Neuro), diabetes or metabolic syn-

drome (ARD_HGMD_Diabetes), and cancers

(ARD_HGMD_Cancer). Due to HGMD license

restrictions only a limited dataset can be made

available. HPO gene-disease associations were down-

loaded from version 2016.01.13 of the HPO ontology

browser. The associations were grouped into cardio-

vascular diseases (ARD_HPO_Cardio), neurodegen-

eration (ARD_HPO_Neuro), type II diabetes mellitus

(ARD_HPO_Diabetes), cancers (ARD_HPO_Can-

cer), stroke (ARD_HPO_Stroke), and mortality/aging

(ARD_HPO_Ageing).
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Gene expression (EX) sets

The four datasets in this category report gene expres-

sion changes associated with aging processes or

interventions. Genes representing a common gene

expression signature of aging (EX_Magalhaes) were

obtained from ameta-analysis of multiple studies from

mouse, rat, and human (de Magalhães et al. 2009). A

meta-analysis of gene expression studies of peripheral

whole-blood in humans (Peters et al. 2015) provided

genes with different expression profiles in chronolog-

ical age (EX_Peters). Genes associated with healthy

aging (EX_Sood) were taken from a study investigat-

ing RNA profiles in aging muscle tissues (Sood et al.

2015). Genes differentially expressed under condi-

tions of caloric restriction were obtained from a study

that investigated human muscle biopsies collected

from 15 middle-aged individuals practicing long-term

caloric restriction and ten age-matched non-obese

controls following a normal western diet (Mercken

et al. 2013).We analyzed the part of their data that was

publicly accessible under Gene Expression Omnibus

(GEO) accession GSE38012 with GEO2R (Barrett

et al. 2013), using an adjusted p value\ 0.05 and an

absolute expression change z-score[ 2 as selection

criteria (EX_Mercken).

DNA methylation (ME) sets

All datasets in this category report age-related changes

in the methylation of cytosine guanine dinucleotides

(CpGs) in the DNA. The great majority of studies

measured the methylation in human blood cells using

Illumina 27 K BeadChip or Infinium 450 K arrays.

ME_Rakyan contains aging-associated differentially

methylated genomic regions that were determined in

whole blood of 93 healthy women from 49 to 75 years

(Rakyan et al. 2010). Whole blood samples of 261

postmenopausal women provided a DNA methylation

signature of aging consisting of 589 CpGs

(ME_Teschendorff) (Teschendorff et al. 2010).

ME_Bocklandt is based on 88 CpG sites that showed

a significant age association in the saliva of 34 male

twins (Bocklandt et al. 2011). ME_Bell contains

differentially methylated regions associated with age

in whole-blood DNA methylation profiles (Bell et al.

2012). Based on a comparison of methylation profiles

of a centenarian and a newborn, ME_Heyn contains

the subset of the data reporting differential

methylation markers found with whole-genome bisul-

fite sequencing and Infinium arrays (Heyn et al. 2012).

ME_Horvath is based on the ‘‘aging clock’’, a multi-

tissue predictor for DNAmethylation levels composed

of 353 CpG sites (Horvath 2013). ME_Hannum

contains 71 CpG markers that predicted chronological

age in a study analyzing whole blood of 656 individ-

uals (Hannum et al. 2013). ME_Florath contains 162

CpG sites that were reported with significant age-

associations in a cohort of 965 people (Florath et al.

2014). ME_Steegenga lists genes reported with gene

expression and DNA methylation changes in periph-

eral blood mononucleated cells from ten participants

(Steegenga et al. 2014). ME_Weidner contains 102

age-associated CpG sites found in human blood

(Weidner et al. 2014). ME_Xu contains 749 age-

related CpG sites determined in blood samples from

women between the age of 35 and 76 (Xu and Taylor

2014). ME_Bacalini is based on a re-analysis of

published DNA methylation data from three previous

studies (Bacalini et al. 2015). ME_Marttila contains

377 CpG sites found with changes in the DNA

methylation and gene expression profiles in blood

leukocytes (Marttila et al. 2015).

Gene annotation and process enrichment

Data from the Gene Ontology (GO) (Ashburner et al.

2000) release 2015.09 were incorporated to identify

the biological and cellular roles of all genes. The

Dintor software platform (Weichenberger et al. 2015)

was used to access all gene annotations from the three

GO categories biological process (BP), cellular com-

ponent, and molecular function, and to compute BP

enrichments. In particular, hyper-geometric tests were

used to compare the GO terms annotated to the genes

in a dataset (e.g., a network cluster) to the terms

annotated to the full network background. Multiple

testing corrections were done using a false-discovery

rate\ 0.05 (Benjamini and Hochberg 1995). To

determine if genes or their prducts are targeted by

approved drugs, data from DrugBank (Wishart et al.

2006) release 5.0.3 were incorporated.

Interaction networks

The interaction networks used in this study are

composed of genes, represented as network nodes,

and different types of relationships, represented by
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edges connecting two nodes. The majority of gene

relationships are physical protein interactions or co-

complex associations of the encoded proteins, com-

plemented by different types of functional relation-

ships. In particular, the interaction data were retrieved

from the resources mentha, BioPlex, and STRING.

Human release 2015.11.27 of mentha was used as an

integrated interaction network that combines experi-

mentally determined and literature-curated physical

protein interactions and co-complexes from a number

of different primary interaction databases (Calderone

et al. 2013). BioPlex is an ongoing effort to unravel the

landscape of all human protein complexes (Huttlin

et al. 2015). The initial release v2 is included in

mentha, the more complete release v4 was included as

a separate network. The STRING database was

included as a it combines experimentally determined

and literature-curated protein interactions with various

types of functional associations, such as interactions

inferred from other species, extracted using text-

mining techniques, or associations based on gene co-

expression (Szklarczyk et al. 2015). Due to potentially

spurious functional associations included in the

STRING database, only a high-confidence network

(string_0.9) was used, which was created by filtering

version v10 of the human interaction data and keeping

only interactions with a combined confidence score of

at least 900 out of 1000, a threshold recommended by

the authors. The combined interaction network (bio-

plex,mentha,string_0.9) was created by integrating the

three individual networks.

Computational resources

All network analyses were computed with Python

programs based the Dintor software platform (We-

ichenberger et al. 2015) and the network library

igraph-python (Csardi and Nepusz 2006). Network

clusters were determined using the standalone Java

version of ClusterONE (Nepusz et al. 2012) with

default parameters, adjusting the minimum cluster size

to four genes. Connections between network clusters

were visualized using the Cytoscape (Shannon et al.

2003) application enhancedGraphics (Morris et al.

2014). The web resource for visualizing network

clusters (https://gemex.eurac.edu/bioinf/age/) was

implemented using a combination of Hypertext

Markup Language (HTML), Cascading Style Sheets

(CSS), and JavaScript and has been tested in all major

browsers. Interactive network visualizations are ren-

dered using Cytoscape.js (Franz et al. 2016).

Statistical significance of set overlaps and cluster

composition

To determine if the observed gene-based set overlaps

are defined by the sizes of the respective datasets, they

were compared to a background distribution. This

distribution was created by replacing all 35 datasets

with randomly sampled datasets of the same size and

computing the respective pairwise overlaps. Repeat-

ing this process 1000 times provided sufficient back-

ground values to compute reliable z-scores for the

observed overlap values. In addition, p-values were

computed for all clusters using Fisher’s exact test to

assess if the number of aging-associated genes were

significantly greater than what would expected.
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