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ABSTRACT Metabolic homeostasis is coordinately controlled by diverse inputs. Understanding these =~ KEYWORDS
regulatory networks is vital to combating metabolic disorders. The nematode Caenorhabditis elegans has ~ BMP

emerged as a powerful, genetically tractable model system for the discovery of lipid regulatory mecha-  insulin

nisms. Here we introduce DBL-1, the C. elegans homolog of bone morphogenetic protein 2/4 (BMP2/4), as  lipid

a significant regulator of lipid homeostasis. We used neutral lipid staining and a lipid droplet marker to  homeostasis
demonstrate that both increases and decreases in DBL-1/BMP signaling result in reduced lipid stores and  Caenorhabditis
lipid droplet count. We find that lipid droplet size, however, correlates positively with the level of DBL-1/ elegans

BMP signaling. Regulation of lipid accumulation in the intestine occurs through non-cell-autonomous sig-
naling, since expression of SMA-3, a Smad signal transducer, in the epidermis (hypodermis) is sufficient to
rescue the loss of lipid accumulation. Finally, genetic evidence indicates that DBL-1/BMP functions up-
stream of Insulin/IGF-1 Signaling in lipid metabolism. We conclude that BMP signaling regulates lipid
metabolism in C. elegans through interorgan signaling to the Insulin pathway, shedding light on a less
well-studied regulatory mechanism for metabolic homeostasis.

Metabolic homeostasis in animals relies on integrating input from
numerous sources to coordinately regulate energy intake and expendi-
ture across multiple organs. Nutrient sensing pathways relay signals in
the absence or presence of food. Simultaneously, feedback loops are
triggered in response to the lack or abundance of cellular resources.
Satiety responses are produced to slow the intake of energy when
sufficient resources have been obtained. The balance of these pathways
provides the basis of metabolic homeostasis. Metabolic disorders, such as
type Il diabetes, are the result of an imbalance in the signaling web that is
homeostasis. The last few decades have provided numerous insights into
this regulatory network, but new regulatory interactions continue to be
discovered.
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The Transforming Growth Factor B (TGFf) superfamily is a major
group of peptide ligands conserved across animal phyla. The superfamily
includes the founding TGF@s, as well as Bone Morphogenetic Proteins
(BMPs), growth and differentiation factors, Activin, Nodal, and others.
These peptides signal through conserved signal transduction pathways re-
sponsible for development, growth, and differentiation (Shi and Massague
2003; Wu and Hill 2009). Intriguingly, emerging evidence from correl-
ative studies in humans, as well as in vivo studies in mice, implicate
several TGF( ligands in lipid metabolism and homeostasis (Wang
et al. 2004; Fain et al. 2005; Sjoholm et al. 2006; Bottcher et al. 2009;
Shen et al. 2009).

BMPs are a group of TGF(3-related signals with key regulatory roles
in development and differentiation. Mammalian BMP2 and BMP4 play
important roles in early development and cell differentiation, as well as
being critical for bone and cartilage development (Chen et al. 2004). In
Drosophila, the BMP ligand DPP is required for dorsoventral patterning
of the early embryo as well as later patterning of the imaginal discs
(Spencer et al. 1982; Padgett et al. 1987). However, the homeostatic
roles of BMP ligands are less well studied. We have used molecular
genetic and imaging tools available in the nematode Caenorhabditis
elegans to gain insight into the homeostatic roles of BMP ligands.

C. elegans has a conserved BMP signaling pathway that includes
founding members of the Smad family of signal transducers, SMA-2,

Volume 8 | January 2018 | 343


http://orcid.org/0000-0002-3457-0509
http://www.wormbase.org/db/get?name=WBGene00000936;class=Gene
http://www.wormbase.org/db/get?name=WBGene00000936;class=Gene
http://www.wormbase.org/db/get?name=WBGene00000936;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004857;class=Gene
http://www.wormbase.org/db/get?name=WBGene00000936;class=Gene
http://www.wormbase.org/db/get?name=WBGene00004856;class=Gene
https://doi.org/10.1534/g3.117.300416
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300416/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300416/-/DC1
mailto:cathy.savagedunn@qc.cuny.edu

>

N
-

_|

Oil Red % Intensity (Relative to N2)
o x

0.0

i

o
g

Qil Red O Intensity (Relative to N2)

SMA-3, and SMA-4 (Savage et al. 1996). DBL-1, the C. elegans BMP2/4
homolog, plays a major role in body size regulation, male-tail develop-
ment, and mesodermal patterning (Suzuki et al. 1999; Foehr et al.
2006). Initial evidence of a role for DBL-1 in metabolism came from
our microarray analysis of genes regulated by the DBL-1 pathway. This
analysis identified several genes related to fat metabolism including genes
encoding fatty acid desaturases and genes involved in 3-oxidation (Liang
et al. 2007). C. elegans is a prominent model system for the study of
lipid homeostasis, and is particularly suitable for the identification
of cell and tissue interactions that mediate homeostasis (Ashrafi
2007). Although nematodes do not possess dedicated adipocytes,
they store triglycerides in lipid droplets in the intestine and in epi-
dermal tissue (the hypodermis) via biochemical mechanisms that
are evolutionarily conserved.

In this study, we show that DBL-1/BMP signaling plays an im-
portant role in regulating lipid stores in C. elegans. Alterations to
DBL-1 signaling levels result in a loss of lipids and changes in lipid
droplet morphology. DBL-1 signaling acts non-cell-autonomously
in the hypodermis to regulate lipid storage in the intestine. Finally,
we show that the lipid phenotype of dbl-1 mutants is reliant on
Insulin/IGF-1-like Signaling (IIS), a well-known regulator of fat
metabolism (Kimura et al. 1997).

MATERIALS AND METHODS

Nematode strains and growth conditions

C. elegans were maintained on Escherichia coli (DA837) at 15, 20, and
25° as specified. The wild-type strain used in this study was N2. The
strains used in this study are as follows: LT121 dbl-1(wk70), CB678
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Figure 1 Functions and tissue-
specificity of DBL-1 signaling in
lipid storage. (A) Both dbl-1 and
lon-2 mutants show a decrease
in lipid levels via Oil Red O stain-
ing, similar to that of fat mutants.
Animals were grown at 20° and
stained at the L4 larval stage.
Quantification was done for equiv-
alent regions of the intestine just
posterior to the pharynx. (B) Im-
ages of L4 animals stained with
Oil Red O taken at 400x. (C) Loss
of sma-3 results in decreased lipid
levels. Expression of sma-3 in the
hypodermis is sufficient to rescue
the lipid phenotype. Expres-
sion in either the pharynx or the
intestine cannot rescue lipids to
wild-type levels. Animals were
grown at 20° and stained at the
L4 larval stage. Quantification
was done for equivalent regions
of the intestine just posterior to
the pharynx. (D) Images of L4
animals stained with Qil Red
O taken at 400x. Anterior is to
the left. For all graphs, asterisks
across the bottom denote sig-
nificance compared to control:
n.s., not significant; *** P value <
0.001. Error bars denote SEM.

lon-2(e678), CS24 sma-3(wk30), CS152 sma-3(wk30);qcls6 [sma-
3pugfpusma-3+rol-6], CS619 sma-3(wk30);qcls59 [vha-6p::gfp:sma-
3+rol-6], CS628 sma-3(wk30);qcls55 [vha-7p:gfp::sma-3+rol-6], CS630
sma-3(wk30);qcls53 [myo-3p:gfp::sma-3+rol-6], BW1490 ctls40
[dbIl-1(OE)+sur-5:gfp], CB1370 daf-2(e1370), LIUL IdrIsl [dhs-3p:dhs-
3ugfp+unc-76(+)], BX106 fat-6(tm331), BX153 fat-7(wa36), BX156 fat-
6(tm331)fat-7(wa36). Crosses were used to obtain: daf-2(e1370);lon-2(e678),
daf-2(e1370);sma-3(wk30), dbl-1(wk70)ldrIs1, ctIs40;ldrIs1, daf-2(e1370);
ldrIs1, daf-2(e1370);dbl-1(wk70);ldrIs1.

Oil red O staining

The protocol was adapted from O’Rourke et al. (2009). Animals were
collected at the L4 stage in PCR tube caps and washed three times in
PBS. Worms were then fixed for 1 hr in 60% isopropanol while rocking
at room temperature. The isopropanol was removed and worms were
stained overnight with 60% Oil Red O solution while rocking at room
temperature. Oil Red O was removed and the worms were washed once
with PBS w/0.01% Triton and left in PBS. Worms were mounted and
imaged using an AxioCam MRc camera with AxioVision software.
Images were taken using a 40x objective. Oil Red O stock solution
was made with 0.25 g Oil Red O in 50 ml isopropanol. Intensity of
the postpharyngeal intestine was determined using ImageJ software.
Unless otherwise noted, three regions were measured (anterior, mid-
body, and posterior) using equivalently sized windows. Pixel intensity
was measured in the green color channel of the images. Three mea-
surements using a 50 px by 50 px area were taken at each region with
background intensity subtracted for each individual picture. Statistical
comparisons (two-way ANOVA, one-way ANOVA with post-hoc
Tukey’s multiple comparisons test, and unpaired ¢-test) were performed
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using GraphPad Prism 7 software. For each experiment, n > 20 per
strain was repeated in triplicate.

Body size

Animals were collected at the L4 stage and anesthetized with sodium
azide. The worms were then imaged using a QImaging Retiga EXi
camera with QCapture software. The midline of each worm was then
measured in ImagePro. Statistical comparisons (one-way ANOVA with
post hoc Tukey’s multiple comparisons test, and two-way ANOVA, and
unpaired ¢-test) were performed using GraphPad Prism 7 software. For
each experiment, n > 30 per strain was repeated in triplicate.

Electron microscopy

Animals were fixed and embedded by standard methods (Hall 1995).
Fixation and microscopy were performed by the David H. Hall labo-
ratory. Animals were well-fed adults grown at 20°. They were fixed 2 d
post egg laying. The number of animals (n) analyzed for each strain
was: N2 n =4, dbl-1 n=2, sma-3n=5,sma-9n=23.

Lipid droplet morphology

Animals were collected at the L4 stage and anesthetized with sodium
azide. The worms were then imaged using a Zeiss ApoTome with
AxioVision software. Images were taken using a 100x objective. The
tail region of the worm was imaged and the diameter and count of all
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Figure 2 DBL-1 signaling func-
tions upstream of IIS to regulate
lipid storage but not body size.
(A) daf-2;lon-2 and daf-2;dbl-1
display the high-fat phenotype
of daf-2 animals using Oil Red
O. Graphs show combined data
from three equivalent regions of
each worm. See Figure S2 for
separated data from each region.
Epistasis analysis places DBL-1 sig-
naling upstream of daf-2/InsR. dbl-
1(OE) animals show a similar
decrease in lipid levels as dbl-1
and lon-2 mutants. Animals were
grown at 15° until the L2/L3 molt
and then shifted to 25° and
stained at the L4 larval stage. The
center line denotes mean and the
error bars denote SD. (B) Animals
containing mutations in both DBL-
1 pathway components and daf-2
exhibit additive body sizes. Both
pathways regulate body size inde-
pendently. Animals were grown at
15° until the L2/L3 molt and then
shifted to 25° and measured at the
L4 larval stage. Boxes denote the
second and third quartiles, whis-
kers denote min and max values.
(C) Images of L4 animals stained
with Oil Red O taken at 200x. An-
terior is to the left. For all graphs,
asterisks across the bottom denote
significance compared to control:
n.s., not significant; * P value <
0.05; *** P value < 0.001.

visible lipid droplets in a 400-pwm? area were measured using
AxioVision software. Statistical comparisons (one-way ANOVA
with post hoc Tukey’s multiple comparisons test, two-way ANOVA with
post hoc Holm-Sidak’s multiple comparisons test, and unpaired ¢-test with
Welch’s correction) were performed using GraphPad Prism 7 software.
For each experiment, n > 15 per strain was repeated in triplicate.

Pharyngeal pumping rate

The pumping rate was counted by the number of contractions of
the pharyngeal bulb per 20 sec. Two counts were made per worm and
averaged. For each experiment, n > 10 per strain was repeated in trip-
licate. Statistical comparisons (unpaired #-test with Welch’s correction)
were performed using GraphPad Prism 7 software.

Data availability
All data necessary to support the conclusions of this work are presented
in the article. Strains are available upon request.

RESULTS

DBL-1/BMP signaling is required for lipid accumulation

Our previous data identified numerous lipid metabolism genes as
downstream targets of DBL-1/BMP signaling via microarray analysis
(Liang et al. 2007). These genes include fat-6 and fat-7, which encode
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A9 fatty acid desaturases homologous to stearoyl coA desaturase. Mu-
tations in either gene result in an overall decrease in neutral lipids, in
addition to other phenotypes (Watts and Browse 2002; Ntambi et al.
2004). To determine if DBL-1 signaling is important for lipid metab-
olism, we measured stored lipid levels in animals with altered DBL-1
function as well as those with mutations in fat-6, fat-7, or both. Animals
were grown at the standard temperature of 20° and stained with Oil
Red O, at the fourth larval stage (L4), to quantify overall neutral lipid
content, including lipid storage in the intestine and in the hypodermis.
Consistent with previous reports, we observed a significant decrease in
Oil Red O staining in fat-6, fat-7, and fat-6;fat-7 mutant animals by
~45% compared to wild type. Similarly, we observed a decrease in dbl-1
mutants by ~35% compared to wild type. This decrease was not sig-
nificantly different from that observed in the fat mutants (P > 0.38).
We also analyzed a loss-of-function mutation in lon-2, which encodes a
negative regulator of DBL-1 signaling (Gumienny et al. 2007). In-
terestingly, lon-2 mutants also had a reduction in staining, at levels
similar to that of dbl-1 mutants (P = 0.99) (Figure 1, A and B). A
possible cause for the decrease in lipid storage is a reduction in food
uptake, as seen in eat-2 mutants (Raizen et al. 1995). However, dbl-1
mutants had a very slight increase in the rate of pharyngeal con-
tractions, while sma-3 animals had no significant change from wild
type (Supplemental Material, Figure S1), and thus a decrease in food
uptake is not likely to explain the decrease in lipid storage in dbl-1 or
sma-3 mutants.

Hypodermal expression of Smads is required for

lipid accumulation

This lipid storage phenotype led us to question in which tissues DBL-
1 signaling is necessary to regulate fat metabolism. C. elegans do not
have dedicated adipocytes, so fat is stored in the intestine and in the
hypodermis. DBL-1 signaling components (receptors and Smads)
are expressed in the pharynx, hypodermis, and intestine. We have
previously shown that expression of sma-3/Smad in the hypodermis
is sufficient and necessary to rescue the small body size phenotype of
sma-3 mutants (Wang et al. 2002). We took the same approach of
directing expression of sma-3(+) to specific tissues, in an otherwise
sma-3 mutant background, and measured fat accumulation using
Oil Red O.

Surprisingly, our results showed that sma-3 expression in the hy-
podermis is also sufficient for rescue of the low-fat phenotype in sma-3
mutants (Figure 1, C and D). Although sma-3 expression in the phar-
ynx resulted in a slight increase in Oil Red O staining, intestinal srma-3
expression in sma-3 mutants resulted in a further decrease in staining,
compared to sma-3 mutant animals. Thus, expression in either pha-
ryngeal tissue or intestine was not sufficient to rescue the lipid stores
in sma-3 mutants to wild-type levels. However, when sma-3 was
expressed in either the hypodermis or all three tissues, Oil Red O
intensity was rescued to wild-type levels with no significant differ-
ence observed (P > 0.78) (Figure 1, C and D). These data indicate
that Smad activity functions nonautonomously in the hypodermis
to regulate fat storage in the intestine.

DBL-1/BMP functions upstream of IIS to regulate

lipid accumulation

Our tissue-specific rescue experiments suggest that SMA-3/Smad
activity in the hypodermis may regulate the expression of a secreted
ligand that signals to the intestine. One potential mechanism by
which this signaling may occur is through the regulation of insulin
ligands. C. elegans uses multiple insulin-like ligands that act through
a single insulin receptor, DAF-2/InsR (Pierce et al. 2001). The IIS
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Figure 3 DBL-1 pathway mutants exhibit a decrease in lipid droplet
size via electron microscopy. dbl-1, sma-3, and sma-9 mutants mid-
body sections display smaller lipid droplets compared to those seen in
wild-type. Black arrowheads depict representative lipid droplets, white
arrowhead depicts lysosome-like organelle, and yellow arrowheads
depict possible yolk droplets. L marks the intestinal lumen, which
tends to be enlarged and filled with bacteria in DBL-1 pathway mu-
tants. Animals were grown at 20° and imaged at adulthood 2 d post
egg lay. Total magnification is 22,000x.

pathway in C. elegans was first identified for its role in regulating
dauer development. A temperature-sensitive mutation in daf-2,
when exposed to the restrictive temperature of 25°, results in the
development of daf-2/InsR mutants into dauers, an alternate L3
stage utilized for survival in high-stress environments. In addition,
daf-2 mutants exhibit other phenotypes, including increased lifespan
and stress tolerance (Gottlieb and Ruvkun 1994; Tissenbaum and
Ruvkun 1998). Moreover, the involvement of Insulin/IGF-1-like
Signaling (IIS) in fat metabolism is well documented in C. elegans
(Kimura et al. 1997). Notably, our microarray analysis revealed ins-4 as
a transcriptional target of the DBL-1 pathway; expression was increased
in both dbl-1 and sma-9 mutant backgrounds. INS-4 is an insulin-
like ligand expressed in the hypodermis, in addition to neurons
(Ritter et al. 2013).

We therefore constructed strains containing mutations in both BMP
and IIS pathways to test interactions between these pathways via genetic
epistasis. To bypass dauer arrest in daf-2 mutant animals, these
experiments were conducted by raising animals at the permissive
temperature of 15° followed by a shift to 25°. Our findings con-
firmed the high-fat phenotype of daf-2 mutants, exhibiting an av-
erage increase of 18% over wild type. Similarly, daf-2;sma-3 double
mutants showed an average increase in Oil Red O intensity of 11%
(Figure 2A), which is not significantly different from daf-2 (P =
0.71). We concluded that the daf-2 high-fat phenotype is epistatic
to the dbl-1 low-fat phenotype, suggesting that daf-2 acts down-
stream of dbl-1 with regard to fat storage regulation.

We also assessed mutants in other components of the DBL-1 path-
way. sma-3 mutants had an average reduction in Oil Red O intensity
of >50%. To examine increased DBL-1 activity, we used both a dbl-1
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Figure 4 DBL-1 pathway regulates lipid droplet morphology. (A) Lack of dbl-1 results in significantly smaller lipid droplets, while overexpression
of dbl-1 increases the average diameter of lipid droplets. dhs-3::gfp was used to visualize lipid droplets. Animals were grown at 20° and imaged at
the L4 larval stage. (B) Either a loss or an increase in DBL-1 signaling results in a reduction in the overall number of lipid droplets in the animals.
dhs-3::gfp was used to visualize lipid droplets. Animals were grown at 20° and imaged at the L4 larval stage. (C) Images of L4 animals with altered
levels of DBL-1. Images depict the posterior end of the intestine taken at 1000x. For all graphs: n.s., not significant; *** P value < 0.001; boxes
denote second and third quartiles; whiskers denote min and max values.

overexpression strain and /on-2 mutants, which are deficient in a neg-
ative regulator of DBL-1. Consistent with the observation from lon-2
mutants, a dbl-1 overexpression strain [dbl-1(OE)] also exhibited a re-
duction in lipid stores (~25% less) (Figure 2, A and C). This finding
indicates precise regulation of DBL-1 signaling is required to maintain
wild-type levels of lipids. It also indicates that the lipid and body size
phenotypes of the DBL-1 pathway are independent, as both long and
short animals exhibited decreased lipids. daf-2;lon-2 double mutants,
like daf-2;dbl-1 mutants, have an increase in fat accumulation indistin-
guishable from that of daf-2 single mutants (P > 0.71). This epistatic
relationship between the two pathways suggests that IIS functions
downstream of DBL-1 signaling in the regulation of fat accumulation.

DBL-1/BMP and IS pathways independently contribute

to body size

Wealso tested whether these two pathways interact to regulate body size.
Small body size was the first identified phenotype of the DBL-1 pathway
(Savage et al. 1996; Suzuki et al. 1999). We measured animals at the L4
stage, benchmarked against wild-type controls: dbl-I mutant animals
showed an average body length reduction of 25%; sma-3 body length
was reduced by 19%. Conversely, an increase in DBL-1 signaling resulted
in an increase in body size, as lon-2 mutants exhibited an average increase
of 26%. Interestingly, a downregulation of DAF-2/InsR showed a signif-
icant increase in body size by an average of 32% compared to wild type.
When animals with mutations in both pathways were measured, an
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additive effect was observed. The daf-Z;lon-2 mutant animals had an
average increase in length of 48.0% compared to wild type, while
the daf-2;sma-3 mutant animals were comparable to the length of
wild type (Figure 2, B and C). These data are consistent with an
independent study by the Baumeister laboratory (Qi et al. 2017) and
suggests that the DBL-1 and IIS pathways work independently to
regulate the overall body size of C. elegans.

Changes to DBL-1/BMP signaling levels alter lipid
droplet morphology
To determine how the DBL-1 pathway regulates lipid stores at a
subcellular level, we analyzed lipid droplet morphology. Lipid drop-
lets are vital for the utilization and storage of energy at the cellular
level and are highly regulated. The morphology of lipid droplets can
be an indicator of the function and well-being of a cell, or an or-
ganism. In humans, the function of white adipose tissue and brown
adipose tissue differ significantly; these differences primarily reflect
how they regulate lipid droplets (Meex et al. 2009; Yu et al. 2015;
Luo and Liu 2016). We first examined lipid droplet morphology via
electron microscopy. Images of dbl-1, sma-3, and sma-9 mutants
depict worms with much smaller lipid droplets in the intestine,
compared to that of wild-type animals (Figure 3).

To visualize lipid droplets in a larger sample size, we used
transgenic animals expressing DHS-3::GFP (Figure 4). DHS-3 is
a short-chain dehydrogenase shown to bind to the surface of lipid
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Figure 5 DBL-1 regulates lipid droplet size in part via IIS. (A) The average diameter of lipid droplets in daf-2;dbl-1 mutants is similar to but slightly distinct
from that of daf-2 single mutants, suggesting a partially independent effect from the DBL-1 pathway. dhs-3::gfo was used to visualize lipid droplets.
Animals were grown at 15° until the L2/L.3 molt and then shifted to 25° and imaged at the L4 larval stage. (B) daf-2 mutants exhibit an increase in lipid
droplet count compared to both wild-type and dbl-1. At 25°, dbl-1 does not have a significant effect on the number of lipid droplets. dhs-3::gfo was used
to visualize lipid droplets. Animals were grown at 15° until the L2/L3 molt and then shifted to 25° and imaged at the L4 larval stage. (C) Images of L4
animals containing mutations in either daf-2, dbl-1, or both. Images depict the posterior end of the intestine taken at 1000x. For all graphs: n.s., not
significant; * P value < 0.05; *** P value < 0.001; boxes denote second and third quartiles; whiskers denote min and max values.

droplets (Zhang et al. 2010). DHS-3::GFP is expressed specifically
in the intestine and not in the hypodermis. Animals were grown
and analyzed at the standard growth temperature of 20°. We measured
the diameters of lipid droplets labeled with DHS-3:GFP. Our data
indicate that lipid droplet size is positively correlated with DBL-1 sig-
naling levels. Wild-type animals with DHS-3:GFP have an average
lipid droplet diameter of 1.02 pwm, with a maximum diameter of
2.26 pm (Figure 4, A and C). The dbl-1 mutants show a decrease in
average droplet diameter to 0.58 wm (P < 0.001), with a maximum
diameter of only 1.06 pm, a decrease of ~53%. This reduction in lipid
droplet size is consistent with the reduced lipid droplet size seen by
electron microscopy. The overexpression strain, on the other hand,
shows an increase to 1.13 pm on average (P < 0.001), with a maximum
diameter of 2.54 wm, an increase of over 12%. The dbl-1 mutants
displayed the lowest level of variance indicating that a decrease in
dbl-1 expression confines the size of lipid droplets to a smaller range
compared to wild type. The dbl-1(OE) mutants displayed a slightly
larger level of variance compared to wild type, which indicates an in-
crease in the maximum size of lipid droplets, but does not restrict
the minimum size compared to wild type.

We next determined the density of lipid droplets per unit area by
counting the total number of lipid droplets per 400 pm?2. Wild-type
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animals had an average of 40 droplets, while both dbl-1 and dbl-1(OE)
showed a decrease, 24 (P < 0.001) and 27 (P < 0.001) per unit area,
respectively (Figure 4, B and C). The decreased numbers of lipid drop-
lets are concordant with the decreased intensity of Oil Red O staining in
both loss-of-function and gain-of-function backgrounds. The dbl-1
(OE) mutants displayed a lower level of variance compared to the
wild-type and dbl-1 strains, which may help account for their overall
decrease in lipids observed via Oil Red O staining (Figure 2A). Thus,
while both decreasing and increasing DBL-1 signaling resulted in a
reduction in total fat accumulation, the mechanisms at the level of lipid
droplet size are different.

DBL-1/BMP regulation of lipid droplet morphology is
partially dependent on IIS

Next, we wanted to determine if IIS is required for the lipid droplet
phenotypes of DBL-1 signaling mutants. To bypass dauer arrest in daf-
2 mutant animals, these experiments were conducted by raising ani-
mals at the permissive temperature of 15° followed by a shift to 25°. In
the daf-2 mutant background, the average diameter of lipid droplets
was 1.12 pm with a maximum diameter of 2.63 pwm. This was signif-
icantly larger than those of the wild type with an average of 0.90 wm
and a maximum diameter of 2.37 wm (P < 0.001) (Figure 5, A and C).
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The daf-2 mutants also had the greatest level of variance, indicative of
having a greater range of diameters than any of the other strains. The
daf-2;dbl-1 double mutants had an average diameter of 0.97 um and a
maximum diameter of 2.34 pm. This size was similar to that of daf-2
mutants, but still smaller than in daf-2 mutants (P < 0.001). Thus, for
lipid droplet size, we do not observe the strict epistatic relationship
seen in the Oil Red O experiments. We therefore used two-way
ANOVA to test for interactions between daf-2 and dbl-1 in regula-
tion of lipid droplet size. We found that lipid droplet diameter in the
double mutants was significantly larger than would be expected if
the genes acted independently (P = 0.0006).We conclude that
DBL-1 signaling acts in part via the IIS pathway to regulate lipid
droplet size, with the possibility of a DAF-2-independent function
for DBL-1 as well. Alternatively, the deviation from epistasis may be
due to our use of daf-2(e1370), a strong loss-of-function but not a
null allele, which would be inviable.

Next, we examined the average number of lipid droplets in the
animals. daf-2 exhibited a significant increase compared to wild type,
55 and 34 (P < 0.001), respectively. The daf-2;dbl-1 animals were
similarly increased over wild type, at 46 droplets (P = 0.039). The in-
creased count of daf-2 and daf-2;dbl-1 were similar to each other and
not significantly different (P = 0.276). Interestingly, the dbl-1 mutant
did not exhibit a significant decrease in lipid droplet count compared to
wild type, 27 vs. 34 (P = 0.471); the variance between the two samples
was also very similar, suggesting no change between the two strains.
These data suggest that DBL-1 regulation of lipid droplet count may be
temperature sensitive (Figure 5, B and C).

DISCUSSION

In this study, we present evidence that DBL-1/BMP signaling plays an
important role in lipid metabolism, as DBL-1 pathway mutants, as well
as dbl-1 overexpression, have a distinct decrease in lipid stores via Oil
Red O staining. A similar conclusion was reached independently by Yu
et al. (2017). In addition, we show that lipid droplet morphology of
DBL-1 pathway mutants is significantly changed from wild type. We
have identified a nonautonomous mechanism for this regulation, since
DBL-1 signaling activity in the hypodermis is sufficient to maintain
proper lipid levels in the intestine. The epistasis of daf-2/InsR in daf-2;
dbl-1 double mutants indicates that DBL-1 regulates lipid levels by
modulation of DAF-2/InsR activity. These data implicate a BMP-IIS
signaling axis as a major player in the regulation of lipid metabolism.
Our model is illustrated in Figure 6. DBL-1 is expressed primarily in
neurons, from which it signals to the Smad pathway in the hypodermis,
leading to inhibition of the IIS pathway and stimulation of lipid storage.
Observed differences in the lipid droplet morphology between daf-2;
dbl-1 double mutants and daf-2 single mutants suggest that there may
also be DAF-2-independent regulation of lipids by DBL-1 (arrow with
question mark).

We find that the lipid and body size phenotypes of DBL-1 are
separable. Additionally, DAF-2/InsR regulates body size independently
of DBL-1. Interestingly, the effect of daf-2 on body size is the opposite
of that seen in many other species. In Drosophila, mutations in InR/
InsR and chico/IRS display reduced body size resulting from decreased
cell number and size (Bohni ef al. 1999). In spite of this, the direction of
the lipid-related phenotypes of IIS in Drosophila and in C. elegans is the
same (Bohni ef al. 1999). In mice, as in Drosophila, deficiency in IGF-I
or IGF-II causes stunted growth and significant decreases in body
weight (Baker et al. 1993). The reason for the shift in growth-regulating
function of IIS in C. elegans is unknown.

Our findings are part of an emerging body of evidence for interac-
tions between BMP and IIS pathways. In C. elegans, DBL-1 and IIS
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Figure 6 Non-cell-autonomous interaction of DBL-1 and IIS to regulate
lipids. Our data suggest that Smad activation in the hypodermis is
sufficient to maintain proper lipid stores. This effect may occur through
controlled expression of insulin-like ligands, which in tum regulate the
DAF-2/IIS response in the intestine.

promote germline proliferation (Qi et al. 2017). The Baumeister labo-
ratory has shown that the IIS transcription factor DAF-16/FOXO and
SMA-3/Smad interact in the hypodermis to regulate this germline func-
tion. The DBL-1 and IIS pathways have also been shown to regulate
reproductive aging, but in this case they act independently (Luo et al.
2009, 2010), similar to their independent functions in body size regu-
lation. In this study, we report the first evidence of interaction between
the DBL-1 and IIS pathways that produce an effect in a somatic tissue,
the intestine. It is also possible that similar interactions occur in verte-
brates, since BMP signaling can influence insulin sensitivity in mice
(Schulz et al. 2016; Chattopadhyay et al. 2017).

Lipid droplets are vital for the utilization and storage of energy at the
cellular level and are highly regulated. Lipid droplet size is maintained by
the balance of triglyceride production and B-oxidation. When perox-
isomal 3-oxidation is inhibited, such as in maoc-1, dhs-28, and daf-22
mutants in C. elegans, average lipid droplet size is increased signifi-
cantly over wild type (Zhang et al. 2010). Conversely, when fatty acid
synthesis is inhibited, lipid droplet size is decreased. Animals contain-
ing mutations in fat-6 and fat-7, genes responsible for the first desatu-
ration step in creating polyunsaturated fatty acids, display a significant
decrease in average lipid droplet size (Shi ef al. 2013). Multiple nutrient
sensing pathways exist to provide regulatory signals that dictate lipid
droplet mobilization. Lipid droplet morphology can be closely linked to
the input of these pathways as energy demands fluctuate with available
food. The lipid droplet size phenotype of fat-6;fat-7 mutants was shown
to be independent of the AMPK and TOR pathways. However, it was
shown that fat-6 and fat-7 work in conjunction with IIS, as both are
required for the large lipid droplet size phenotype of daf-2/InsR mu-
tants (Shi et al. 2013).

Our data have introduced DBL-1 signaling as a key factor in
maintaining proper lipid droplet homeostasis through IIS. Future
work will examine whether DBL-1 signaling influences IIS through
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http://www.wormbase.org/db/get?name=WBGene00001399;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001398;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001399;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001398;class=Gene
http://www.wormbase.org/db/get?name=WBGene00001399;class=Gene
http://www.wormbase.org/db/get?name=WBGene00000898;class=Gene
http://www.wormbase.org/db/get?name=WBGene00000936;class=Gene
http://www.wormbase.org/db/get?name=WBGene00000936;class=Gene

the transcriptional regulation of insulin-like ligand genes. As SMA-
3 functions in the hypodermis, but not the intestine, it may be that
DBL-1 signaling is limiting the production of insulin-like ligands in
the hypodermis, reducing the level of DAF-2 signaling in the in-
testine (Figure 6). We will also examine whether Smads interact
with transcription factors downstream of DAF-2/InsR, such as
DAF-16/FoxO and SKN-1/Nrf, to regulate lipid metabolism. Fi-
nally, the question of how an overexpression of DBL-1 leads to an
overall reduction in lipids, while increasing the average diameter of
lipid droplets, remains. Addressing these questions promises to
yield further insight into whole-body lipid homeostasis by these
conserved signaling pathways.
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