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Abstract

Rationale: The severity of cystic fibrosis (CF) lung disease varies
widely, even for Phe508del homozygotes. Heritability studies show that
more than 50% of the variability reflects non-cystic fibrosis
transmembrane conductance regulator (CFTR) genetic variation;
however, the full extent of the pertinent genetic variation is not known.

Objectives: We sought to identify novel CF disease-modifying
mechanisms using an integrated approach based on analyzing

“in vivo” CF airway epithelial gene expression complemented with
genome-wide association study (GWAS) data.

Methods: Nasal mucosal RNA from 134 patients with CF was used for
RNA sequencing. We tested for associations of transcriptomic (gene
expression) data with a quantitative phenotype of CF lung disease
severity. Pathway analysis of CF GWAS data (n = 5,659 patients) was
performed to identify novel pathways and assess the concordance of
genomic and transcriptomic data. Association of gene expression with
previously identified CF GWAS risk alleles was also tested.

Measurements and Main Results: Significant evidence

of heritable gene expression was identified. Gene expression
pathways relevant to airway mucosal host defense were
significantly associated with CF lung disease severity, including
viral infection, inflammation/inflammatory signaling, lipid
metabolism, apoptosis, ion transport, Phe508del CFTR
processing, and innate immune responses, including HLA (human
leukocyte antigen) genes. Ion transport and CFTR processing
pathways, as well as HLA genes, were identified across differential
gene expression and GWAS signals.

Conclusions: Transcriptomic analyses of CF airway

epithelia, coupled to genomic (GWAS) analyses, highlight the role
of heritable host defense variation in determining the
pathophysiology of CF lung disease. The identification of these
pathways provides opportunities to pursue targeted interventions
to improve CF lung health.
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At a Glance Commentary

Scientific Knowledge on the
Subject: Although candidate gene
modifiers of cystic fibrosis lung disease
severity have been identified through
genome-wide association studies, the
full extent of the pertinent genetic
variation is not known.

What This Study Adds to the
Field: We demonstrate that cystic
fibrosis lung disease severity is
associated with increased airway
epithelial expression of genes under
genomic (heritable) influence in
pathways involving airway mucosal
host defense.

Cystic fibrosis (CF) (Online Mendelian
Inheritance in Man catalogue number
219700) is an autosomal recessive disorder
caused by mutations in the cystic fibrosis
transmembrane conductance regulator
(CFTR) gene. More than 1,800 mutations
have been described in CFTR (1), with the
most common mutation, Phe508del,
accounting for approximately 66% of CFTR
mutations worldwide. Patients with CF
experience multiorgan system dysfunction,
but lung disease, characterized by chronic
(bacterial) infection and inflammation,
remains the most common cause of
morbidity and mortality, and preserving
lung function is a key therapeutic priority.
The severity of CF lung disease varies
widely, even among Phe508del
homozygotes. Twin/sibling studies have
demonstrated that more than 50% of the
variation in CF lung disease severity reflects
non-CFTR genetic variation, with
environmental factors also having a role
(2-4). The recognition of this heritable
variability has led to the search for genetic
modifiers, with the hope of identifying
genes and gene networks, or pathways, that
are harmful or protective, thus providing
targets for novel therapeutics.

Such efforts have culminated in a
recently reported metaanalysis of genome-
wide association studies (GWAS)
comprising 6,365 individuals with CF from
the International CF Gene Modifier
Consortium. CF GWAS (5, 6) employed a
standardized Consortium lung phenotype,
termed the “Kulich Normal Residual
Mortality Adjusted (KNoRMA)” lung

disease phenotype, which is a quantitative
phenotype that uses 3 years of FEV;
measures per subject, normalized to a CF
reference population (7), and also adjusts
for disease survival (8). The development of
the KNoRMA phenotype allowed for
harmonization of lung disease severity
across international cohorts and led to
identification of five loci associated with
severity of CF lung disease (5).
Complementary studies of gene expression
in lymphoblastoid cell lines from 754
patients with CF, using KNoRMA as an
outcome phenotype, identified additional
genetic signatures based on gene expression
pathways associated with severity of CF
lung disease (9). The success of these
studies provides an opportunity for
mechanistic exploration. However, GWAS
associations account for only a small
percentage of expected genetic influence,
and gene expression studies in
lymphoblastoid cell lines do not optimally
reflect airway epithelial biology.

To build upon previous success, we
sought to identify novel non-CFTR genetic
modifiers of lung disease severity by
directly assessing gene expression in
respiratory epithelia. We used RNA
sequencing (RNA-seq) of nasal epithelial
tissue, a well-recognized surrogate for lower
airway epithelial function (10-12), from
134 patients with CF with existing GWAS
data and the quantitative KNoRMA lung
phenotype. We hypothesized that
differential gene expression associated with
CF lung disease severity would reveal novel
candidate gene networks. We also analyzed
GWAS data to (I) identify associations of
single-nucleotide polymorphism (SNP)
variation with nasal epithelial gene
expression (i.e., expression quantitative trait
loci [eQTLs]), (2) determine overlap
between nasal epithelial gene expression-
and GWAS-associated gene networks
(pathways), and (3) explore the link
between significant GWAS loci and nasal
epithelial gene expression pathways. Some
of the results of this study were previously
reported in the form of abstracts (13-15).

Methods

Study Population, Sampling, and
RNA-Seq Pipeline

Extended methods for each aspect of the
study and analysis plan are provided in the
online supplement (see Figure E1). Briefly,

we conducted a multicenter study of nasal
mucosal curettage biopsies obtained from
134 GWAS subjects with CF (5, 6) with two
pancreatic insufficient CFTR mutations

(n =122 Phe508del homozygotes) and a
broad spectrum of age and lung disease
severity (Table 1). To quantify mucosal
inflammation at sampling, nasal lavage
obtained just prior to biopsy was analyzed
for cytokine levels (IL-8, IFN-y-inducible
protein 10, and IL-1Ra), and the first
curettage sample was stained for differential
cell counts. From the next nine curettages,
we collected cells for RNA isolation. RNA
was sequenced using the Illumina HiSeq
2000 sequencing system by Expression
Analysis (currently Q” Solutions) following
standard library preparation and achieving
at least 25 million reads per sample.
Fragments per kilobase of transcript per
million mapped reads (FPKM) values were
determined as described in the online
supplement, and gene expression values
were included in the data analysis if they
met a minimum mean expression threshold
level of at least 1 FPKM, based on the 95th
percentile of mean Y-chromosome-specific
gene expression observed in female
samples.

Analyses

KNoRMA (Consortium lung phenotype), a
standardized quantitative phenotype that
uses 3 years of measures of FEV;, was used
as the lung phenotype to quantitate lung
disease severity, as previously described

(5, 8, 9). Linear models of gene expression
as response variables, with clinically
relevant covariates (sex, two genotype
principal components [PCs], nine
expression PCs, transplant history, nasal
steroid use, azithromycin use, CD45
expression, and D statistic [mean pair-wise
FPKM #* per sample]), were used to
determine associations of differential gene
expression with KNoRMA, as well as with
risk alleles at the five previously identified
significant GWAS loci (Table E1) (5). These
studies were complemented with a
surrogate variable approach (16) (Table
El). To identify eQTLs, we used SNPs with
a minor allele frequency greater than 0.05
and gene expression data (FPKM =1) as
inputs in the Matrix eQTL package (17),
which establishes eQTL associations under
false discovery rate (FDR) control. To
identify pathways significantly associated
with differential gene expression, we used
Significance Analysis of Function and
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Expression (SAFE) (18) coupled to pathway
annotation sources selected for coverage,
accuracy, and relevance (see online
supplement). SAFE uses a resampling-
based method, testing gene expression
association with phenotype through
random permutation of phenotype, and
performs multiple test correction over the
number of pathways tested in each analysis.
To test the heritability of genes in
significant pathways, we tested the
likelihood of genes enriched for

significant pathways versus their estimated
heritability score determined in an
independent blood gene expression

report (19). To identify pathways
significantly associated with GWAS data,
a gene- and pathway-testing approach
(GeneSetScan version 0.021) was applied to
GWAS data from previously genotyped
individuals with CF (n = 5,659, including
134 individuals in the present study) (5).
GeneSetScan provides resampling-based
multiple comparison-corrected P values for
the number of pathways tested. In all
analyses, pathways were reported if the
corrected P value was less than 0.15, an
established threshold for hypothesis
generation in the context of these

studies (20).

Results

Study Subjects and Evaluation of
Inflammation in Nasal Mucosal
Samples

Patients with CF tested in this study had a
broad range of ages and lung disease severity
(KNoRMA), and most had chronic lung

infection with Pseudomonas aeruginosa
(Table 1). Nasal curettage samples had a
median of 87% epithelial cells (interquartile
range, 77 to 94%) and a median of 12%
neutrophils (interquartile range, 5 to 24%).
To address the potential that subjects with
more severe lung disease (low KNoRMA)
might have more inflammation in the
nasal mucosa and thus might confound
the analyses, we tested for correlation

of KNoRMA with degree of inflammation
at the time of sample collection. We
observed no significant correlation
between KNoRMA and degree of
inflammation in the nasal passages, as
indexed by quantitative nasal mucosal
examination scores, prebiopsy nasal lavage
cytokine concentrations (IL-8, IFN-
v-inducible protein 10, and IL-1Ra),
neutrophil counts derived from Diff-Quik
stains, and CD45 expression (an indicator
of inflammatory cells) in nasal mucosal
RNA (Figures E2 and E3). Because there
was strong correlation between CD45
expression and other measures of
inflammation (cytokines, neutrophil
counts) (Figure E3), CD45 expression

was deemed a pertinent covariate in

the analysis to adjust for overall
inflammatory state.

Features of Gene Expression

Using the FPKM greater than or equal to 1
threshold for gene expression, 14,548 (52%)
of 27,939 annotated genes were called as
expressed and used in analyses. eQTLs
with significant expression (FDR <0.15)
were abundant (n = 14,098), with a
preponderance of significant eQTLs within
1 Mb (cis) of the target gene (Table E2).

Table 1. Characteristics of Study Subjects by Research Site

Relating Lung Disease Severity
(KNoRMA) to Gene Expression
Linear models with covariates (see METHODS
section above and Table E1) were used to
identify associations between gene
expression level and KNoRMA. No
individual gene met the level of statistical
significance for association (Table E3). To
detect coordinated networks of genes with
pathophysiological relevance, we pursued
rigorous pathway analysis to identify gene
signatures. The analysis, using SAFE,
identified pathways associated with lung
disease severity with FDR less than 0.15,
including viral infection, inflammatory
signaling, lipid metabolism, macrophage
function, and innate immunity (including
HLA [human leukocyte antigen] genes)
(Tables 2 and E4). Genes within pathways
that contributed most robustly to the
pathway significance (gene level P < 0.10)
are provided in Table 2. (For a full listing of
genes, see Table E5, tabs A and B.)
Because multiple methods have been
proposed to correct for uncontrolled
technical and population stratification, we
also performed a secondary analysis using
two surrogate variables (16) in lieu of
nine expression PCs (Table E1) to obtain
gene-level data. Analyses of these gene-level
data with SAFE methodology yielded
pathways associated with KNoRMA (Table
E6; Table E5, tab C), including pathways
related to viral infection, inflammatory
signaling, lipid metabolism, and innate
immunity (including HLA genes),
concordant with our primary findings.
Restricting the study cohort to 122
Phe508del homozygous patients also
supported the primary findings (Table E5,

Consortium Age at
Lung Consortium Lung Male BMI Pseudomonas Phe508del

Research  No. of Phenotype®  Phenotype’ (y) Sex (Meanz=  aeruginosa CFRD® European'" Homozygous

Site* Subjects (Mean +=SD) (Median; Range) (%) SD) Infection® (%) (%) (%) (%)
CWRU 38 0.9+0.9 24.3; 11.4-49.2 46 21.8*+3.3 90 48 98 79
JHU 17 1.2+0.8 27.1; 18.3-47.3 49 222 +3.7 92 30 100 77
TOR 35 0.8 +0.6 23.1; 10.4-42.6 63 22.0+3.8 78 23 97 100
UNC 44 0.7 +0.8 23.8; 11.6-49.5 53 21.9+3.8 91 35 100 100
Total 134 0.8 0.8 26.5; 10.4-49.5 52 21.8+3.3 86 35 99 91

Definition of abbreviations: BMI =body mass index; CFRD = cystic fibrosis-related diabetes; CWRU = Case Western Reserve University; JHU = Johns
Hopkins University; KNoRMA = Kulich Normal Residual Mortality Adjusted; TOR = University of Toronto; UNC = University of North Carolina.

*See MEeTHops section of online supplement for participating sites and enroliment information.
TSubjects were defined by the quantitative Consortium lung phenotype (KNoRMA) value (8).
*Positive lower respiratory culture within 2 years preceding study enroliment; percentage noted is based on data available for 94 subjects.
SCFRD percentage noted is based on data available for 117 subjects.

lIBased on self-identified ancestry and principal component analysis via SNP genotypes.
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tabs D and E). Increased gene expression
was associated with worse lung disease for a
majority of the pathways (labeled
“detrimental” in Table 2; Table E5, tab A),
and two examples of this relationship are
provided in genes (HLA-DRBI and TLR2)
that significantly contributed to pathway
results (Figure E4).

Heritable Features of Nasal Epithelial
Gene Expression

Many of the top-ranked pathways were
related to infectious/environmental
exposures, but these pathways also had
genes with significant eQTLs, which
suggested a heritable component. To test if
the significant pathways showed evidence of
underlying heritability, we performed
logistic regression of gene membership in
enriched pathways for lung disease
phenotype versus estimated heritability (see
METHODS section in the online supplement).
Using heritability estimates (or proportion
of gene expression controlled by genetic
variances) of blood gene expression from a
previous twin-based study of individuals
without CF (19), we demonstrated that
genes in the enriched pathways with FDR
less than 0.15 (Table 2) showed
significantly greater evidence of being
heritable than the complementary set of
genes not represented in the pathways
(P=2.6 X10"%). We conclude that lung
disease severity is associated with gene
expression pathways that reflect, in part,
underlying heritable traits.

Repeatability of Sample Measures

We acknowledge that nasal gene expression
is prone to dynamic changes related to
environmental influences. To provide
additional insights related to this issue, we
obtained nasal mucosal biopsies in a
random subset of the study cohort (n =39)
at a second study visit and obtained RNA-
seq data. We tested sample-sample
correlations across all genes in the 39 paired
samples (mean r = 0.958), relative to a
background distribution derived from all
8,911 unique pairwise combinations from
the 134 unique samples (mean r =0.924).
We demonstrated (using ¢ statistic and
permutation testing to account for
dependence) that the paired samples had
significantly higher correlation than the
unpaired samples (P < 0.0001) (Figure E5),
confirming robust intrasubject correlation
of nasal epithelial gene expression.

Relating Lung Disease Severity
(KNoRMA) to GWAS Pathways

Gene analysis and pathway analysis
(GeneSetScan version 0.021) (21) of GWAS
data from the previously genotyped cohort
(5) had not been performed, and we used
this method to identify pathways arising
from the GWAS associations with
KNoRMA (Table 3; Table E5, tab F).
Pathways identified in this analysis were
related to airway mucosal host defense,
including viral response, inflammation,
mucin/goblet cell biology, and cilia
function. Interestingly, several pathways
with diverse functional annotations
(goblet-cell-relevant pathways, cytokine
production by Th17 cells, vasodilation, and
CFTR interactome [22] pathways)
contained CFTR itself.

Identification of Functional Overlap
and Differences between Expression
and GWAS Data

Pathways (and genes) identified in
differential expression analysis (Table 2)
were similar in many biological respects to
those identified using GWAS data

(Table 3). To determine the overlap of
differential expression and GWAS results,
we assessed those genes with P values less
than 0.10 contributing to both expression
(Table 2) and GWAS (Table 3) pathways.
This yielded 18 genes (Figure 1), which is
significantly greater than expected by
random chance (P =3.6 X 10%).
Strikingly, the biological functions of all
18 genes are highly reflective of the broader
concept that airway mucosal host defense
related to environmental stimuli
contributes to lung phenotype (Table E7).

Integration of GWAS Signals with
Nasal Epithelial Gene Expression

To further integrate GWAS signal with nasal
epithelial gene expression, we tested risk
alleles of SNPs at the top five loci in our
GWAS (5) for association with gene
expression pathways in our nasal epithelial
RNA-seq data. We used SAFE and
approximately 1,000 randomly selected
SNPs to rigorously control for statistical
error (Table 4; see also METHODS section of
online supplement). This analysis
demonstrated a significant association
between differential expression pathways
and the risk allele at four of the five
significant GWAS loci (chromosomes [chr]
11, 5, 6, and X). Notably, the chrll top-

Polineni, Dang, Gallins, et al.: Gene Pathways Regulating CF Lung Disease Severity

ranked GWAS SNP (rs10742326) was
significantly associated with multiple
pathways relevant to CF pathogenesis
(Table 4; Table E5, tab G), including two
CFTR-related pathways (i.e., CFTR-
dependent regulation of ion channels in
airway epithelium and a CFTR
interactome pathway specific to Phe508del)
(22). HLA genes, lipid transport, and
inflammatory signaling were also identified
(Table 4).

Discussion

Using unbiased transcriptomic and
integrative genomic approaches, we
performed a comprehensive analysis to
identify modifier genes and mechanistic
pathways modulating CF lung disease
severity. Although no single gene was
statistically significant in isolation, the
primary transcriptomic analysis identified
differentially expressed genes in pathways
(Table 2) under genomic (heritable)
influence and relevant to airway mucosal
host defense. The pathways that emerged
from the analysis, particularly as related to
viral infection, inflammation, apoptosis,
lipid metabolism, and innate immune
responses, including HLA genes, reflect the
known complexity of CF pathophysiology.
Importantly, the direction and content of
differentially expressed genes in these
pathways bear striking relevance to what is
known about the pathogenesis of CF lung
disease. Almost all of the significant
pathways in the differential expression
analysis demonstrate that increased gene
expression is associated with worse lung
disease (“detrimental”) (Table 2), which is
congruent with the concept that persistent
“hyperinflammatory” responses to
environmental stimuli (such as viral or
bacterial infection) contribute to more
severe CF lung disease (23, 24). Indeed,
viral infections in CF are known to lead to
pulmonary exacerbations and decreased
lung function (25, 26), and dysregulated
inflammation is believed to adversely affect
CF lung disease (23, 26). Our findings are
congruent with a previous microarray
analysis of nasal brushings in a small study
of patients with CF (n = 12) which
demonstrated that subjects with severe lung
disease had increased expression of genes
linked to viral infection, including STATI
(Table 2), which is critical in the host
response to viral infection and

85



(penupuog)
vLNd ‘€INDOD ‘LONW ‘LdEX ‘LOYNTVYDILS
‘CUINTVYOPE ‘ZNHT LYLEDOS ‘CLINTYD ‘91N ‘H14O ‘2441 ‘vONW 1000 1€ ens|as 199 19|90D
pLolsel ¢/ =U hw%@SE&Q wolsnd ueAslal-4D
Buipuiq
EIVND ‘LHAD ‘€INWH ‘LOYND ‘LOSL ‘1aOoTd 124N b utsjoid Buneaioe-ssedln ¥6.2€00
1494 ‘2vedLY ‘1V00LS ‘MYNHY ‘900LS €210 ot Buipuig uisioid 00tS 81500

paise) 016 = U ‘sAemyied uojjouny Jeinosjow Q9

Zv8LO1S ‘SAvIV ‘€H1SS ‘INGT ‘THJL ‘VgD
‘LYEHATY ‘LWTVO ‘INL ‘OHVdS ‘6dSYO ‘9dNg ‘HVLS ‘LV19D0S

‘HHHHD ‘LdVADQY “IdTV ‘2100 ‘LdOV ‘SVYHX ‘900LS ‘HHL ‘THLDY 6€1L°0 04" P10J8}SODILI0D 0} 8suodsey 0961€00
juswHWWOD +659¢¥00

SINO3T ‘€000 ‘£LXOS ‘GL4INH ‘L4SN0d 8600 9l 9lE} |90 [ewispopuy 1121000

+810€000

+0880500

LSON ‘2g&Xidd ‘LXOWH ‘2AHed ‘SYMN ‘LvyHOQaY ‘9es.in +0G1G€00

‘GddN ‘4140 ‘LdVYADQY ‘LINLAS ‘LHAN ‘LINGW ‘F0dY ‘CHLOV 8500 19 UOHE|IPOSEA L1ECY00

GXdl ‘HOd ‘1494 ‘LNdT ‘LHAD ‘€48NZ
‘G6LNM ‘ANL ‘€0dD ‘VHNGT ‘IXIS ‘LdEX ‘EAVOD ‘24D ‘LdHH4S

‘LOYHLD ‘€LHNA ‘4DH ‘02dN ‘88141 ‘LXSW ‘ZLXOS ‘2¢IYNS sissuaboydiow
‘PAVYINS ‘PXIS ‘2dH4S ‘ALND ‘GLANH ‘TdX0d ‘L4SNOd ‘L3N ‘THLOV 6¢0°0 ee] ueblo Jo uolenbey /20000¢
Auanoe aseusbAxoouow +000+S00
24431 ‘HOd ‘LWTVO ‘INL ‘SVEM ‘J0dV ‘¢HLDV ¥20°0 14 jo uone|nBas sAlsOd 0212€00

paisel 029y = u ‘skemyyed [eoibojoig 0D

EIVND ‘SLXOTV ‘LHAD ‘/Nd.ld ‘IV1dS ‘SWHS ‘031
‘SVHLH ‘1dav0 ‘PLYND ‘LYSYY ‘/OND ‘SOND ‘CSHAN ‘LOVND sueiqusul +6958600
‘NAT ‘Ld ‘LdVHTaT ‘@AAL ‘SYEM ‘LdOV ‘CLYND ‘@UNL ‘MHA 7LLO Sk ewse(d Jo opis olwse|dolf) 8686000

LATVO ‘ZOMYd ‘OdAD “IMNY ‘L1977 ‘LHAD ‘LV.1dS

‘NE.LdS ‘21€00XT ‘PNELdS ‘PAdYL ‘200XT ‘LNV.LdS ‘CHAW
‘VLOHOO ‘POOXT ‘O70d ‘9ZdVO ‘dHOL ‘2SAD ‘2vZdvO ‘€O0X3 /2S00 149" ved xeu00 |8) 8¥¥v100
paise} 91.G = u ‘shemyied jusuodwod Jenjied On

L4VYH “1113VYH ‘YEHDOS ‘€dgN ‘€HEMI
‘LLVYNAI ‘G-VIH ‘€XdYW ‘8YNHI ‘2dOT ‘v LVYNHI ‘L4Hd ‘dFOHAL

‘ISOH ‘SYNHI ‘CYNHI ‘2OVY ‘ANL ‘€HON ‘LYN4I ‘€LVNHI ‘0L4SINL Ayoixoo1ho
THEMI LAV ‘QYNHI ‘EAVA ‘TAVA ‘SYEM ‘GOMHd ‘LWVOI ‘9€4D04 0cL'o gcl pajeIpaw—-||9d J9j|y [einjeN 05910
ZoHd ‘90a-YIH
‘LLT70O ANL ‘P €L ‘'Y IHTOL ‘19H0-YIH ‘Lg0a-YIH ‘LvYOd-VIH c01’0 €¢ BlWYIsY 01€90
viNd ‘€1v9OeLS S9lI9S 0}0B|0dU pue 010§
‘2LNOD ‘2L1vDed ‘eLnd ‘91Nd ‘SLNd ‘€1nd ‘GLTvDeg ‘9IVDELS 0€0°0 ve sisayiuAsolq pidijoBulydsodA|n 10900

Z1dgL ‘4FHATY ‘CO4OH ‘6MdYN ‘2dV1L

‘IdV1 ‘900-VYIH ‘001lddd ‘ZLVYN4I ‘G-VIH ‘S4V.L ‘8¥N4I ‘€H1L
‘PLYNLI ‘L1dEL ' LSHOW ‘SYN4I ‘CYNHI ‘ANL ‘V.LT ‘eMvedIT ‘LYNLI
‘CLVYN4I ‘€0 ‘€GdL ‘9YN4HI ‘V2H10d ‘GTOO ‘CHAL CT4SHS ‘2HT1L

‘2700 ‘eHad ‘LTENd ‘TTENd ‘Lgda-YIH ‘Lg0a-YH ‘LvyDd-VIH 0€0°0 €Ll uonoajul snuin xedwis sedieH 89150
997V ‘eNdd ‘GYNYD ‘LYZNYIN ‘LY LNVIN
‘PLOTV ‘€OSNL ‘VELYON “OvLYON ‘GSLYDN ‘LOLNVYIN ‘C2LDTY 6100 1514 siseyuAsolq ueo|B-N 01500

pelsal geg = U ‘shkemyred HOHIY
1SAemyied s|gejieae |[e papnjoul sesAjeuy

(enfeA d Aq paiapiQ) 010> NEA d [9A97T-9USD UM SBUY «NeA d (u) swen Jaynuapj
pajoa.i0) sauan

Remyred

(YINHONY) @dAiousayd Bun wniposuo) yum paleroossy Ajueoiubig sAemyied ereq ApniS UOIBIDOSSY SPI-OWOoUaL) ¢ ajgeL

American Journal of Respiratory and Critical Care Medicine Volume 197 Number 1 | January 1 2018



(penupuog)

g00-V1H ‘Lg4d-vIH ‘Lgoa-YIH ‘Lvod-vIH
2dv.1 ‘LdV.1 ‘6gWSd
‘8aNSd ‘900-VTH ‘g-VIH ‘1940-VIH ‘180d-Y1H ‘LyOd-VIH

970X0 ‘OHOH ‘871 ‘LTOXO ‘LgHeLTl ‘9134 ‘{140 ‘LWVOI

LZXNS ‘CLHAN ‘NSW

‘WSO ‘2OVY ‘L13VS ‘€4dHLA ‘6LSNIN ‘SHYQ ‘0dTdY ‘VZiHLlddd

‘OLNOW ‘ELHAW ‘PHEN ‘2H4AHLA ‘GNNO ‘3eH10d ‘€0 ‘vdgaH

‘€6d1 ‘vISOV L00X3 ‘998NL ‘LNdL ‘LNV.LdS ‘dgH1S ‘SOOHX

‘X4 ‘THAW ‘YHAS ‘vO0OX3 ‘LWLdTO ‘LSOHOS ‘LNVLS ‘ATOV

‘H140 ‘9900 ‘eddDH ‘YavHL ‘9NOW ‘9ZdYO ‘LYNIT ‘MYNHY
‘IX@Hd ‘YNWT ‘LIWYOI ‘VLVYdSH ‘HNTE ‘9LYdSH ‘SaNINT ‘evZdvYO

ZCXNS

‘PLHAW ‘NSW ‘L3VS ‘SSLdNN ‘6LSWIN ‘SHYQ ‘0dT1d4 ‘VZLHLddd

‘OINOW “ELHAW ‘€V/2D71S ‘pHEN L3SEDTS ‘FeH10d ‘€0 ‘vdgay

‘€Gd.L ‘PISOV ‘9898N1 ‘LNdL ‘LNVLdS ‘dg4.LS ‘SOOHX ‘XaY

‘CHAW ‘YHAS ‘1H9ddd ‘vO0X3T ‘LWLLTO ‘LNV.LS ‘YAVHL ‘9NON
‘900dd ‘9Zdv0 ‘LYWIT ‘MYNHY ‘LXa4d ‘YNWT ‘LWYOI ‘CGNNT

LZXNS ‘VLHAW VLSO ‘LIVS ‘€4AHLA ‘6LSWN

‘0d7dY ‘VeLd1lddd ‘0LNAON ‘ELHAN ‘PHEN ‘GNNO ‘32H410d

‘€0 ‘vd9gY ‘€Sd1 ‘vISOV ‘999NL ‘LNdL ‘LNV.LdS ‘dgH1S

‘GOOHX ‘XQAH ‘CHAW ‘YHAS ‘LH9ddd ‘LWLdTO ‘LNV.LS ‘ATOV
‘Y140 ‘9NOW ‘900dd ‘9ZdVO ‘LYWIT ‘MYNHY ‘LXA4d ‘YN

91ve2eo1s ‘eveLOls
‘6d32roao ‘SWYOVIOD ‘SLXOTV ‘€dg92491 ‘INTLI ‘€LNOD VLSO
‘9LV00LS ‘YOOSWINL ‘v¥dD ‘O0LLNVA ‘€441 ‘LvV2gDOs ‘e/d30
SWVOV3O ‘€d924D1 ‘€LNOD
‘VIENLW ‘€MVHI ‘€1Nd ‘CTLNHY CNOT ‘LYPHN ‘G40 ‘vONN
EVrrO1S ‘Sd32r0a0 ‘NDO ‘SWYOVIO ‘LdVA ‘66HC0LD ‘LHAD
‘CLNIdS ‘LN ‘DMdIH ‘CLHAW ‘PLV00LS ‘LOVYNTVYDILS ‘HDId
‘LDVdS ‘VedeHS ‘OrdNHO ‘9M.1d ‘91Nd ‘9NVYOVYID ‘LANNLO
‘2dVLS ‘€LNd ‘LYWIT ‘2NOT ‘S2avy ‘LIAEHS ‘PYrrOTS ‘020NN
Sd32rodo ‘SWYOVIO ‘€dge49I
‘CINOD ‘YISO ‘9LV00LS ‘YOOSWINL ‘b¥dD “00LLNYAH ‘2/dT0
VIODHYY ‘€HEMId ‘LDAD ‘LVE0DTS ‘€ddadD
‘Jidd ‘LYNdX ‘LvHOaV ‘LWTVO ‘CHOLYdD ‘131433 ‘Segvy
‘MEHTOd ‘LDVdS ‘LT2SYD ‘0PdNENS ‘VLOHOO ‘LAY ‘LNLSO
LONW ‘020NN ‘ONN
LLTOS CITO “LNOd ‘€0TH ‘L4FDHYY ‘LSOVd
‘€HISS ‘1814l '24A0 ‘LLGdSH ‘LAH0 ‘SYMW ‘CHYNA ‘29400
‘INDYHL ‘LdIEAVHL ‘22lLdl ‘€ITD ‘LSYWA ‘LdY ‘YrEaYH ‘614IM
‘v/141 ‘92011 ‘881l ‘¢43D4HY ‘LOHH4T ‘LHOL1d ‘2/dLOgL ‘989vH

(enjep d Aq pa1apiQ) 01°0> SN[eA d [2A9T-2USE) YHM Saudn

arL0

G600

06070

880°0

6500

GG0°0

S0
6600

¢60°0

6500

500

200

9000

«ONeA d
pajoa.i0)

4%

029

c6S

99y

c6
0s

121"
9€

a9l
cl
1G1

(u)

sauay

Il SSE|D

|| SSB|D pue | sse|D
paisal g =u ‘shkemyred oioads-y1H

40 ui s|j9
2141 Aq uoionpoud suyohD

psiss] 9g =U
‘|(0neusn) shkemyyed oyoads-sisoiql olsAo JsulNEIBN

sauab

189 ‘L 13 @Iqel 440P VHVS
seusb gg9 ‘13
o|ge] :swojoeislul Yl 4D 810D

sauab
819 ‘83 9|qeL 40P JY910|

sauab
¥8Y ‘23 @lqeL 40P Y10

poise} || =u ‘gshemyred swojoeloul Y140
2 @dAy Jadjpy-] wnipyyds Aemuy

(dn) adoo

uoneja.iod aniysod 4H3
(dn) adoo-ewuyisy
+{umop) exodAy /40N/(dn) 1SL4IH

(umop) eixodAy 240N
enen udnipy

Bupioiyes Aenio

sweN Jaynuspj

Remyred

(penunuo)) °g olqeL

87

Polineni, Dang, Gallins, et al.: Gene Pathways Regulating CF Lung Disease Severity



"8dAjoub Yim UOREIOSSE JOj PSIEN[EAS B18M ¢ B|GeL Ul P8is] SAemuied

"40 0} 0}4108dS JUBJUOD YIM PBLYOLUS SI JeU} 8HNS AISA0DSIQEIBIN (0D8USD AUBULIOY) SleINsl UOSLIOY 8U} JO UOISIOA € Juesaldel shkemuyied ooads-40 JOUINEIDIN

'seuab Aemyied Jo 1si| 819|dwod U0} ‘4 gel ‘G a|ge ] 98s ‘pals!| aJe GO0 > o Yum seusb ‘seuslb 00z uey) alow Bulureluod sies aush Jodg

'seuab Aemuyied Jo Bunsi 819|dwod Jo} ‘4 gel ‘GF 8|ge ] 8os ‘Aemyred paisi-1s4l Yim seusb Jo depano 1sngod Aed pue ueoyiubis Ajeonsiiels aJe skemyled asay 14

'G1"0 UBY} SS8| S| 8nfen 4 pe1osliod

41 paisi| ase skemyied "ueoglegeusn) Aq pepiroid se (peise) shkemyred pue ‘seush ‘swsiydiowAod spposjonu-elbuls |[B) 8iel Joue asim-Ajiue) Buisn pereinofed aiom senfen 4 [9As] ausy),
'sanfen o Pe1oaiod uospuedwod adiyn,

‘Sloguunu anbojeled Uel Ul 8dUBlLIBYU| UBl[pUS|A aulluQ auab Jo) £3 a|ge] 8S (g3 8|ge]) spediaunod susb uewny Buisn (9f,) padojaasp alam shkemyied WOISNO JueAs|al 40 *S1es auab pue
skemyred parelouue 01 seusb sdew pue UoiieIoUUR g8 UOISIaA TGINTSNT UO paseq sausl Buipoo-uielodd JO weasisumop pue weansdn gy 0g 01 swisiydiowAjod spnosjonu-s|buls padAiousb
jJo Buiddew sesn ueogiegaUsy) "saushb 0Og O} [enbs JO Uy} SS8| INQ Q| 1SES| 1B PAUIRIUOD Jey} 8SOY} 0} pajiwl| alem shkemyied pue ‘pasn aiem suoienwis 000 | Yum sissweled jnejeqg
‘pIoe olWexopAY apljiuejfoiagns = YHYS ‘paisnipy AllfeHo [enpisay [eWION Yol = VINHONY ‘OSEqelep Sawousy) pue sauar) jo eipadojoAous]

0104y = HOHTY ‘usbliue 814003 N8| UewWNY =Y TH ‘WNYIS ©L-4|H =IS|4|H ‘dwAzus (ereydsoyduy suisouent) 415 = 8Sed |5 ‘Wniposuo)) ABOjoIuQ susr) = QL) ‘101oe} snobojowoy
S13=4H3 ‘eP80SaUd = 40P ‘eseas|p Areuowind 8AoNIISCO JIUCIYD = ddOD 4oienbal 82UB}ONPUOD SUBIGUUIBWISUEI] SISOIQL O1SAD = Y1 4D ‘SIS0Iqly 01SAD = 40 1SuojEINeIqqe JO Uojuled

L4VY ‘6XdYN ‘900-YTH

‘CHEMId ‘96£XAA ‘L LYNAI ‘XY ‘8YNHI “LYNDM ‘€HTL ‘v LYNAI

‘SYN4I ‘SYNHI ‘INL ‘2XVeIT ‘6dSVO ‘LVNHI ‘€LYNHI ‘0L4SINL

‘THEMIA ‘9VYN4I ‘STOO ‘THAL ‘2TOO ‘GOMHd ‘LWVOI “1LNdgYd
“1LVdSH ‘'VLVdSH ‘1940-VH ‘180d-V1H ‘LYOd-VIH ‘9LVdSH 0800 9l SNJIA Y/ BZUSN U 9160

Zdg1 ‘4FHATY ‘CO4OH ‘6MdVYN ‘SdVL

‘IdV1 ‘900-VIH ‘001lddd ‘ZLVYNHI ‘9-VIH ‘G4V.L ‘8¥YNI ‘€41L

‘PLYNAI ‘LIdEL “LSHOW ‘SYNHI ‘YNl ‘4NL ‘V.LT ‘eMYZdIT ‘LYNAI

‘CLVN4I ‘€0 ‘€Sd1L ‘9YNHI ‘WY2H10d ‘ST00 ‘@MAL ‘24SHS ‘2H1L
‘2700 ‘2H3d ‘L THAd ‘TTHAd ‘185a-VIH ‘180a-YH ‘LvYDa-VIH 8000 €L uoioajul snUIA Xa|dwis sadieH 89160

skemyied DIy
pojse} /g =u ‘ se|dwes adelos [eseu Ul uoissaidxd
[enuaJalp Joj ueoyubis sAemyied 0} pauluoo sasAleuy

(enfeA d Aq paiapiQ) 010> NEA d [9A9T-9USH YUM SBUSD «ONeA d (u) swen Jaunuap]
pajoa.i0) sauan

Remyred

(penunuo)) °g olqeL

American Journal of Respiratory and Critical Care Medicine Volume 197 Number 1 | January 1 2018



transcriptional activation of IFN-induced
genes (27).

Pathway (GeneSetScan) analysis of
genomic data in 5,659 patients with CF
yielded significant pathways containing
genes related to viral infection and
innate immune response (Table 3),
complementing the transcriptomic
findings. Of the 18 top-ranked (P < 0.10)
genes that were common to both results,
nearly all were associated with airway
mucosal host defense (Figure 1 and Table
E7). Overlapping genes in these analyses,
including ICAM1, IL8, and HCFC2, point
to heritable variation in the inflammatory
response to bacterial and viral infection
yielding downstream effects on CF lung
disease. Furthermore, IL8 has previously
been implicated as a modifier gene in CF
lung disease (28). Similarly, overlap of
genes integral to the innate immune
response (e.g., C3, HLA-B, HLA-DRBI,
TLR2, and TLR3) demonstrates that
heritable variation in expression of genes
related to host defense plays a significant
role in determining CF lung disease
severity.

GWAS pathway analysis also identified
additional host defense mechanisms related
to lung disease severity, including goblet cell,
mucin production, cilia trafficking, and
CFTR interactome pathways (Table 3).

Taken together, these pathways point to
heritable variation in mucociliary clearance,
a critical first-line innate airway defense
mechanism involving the interaction of
well-hydrated mucus with functional cilia,
and a key mucosal defense mechanism
regulating CF lung disease severity. Finally,
pathways revealed by this GWAS analysis
included genes located at significant CF
GWAS loci (i.e, AGTR2, EXOC3, MUC20,
MUC4, CD44, and HLA genes) (5).
Genomic variation in regions near these
genes is known to correlate with lung
disease severity on the basis of our
previously reported findings (5, 6); the gene
networks identified in the present analysis
provide new insight into potential
mechanisms for effect of these candidate
modifier genes on CF lung phenotype.

To further explore the mechanism of
association between genomic variation at
significant GWAS loci and lung disease
severity, we used a novel approach to test for
association of gene expression pathways
with SNP variation at significant CF GWAS
loci (5) (Table 4). The chrl1pl2-p13
GWAS locus is between EHF (an epithelial
transcription factor) and APIP (an inhibitor
of apoptosis as well as an enzyme in the
methionine salvage pathway) (5, 6), and the
association at this locus with lung disease
severity is determined by Phe508del

C3; CCL5; EDN1; EDN2; HCFC2; HLA-B; HLA-DRB1; ICAM1; IL8;
LCP2; MAPK9; PSMB8; SMAD4; SPARC; TAP1; TLR2; TLR3; TP53

160 genes P<0.10in
differential expression
analysis

370 genes P<0.10 in

GWAS pathways analysis

Figure 1. Top-ranked genes (P < 0.10) common to significant pathways in both differential
expression and genome-wide association study (GWAS) analyses. Eighteen genes with significance
levels of P < 0.10 were observed in overlap of differential expression and GWAS analyses.

Polineni, Dang, Gallins, et al.: Gene Pathways Regulating CF Lung Disease Severity

homozygotes (29); however, the
mechanism by which the region produces
its phenotypic effects is unresolved. The
EHF transcription factor is implicated in
recent reports (30, 31), as well as our
findings (Tables 2 and 3), whereas other
findings support a role for APIP by means
of MTAP (Table 2, “Methionine salvage
pathway” row) (32, 33). Our analysis
demonstrated a significant association of
the chrl1 risk allele with decreased
expression of genes involved in CFTR-
dependent regulation of ion channels, as
well as other CF-relevant pathways
including genes pertinent to chronic
obstructive pulmonary disease and asthma
(Table 4). Importantly, both the chrl1p12-
p13 (rs10742326) and chr6p21.3 (near
HLA; rs116003090) (5, 6) risk alleles were
associated with increased expression of
genes in CFTR interactome pathways (22).
For the first time, to our knowledge, we
demonstrate that in vivo networks, or
pathways, of differentially expressed genes
in airways are related to established
genomic (SNP) variation, where risk alleles
are associated with CF lung disease severity
(5, 6). Importantly, to our knowledge, these
findings represent the first described
association of non-CFTR genomic variation
with CFTR production, processing, and/or
function itself. Coupled with GWAS (5, 6),
gene expression networks associated

with significant CF GWAS variants
provide novel insight into potential
mechanisms of effect for candidate modifier
genes, and future research will benefit
from exploration of these hypotheses.

Our integrated analysis also highlights
the need for deep exploration of the HLA
region. HLA genes have consistently been
implicated across multiple studies of
modifier genes in CF, including GWAS
(5, 6), differential expression studies in
transformed lymphocytes (9), and the nasal
mucosal transcriptomic plus genomic
pathway analyses described here. The
association of genomic variation at the
HLA chr6p21.3 (rs116003090) region with
expression of genes regulating CFTR
processing (Table 4) provides the first
glimpse into a novel potential mechanism
of action for genetic variation at the chr6
locus to modify CF lung disease, in addition
to established roles of HLA in numerous
inflammatory and pathogen response
pathways (Table 2). The complexity of the
HLA region has thus far denied the
scientific community of a clear pathogenic
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mechanism for association with CF lung
disease. It is now clear that detailed,
integrated analysis of HLA genetic, allelic,
and gene expression variability is a critical
next step, with findings likely to be highly
relevant to other chronic lung diseases,
such as asthma, where GWAS signals also
reside in the HLA region (34, 35).

Our study has some limitations. First,
whereas we characterized the percentage
of participants known to have chronic
P. aeruginosa infection near the time of
sampling, we cannot entirely eliminate
infection status as a confounding factor,
because microbial culture was not
conducted at the sampling date, and this
was coupled to our inability to access all
possible infections known to have roles in
CF lung disease (36). Furthermore, the
study does not include a replication cohort
or functional validation of any specific
pathway. However, validation across
analyses for certain genes/pathways
(Figure 1) provided evidence of robust
signatures that serve as a basis for future
replication/functional validation. Future
investigations should consider use of effect
sizes demonstrated in this study (Table E3).

Despite recent advances in the
development of CFTR correctors and
potentiators for treatment of CF (37, 38),
there remains a critical need for
antiinflammatory therapies to
ameliorate/optimize airway mucosal host
defense that can be applied broadly to
patients with CF (39). Currently, there are
extensive ongoing efforts to develop such
“antiinflammatory” therapies (40), and the
genetic and genomic data presented here

provide compelling support for these
efforts. We highlight one example where
the gene expression results have potential
therapeutic relevance. Transcriptomic
evidence of increased inflammatory
signaling in the methionine salvage
pathway (Table 2) includes increased gene
expression of AMDI1, MTAP, and APIP.
The expected increases in enzymatic
activity of these genes would reduce
levels of the antiinflammatory metabolite
methylthioadenosine while generating
proinflammatory polyamines (32, 41, 42).
Recent mass spectrometric metabolomic
analysis of bronchoalveolar lavage

fluid from children with CF has shown
that increased polyamine levels correlate
with neutrophilic inflammation and
worse lung function (43), and the
direction of this finding is congruent with
our gene expression findings. Because
pharmacologic inhibitors of this pathway
are available (44), we have begun exploring
this pathway in animal studies to

provide proof-of-concept support for
such inhibitors as a CF therapy (45).

In conclusion, this study represents a
rigorous effort to use gene expression data
from the highly CF-relevant airway
(nasal) epithelial cell, complemented by
extensive genetic data, to identify modifying
pathways relevant to CF lung disease
severity. The transcriptomic data we report
provide unique evidence of increased
airway epithelial gene expression in
biologically informative pathways,
congruent with underlying concepts
that hyperinflammatory responses are
deleterious to CF lung disease. The presence

of genes in both expression- and genomics-
based analyses (GWAS and SNP pathway
analyses) provides support for the genomic
basis of modifier genes, even when mediated
through changes in expression. Although
association studies of differential gene
expression cannot establish cause and effect,
genes in our significant pathways demonstrate
robust heritability. Taken together with the
results of our heritability analysis, these
findings suggest that heritable traits linked to
increased expression of non-CFTR genes,
particularly those regulating inflammatory
responses to environmental stimuli, play a
key role in CF lung disease severity.
Candidate pathways and genes identified by
these studies offer novel targets for precision
therapies directed toward genes with
heritable effects on lung disease severity

in CF.
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