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Abstract

Inhalation of acrolein, a highly reactive aldehyde, causes lung
edema. The underlying mechanism is poorly understood and there
is no effective treatment. In this study, we demonstrated that
acrolein not only dose-dependently induced lung edema but also
promoted LPS-induced acute lung injury. Importantly, acrolein-
induced lung injury was prevented and rescued by Alda-1, an
activator ofmitochondrial aldehyde dehydrogenase 2. Acrolein also
dose-dependently increased monolayer permeability, disrupted
adherens junctions and focal adhesion complexes, and
caused intercellular gap formation in primary cultured lung
microvascular endothelial cells (LMVECs). These effects were
attenuated by Alda-1 and the antioxidant N-acetylcysteine, but
not by the NADPH inhibitor apocynin. Furthermore, acrolein
inhibited AMP-activated protein kinase (AMPK) and increased
mitochondrial reactive oxygen species levels in LMVECs—effects
that were associated with impaired mitochondrial respiration.
AMPK total protein levels were also reduced in lung tissue of mice
and LMVECs exposed to acrolein. Activation of AMPK with
5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside blunted
an acrolein-induced increase in endothelial monolayer
permeability, but not mitochondrial oxidative stress or inhibition
of mitochondrial respiration. Our results suggest that acrolein-
induced mitochondrial dysfunction may not contribute

to endothelial barrier dysfunction. We speculate that
detoxification of acrolein by Alda-1 and activation of AMPK
may be novel approaches to prevent and treat acrolein-
associated acute lung injury, which may occur after smoke
inhalation.
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Clinical Relevance

Inhalation of acrolein, a highly reactive aldehyde, causes lung
edema. The underlying mechanism is poorly understood, and
there is no effective treatment available. We demonstrated that
acrolein-induced lung injury was prevented and rescued by
Alda-1, an activator ofmitochondrial aldehyde dehydrogenase 2.
Acrolein-induced lung microvascular endothelial
barrier dysfunction was also attenuated by Alda-1 and
5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside, an
activator of AMP-activated protein kinase. We speculate that
Alda-1 and AMP-activated protein kinase activators may be
novel treatments for acrolein-driven lung injury.
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Acrolein is a highly reactive
a,b-unsaturated aldehyde with an
estimated half-life of 12 hours. The safe
reference concentration of acrolein for
inhalation recommended by the U.S.
Environmental Protection Agency is
0.02 mg/m3. The major sources of indoor
acrolein are tobacco smoke and emissions
from overheated oils, fireplace heating, and
biomass cooking, whereas outdoor acrolein
is mainly from gasoline and diesel exhaust,
combustion of organic materials, forest
fires, and burn pits used to dispose of waste
by the U.S. military (1). As a result, tobacco
smokers (2), firefighters (3, 4), restaurant
workers (5), certain manufacturing workers
(6), and military personnel deployed to
military bases in Afghanistan and Iraq (7)
can be exposed to toxic levels of acrolein.
Lung tissue from mice exposed to cigarette
smoke has increased levels of reactive
aldehydes (8). In addition to exogenous
sources, acrolein is endogenously produced
via lipid peroxidation and metabolism (9).

Inhalation of low levels of acrolein
causes nasal irritation, bronchial
hyperreactivity, and excessive mucus
production (10). Exposure to high levels of
acrolein elevates blood pressure and causes
quick cessation of heart beat (11). Acrolein
exposure has been implicated in chronic
obstructive pulmonary disease (12) and
increases susceptibility to microbial
infections (13). Smoke inhalation can cause
acute respiratory distress syndrome (14).
Acrolein is the second most common
inhaled toxin, after carbon monoxide, in
smoke inhalation during fires. Similarly to
smoke inhalation, acrolein inhalation
causes noncardiogenic pulmonary edema
and respiratory distress in sheep (15, 16),
dogs (17), and mice (18). In addition,
acrolein was shown to increase bronchial
epithelial barrier permeability (19) and alter
the tight-junction protein Claudin 5 in a
cultured endothelial cell line (18). However,
it is not known whether acrolein directly
increases lung microvascular endothelial
cell (LMVEC) permeability. The
mechanisms underlying acrolein-induced
lung edema are not well understood.

Acrolein can be detoxified by
glutathione-S-transferase alpha 4 (GSTa4),
alkenal/one oxidoreductase, aldose
reductase, or aldehyde dehydrogenase 2
(ALDH2) (20, 21). Excessive acrolein is
subjected to Michael addition (also termed
carbonylation), whereby the acrolein reacts
with proteins or nucleic acids to form

aldehyde adducts (1). Protein carbonylation
may cause protein misfolding, cross-
linking, aggregation, and degradation (22).
Acrolein has been reported to deplete
cellular glutathione (GSH) (23), increase
reactive oxygen species (ROS) production
(24, 25), suppress NF-kB–dependent gene
transcription (26, 27), inhibit histone
acetylation (28), and change metabolome
and transcriptome profiling in mouse
lungs (29).

In this study, we found that acrolein
caused lung edema and promoted LPS-
induced acute lung injury (ALI). Alda-1
(N-C1,3-benzodioxol-5-ylmethyl)-2,6-
dichlorobenzamide), an ALDH2 activator,
not only prevented but also rescued
acrolein-induced lung injury. Alda-1 also
attenuated acrolein-induced endothelial
barrier dysfunction. AMP-activated protein
kinase (AMPK) is a ubiquitously expressed
major sensor of cellular bioenergetics. We
found that acrolein-induced lung edema
and increased LMVEC permeability were
associated with inhibition of AMPK and
impaired mitochondrial respiration. The
AMPK activator 5-aminoimidazole-4-
carboxamide-1-b-4-ribofuranoside
(AICAR) abrogated acrolein-induced
endothelial monolayer permeability. We
speculate that Alda-1 and AMPK activators
may be novel treatments for acrolein-driven
lung injury.

Some of these results were presented
at the American Thoracic Society
International Conference, May 2015, and
published in abstract form (30).

Materials and Methods

Reagents
Acrolein was purchased from Polysciences,
Inc. (Warrington, PA). LPS (catalog #
L5418, Escherichia coli [055:B5]),
N-acetylcysteine (NAC), apocynin,
and vinculin antibody were obtained
from Sigma–Aldrich (St. Louis, MO).
Alda-1, AICAR, and a keratinocyte
chemoattractant ELISA kit were obtained
from R&D Systems (Minneapolis, MN).
IL-6 and TNF-a ELISA kits and b-catenin
antibody were obtained from BD
Biosciences (San Diego, CA). Antibodies
against AMPK and phosphorylated AMPK
at T172 were obtained from Cell Signaling
(Danvers, MA). An IL-10 ELISA kit was
obtained from Biolegend (San Diego, CA).
Rat LMVECs were obtained from VEC

Technologies, Inc. (Rensselaer, NY) and
used between passages 2 and 7.

Mice
Male 8- to 10-week-old C57BL/6 mice were
obtained from The Jackson Laboratory
(Bar Harbor, ME). All animal studies were
approved by the Institutional Animal Care
and Use Committee of the Providence VA
Medical Center. Animals were housed in
standard conditions (12 h light/dark cycle,
68–728F, and humidity of 30–70%) in
ventilated racks with automatic watering
systems and fed with standard chow
ad libitum.

Intratracheal Administration of
Acrolein and LPS
Acrolein and LPS (z50 ml) were delivered
intratracheally to mice anesthetized with
3% isoflurane as previously described (31).

Assessments of bronchoalveolar lavage
(BAL) protein content, lung wet-to-dry
weight ratio and inflammatory cell
count were performed as previously
described (32).

An ALDH2 enzymatic activity assay
was performed on freshly harvested liver
and lung tissue from mice treated, with
acrolein in the absence or presence of Alda-1
using an ALDH2 activity assay kit (Abcam,
Cambridge, MA). Optical density units of
the reaction product were measured at a
wavelength of 450 nm. Data are represented
as means 6 SE at the 1-hour time point.

An endothelial monolayer permeability
assay and immunofluorescence
microscopy were performed as previously
described (33).

Measurement of Mitochondrial ROS
Cells were stained with Hoechst 33342 for
20 minutes and then with MitoSOX (both
from ThermoFisher Scientific, Waltham,
MA) for 20 minutes. The fluorescence
signals of the MitoSOX and Hoechst
33342 were captured by a fluorescence
spectrometer at excitations/emissions of
510/580 and 350/461, respectively. The data
are presented as the ratio of MitoSOX to
Hoechst 33342.

The mitochondrial oxygen
consumption rate (OCR) was measured
using an XF-96 Extracellular Flux Analyzer
from Agilent Technologies (Santa Clara,
CA) according to the manufacturer’s Mito
Stress Test Kit user guide. ATP production
was assessed by injection of oligomycin
(1 mM). Maximal respiration capacity was
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measured by injection of carbonyl cyanide-
4-(trifluoromethoxy)phenylhydrazone
(0.5 mM). Injection of rotenone/antimycin
A (0.5 mM) was used to determine
nonmitochondrial respiration. All values
were normalized to viable cells using the
CyQUANTdirect cell assay (ThermoFisher
Scientific). Each experimental condition
included three to four wells that were
averaged for one experimental data point.

Data Analysis
For animal studies, three to 12 mice per
group for each experiment were used. All
experiments using cultured cells were
performed at least three independent times.
Data are presented as the mean 6 SE. The
difference between two means was assessed
using Student’s t test. The differences
among three or more means were assessed
using ANOVA and Fisher’s post hoc test.
Differences among means are considered
statistically significant when P , 0.05.

Results

Acrolein Dose-Dependently
Increased Lung Edema and
Inflammation
We previously showed that acute cigarette
smoke exposure caused lung edema in mice
(34). To determine whether acrolein has
a similar effect, C57BL/6 mice were
intratracheally instilled with varying doses
of acrolein (0, 1, 2.5, and 5 mg/kg), and
lung edema and inflammation were
determined 18 hours after acrolein
challenge. We found that acrolein dose-
dependently increased the BAL protein
content (Figure 1A) and BAL cell count
(Figure 1B), with a minimal effective dose
at 2.5 mg/kg. Intratracheal instillation of
acrolein at 2.5 mg/kg also significantly
increased the lung wet-to-dry weight ratio
(Figure 1C). In addition, acrolein exposure
dramatically elevated BAL cytokines,
including KC, IL-6, and TNF-a (see Figures
4E–4G). These data indicate that acute
acrolein exposure causes lung edema and
inflammation. Additionally, mouse body
weights were significantly reduced 18 hours
after exposure to 2.5 mg/kg of acrolein
(Figure 1D), an indication of systemic
distress.

Acrolein Promoted LPS-Induced ALI
Cigarette smoking increases susceptibility to
acute respiratory distress syndrome, as well

as the severity of the disease, in humans
(35–38) and animal models (31). Acrolein
is an important component of cigarette
smoke. Because other investigators and we
have found that cigarette smoking increases
the inflammatory response to LPS
inhalation in both mice (31) and humans
(38), we questioned whether preexposure
to acrolein would have an effect similar
to that of cigarette smoking on LPS-
induced lung injury. In the current study,
mice were challenged with 2.5 mg/kg of
acrolein by intratracheal instillation. After
6 hours of exposure to acrolein, the
mice were intratracheally administered
2.5 mg/kg of LPS. Lung injury was
assessed 18 hours after instillation of LPS.
We found that acrolein alone increased the
BAL protein content (Figure 2A) and
caused a significant loss of body weight
(Figure 2C), similar to the extent observed
with LPS. Acrolein alone also increased the
BAL inflammatory cell count, but to a
lesser extent than LPS (Figure 2B).
Interestingly, mice preexposed to
acrolein had a greater increase in both the

BAL protein content (Figure 2A) and
BAL cell count (Figure 2B) after challenge
with LPS as compared with LPS alone.
These results indicate that acrolein had
an additive effect on LPS-induced lung
injury, which suggests that populations
preexposed to acrolein may experience
enhanced lung injury after bacterial
infections.

Alda-1 Prevented Acrolein-Induced
Lung Edema and Inflammation
Reactive aldehydes are detoxified by ALDH2
(20, 21). Alda-1, a small-molecule activator
of ALDH2, is capable of preventing the
formation of cytotoxic reactive aldehydes
(38). We found that pretreatment of
mice with Alda-1 significantly attenuated
the acrolein-induced increase in BAL
protein content (Figure 3A). Alda-1 also
exhibited a trend toward blunting of the
acrolein-induced increase in BAL cell
count (Figure 3B), lung wet-to-dry weight
ratio (Figure 3C), and loss of body weight
(Figure 3D).
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Figure 1. Effects of acrolein on lung edema and inflammation. (A and B) Mice were intratracheally
administered varying doses of acrolein (0–5 mg/kg) dissolved in sterilized saline. Bronchoalveolar lavage (BAL)
fluid was collected 18 hours after instillation of acrolein. The total protein content (A) and leukocyte numbers
(B) in BAL fluid were assessed. (C and D) Mice were intratracheally administered 2.5 mg/kg of acrolein or
an equal volume of saline as vehicle control. The lung wet-to-dry weight ratio (C) and changes (Δ) in mouse
body weights (D) were determined 18 hours after instillation of acrolein. Four mice per group were used
for each panel. Data are represented as means 6 SE. *P , 0.05 versus mice treated with vehicle control.
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Alda-1 Rescued Acrolein-Induced
Lung Edema and Inflammation
To test the therapeutic effect of Alda-1
on acrolein-induced lung edema and
inflammation, we administered Alda-1 to
mice 2 hours after initiating lung injury
by acrolein. ALDH2 activity and lung injury
were assessed 18 hours after acrolein
challenge. We noted that Alda-1
significantly elevated ALDH2 activity in
liver tissue (Figure 4A). ALDH2 has been
reported to be modestly expressed in
lungs (40). However, lung ALDH2
activity was not detectable by our
assay (data not shown). Although
intratracheal administration of acrolein
did not reduce liver ALDH2 activity, it
attenuated Alda-1–induced activation of
ALDH2 in livers (Figure 4A). Interestingly,
Alda-1 significantly rescued the acrolein-
induced increase in BAL protein content
(Figure 4B), lung wet-to-dry weight
ratio (see Figure 3C), and loss of body
weight (Figure 4I), and showed a
trend toward rescuing the acrolein-induced
increase in the BAL cell count (Figure 4C).
In addition, Alda-1 dramatically
rescued acrolein-induced increases in
proinflammatory cytokines, including
KC (Figure 4E), IL-6 (Figure 4F), and
TNF-a (Figure 4G). On the other hand,
Alda-1 did not display a significant
effect on acrolein-induced neutrophil
infiltration (Figure 4D). Neither
acrolein nor Alda-1 affected expression of
the antiinflammatory cytokine IL-10 in
lung homogenates (Figure 4H).

Acrolein Increased LMVECMonolayer
Permeability
To understand the mechanism of acrolein-
induced lung edema, we assessed the direct
effect of acrolein on LMVEC monolayer
permeability, which has not been reported
previously. We found that acrolein
dose-dependently decreased electrical
resistance across monolayers of rat
LMVECs (Figure 5A), indicating
increased monolayer permeability. Similar
effects were seen in human LMVECs
(data not shown). Acrolein also disrupted
intercellular adherens junctions
(AJs), as indicated by reduced
immunofluorescence staining of the AJ
component b-catenin, and focal adherens
complexes, as shown by loss of staining of
the focal adherens complex component
vinculin, and caused intercellular gap
formation (Figure 5B). These data indicate
that acrolein directly increases LMVEC
permeability. We also found that the
disruptive effect of acrolein on
endothelial barrier integrity was
recovered after removal of acrolein
(Figure 5C), suggesting a reversible
effect of acrolein on endothelial barrier
function.

NAC and Alda-1 Prevented an
Acrolein-Induced Increase in
Endothelial Monolayer Permeability
Reactive aldehydes can cause cellular
oxidative stress by activating NADPH
oxidases (24, 25) and/or depleting the
antioxidant GSH (23). As expected, we

found that NAC completely prevented an
acrolein-induced increase in endothelial
monolayer permeability (Figures 5D and
5E). To test whether NADPH oxidases
contribute to acrolein-induced oxidative
stress, leading to increased endothelial
permeability, we used apocynin, which
inhibits the association of p47phox with a
membrane-bound heterodimer and thus
acts as an NADPH oxidase assembly
inhibitor (41). We found that apocynin did
not have any protective effect against an
acrolein-induced increase in endothelial
monolayer permeability (Figures 5F and
5G), suggesting that NADPH oxidases
are not important in mediating acrolein-
induced lung endothelial barrier
dysfunction. On the other hand, consistent
with our in vivo findings, Alda-1
significantly attenuated the acrolein-
induced barrier dysfunction of LMVECs
(Figures 5H and 5I). To further investigate
the mechanism of acrolein-induced
endothelial barrier dysfunction, we assessed
mitochondrial oxidative stress, because
acrolein has been shown to cause
mitochondrial oxidative stress in
hepatocytes (42). Consistently, acrolein
enhanced mitochondrial ROS levels; an
effect that was not prevented by Alda-1
(Figure 5J). Acrolein has been reported
to suppress NF-kB–mediated gene
transcription (26, 27). Therefore, we
assessed NF-kB–driven endothelial
activation by probing p65 phosphorylation.
We observed a trend toward a decrease in
NF-kB activity by acrolein in LMVECs—an
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Figure 2. Effects of acrolein on LPS-induced lung injury. Mice were intratracheally administered 2.5 mg/kg of acrolein or an equal volume of saline (vehicle
control). Six hours after instillation of acrolein, mice were intratracheally challenged with 2.5 mg/kg of LPS or an equal volume of saline. The total BAL
protein content (A), BAL cell count (B), and changes in mouse body weights (C) were determined 18 hours after instillation of LPS. Four mice per group
were used for each panel. Data are represented as means 6 SE. *P , 0.05 versus mice treated with vehicle, jP , 0.05 versus mice treated with LPS
alone.
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effect that was not prevented by Alda-1
(Figures 5K and 5L).

Acrolein Decreased AMPK in LMVECs
In Vitro and in Lung Tissue In Vivo
To further elucidate the mechanism by
which acrolein increases endothelial cell
permeability and causes lung edema,
we assessed the effect of acrolein on
AMPK activity by measuring AMPK
phosphorylation at T172. We found that
30 mM of acrolein time-dependently
reduced both AMPK phosphorylation at
T172 and total AMPK protein in cultured
rat LMVECs after as little as 10 minutes of
exposure, peaking at 1–3 hours of exposure
(Figures 6A–6C). AMPK total protein
was also significantly reduced in lung
homogenates of mice exposed to acrolein
for 18 hours (Figures 6D–6F). These data
reveal an association of decreased AMPK
activity with increased endothelial

monolayer permeability and lung edema
upon acrolein exposure. We further
demonstrated that the AMPK activator
AICAR significantly attenuated the
acrolein-induced increase in endothelial
monolayer permeability (Figures 6G
and 6H).

Acrolein Impaired Mitochondrial
Oxygen Consumption, and the Effect
Was Not Prevented by Alda-1 or
AICAR
AMPK is a key signaling molecule that
regulates mitochondrial oxidative
phosphorylation. Because AMPK was
dramatically reduced by acrolein exposure,
we assessed the effect of acrolein on
mitochondrial oxygen consumption and
found that acrolein dose- and time-
dependently reduced basal respiration, ATP
production, maximal respiration, and spare
respiration capacity (Figures 7A–7D).

Because both Alda-1 and AICAR
attenuated the acrolein-induced increase
in endothelial cell permeability, we assessed
the effects of Alda-1 and AICAR on
the acrolein-induced inhibition of
mitochondrial respiration. To our surprise,
neither Alda-1 nor AICAR altered acrolein-
induced suppression of OCR in cultured
LMVECs (Figures 7E and 7F). Our data
suggest that Alda-1 and AICAR protect
against acrolein-induced endothelial
permeability and lung injury via a
mechanism that is independent of
mitochondrial dysfunction.

Discussion

Acrolein inhalation causes pulmonary
edema in animals (16–18). In addition,
acrolein has been reported to suppress
LPS-induced T-helper cell type 1 cytokine
responses (43). In this study, we
demonstrated that acrolein not only caused
lung edema but also worsened LPS-induced
lung injury. Acrolein has been shown
to increase bronchial epithelial barrier
permeability (19) and to alter a tight-junction
protein, Claudin 5, in an endothelial cell line
(18). In this study, we showed that acrolein
dose-dependently increased the permeability
of primary cultured LMVECs, disrupted
AJs and focal adhesion complexes in vitro,
and caused lung edema in vivo. Our data
suggest that the injurious effect of acrolein
on LMVECs may contribute to smoke
inhalation–induced lung edema. To our
knowledge, this finding has not been
reported previously.

Mice were intratracheally administered
2.5 mg/kg body weight of acrolein
(molecular mass = 56.06 g/mole) in
z50 ml. This is z1 mmole instilled in a
concentration of 20 mM. Sidestream smoke
is estimated to expose lungs to 25.2 mg of
acrolein per pack or 450 mmoles per pack,
whereas mainstream smoke exposes
lungs to 1.5 mg of acrolein per pack or
188 mmoles per pack (10). Thus, the in vivo
exposures to acrolein used in this study are
comparable to pathophysiologic levels. Cell
cultures were exposed to 10–50 mM of
acrolein, which is a much smaller amount
than we used in the in vivo study, but
similar to those used in previous in vitro
studies (19).

Kitaguchi and colleagues previously
reported that acrolein caused lung septal cell
apoptosis and airspace enlargement after
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Figure 3. Preventive effects of Alda-1 on acrolein-induced lung edema and inflammation. Mice were
administered Alda-1 (10 mg/kg) or an equal volume of sterilized saline (control) via intraperitoneal
injection. After 1 hour, the mice were intratracheally administered 2.5 mg/kg of acrolein or an equal
volume of sterilized saline. BAL protein levels (A), BAL cell count (B), lung wet-to-dry weight ratio (C),
and changes in mouse body weights (D) were assessed 18 hours after challenge with acrolein. Some
mice were treated first with acrolein for 2 hours, followed by Alda-1 (C). Three to four mice per group
were used for each panel. Data are represented as means 6 SE. *P , 0.05 versus mice treated with
saline control, £P , 0.05 versus mice treated with acrolein alone.
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chronic administration in rats (44). We
noted that acrolein did not cause LMVEC
apoptosis after 6 hours of exposure (data
not shown). The difference between our
results and those of Kitaguchi and
colleagues may be due to the different
durations (chronic versus acute) of acrolein
exposure. Intranasal exposure of mice to
acrolein (1–5 mmol/kg, similar to the
concentrations used in this study) activates

alveolar macrophages and increases
proinflammatory cytokines, including
TNF-a, IL-6, IL-12, and Chi3L3 (45). In the
current study, we found that acrolein
instillation increased lung neutrophil
infiltration, with a mild effect on alveolar
macrophages. Acrolein also enhanced lung
proinflammatory cytokines, including
TNF-a, IL-6, and KC. Although acrolein
and LPS had a similar effect on BAL protein

levels (0.51 mg/ml versus 0.47 mg/ml;
Figure 2A), acrolein had a three times
smaller effect on BAL cells than LPS
(0.553 106 leukocytes/ml versus 1.673 106

leukocytes/ml; Figure 2B). In other words,
acrolein was more effective in promoting
endothelial cell permeability and lung
edema, and had a relatively milder effect on
inflammation. Acrolein has been shown to
inhibit NF-kB–mediated gene transcription
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(26, 27). We observed a trend toward a
decrease in NF-kB activity in LMVECs
exposed to acrolein. Taken together, these
results suggest that acrolein-induced
alveolar barrier dysfunction and lung
edema may be more important than
proinflammatory effects in contributing
to ALI.

Kasahara and colleagues demonstrated
that the effect of acrolein on LPS-induced
lung injury and inflammation was
dependent on the timing of acrolein
exposure (43). They reported that
inhalation of the vapor phase of acrolein 18
hours after LPS instillation suppressed LPS-
induced lung edema and proinflammatory
responses (43). However, acrolein
inhalation immediately after LPS
instillation enhanced the LPS-induced
increase in BAL protein levels and lung
proinflammatory cytokines (43). In the
current study, we showed that preexposure
to intratracheally instilled acrolein 6 hours
before LPS administration exaggerated
LPS-induced lung edema and BAL
inflammatory cell numbers. The difference
between our results and those of Kasahara
and colleagues may be due to the different
doses of acrolein, the methods of exposure,
and the timing of exposures relative to LPS
used in the studies.

Reactive aldehydes can cause cellular
oxidative stress by activating NADPH
oxidase (24, 25) and/or depleting the
antioxidant GSH (46) via the formation of
aldehyde adducts (19, 47). Acrolein has
been shown to deplete GSH and cause
mitochondrial oxidative stress in
hepatocytes (42). In contrast, acrolein has
been shown to increase the antioxidant
capacity of cells (48). In this study, we

observed an increase of mitochondrial ROS
in LMVECs treated with acrolein. We also
found that acrolein-induced endothelial
barrier dysfunction was completely
prevented by the antioxidant NAC, a
precursor of GSH, but not by apocynin, an
NADPH oxidase inhibitor. Our results
suggest that acrolein disrupts LMVEC
barrier integrity, likely by depleting GSH
rather than by activating NADPH oxidase.

Acrolein can be oxidized and thus
detoxified by ALDH2, which is modestly
expressed in lungs (40). Alda-1 is a small-
molecule activator of ALDH2 (39). We
confirmed that Alda-1 significantly elevated
ALDH2 activity in liver. However, lung
ALDH2 activity remained undetectable in
our assay. Acrolein is also a potent inhibitor
of both cytosolic and mitochondrial ALDH
isoforms (49). We noted that liver ALDH2
activity did not decrease in mice
intratracheally challenged with acrolein.
This may be due to the instillation route
used to administer the acrolein, and limited
accumulation of acrolein in the liver, which
would prevent a reduction in the baseline
levels of ALDH2 in liver. However, acrolein
prevented Alda-1–induced activation of
ALDH2 in liver. We do not know whether
acrolein inhibits basal or Alda-1–induced
ALDH2 activity in lungs. We speculate that
acrolein inhibits ALDH2 activity in lungs,
leading to oxidative stress and lung injury.
We show that Alda-1 not only prevented
but also rescued acrolein-induced lung
edema and lung inflammation in vivo.
Alda-1 also attenuated acrolein-induced
LMVEC barrier dysfunction in vitro.
Although we still do not know whether
Alda-1 protects against lung injury by
preventing acrolein-induced inhibition of

ALDH2, our data suggest that Alda-1
may be a novel strategy to treat smoke
inhalation and other acrolein-associated
lung injuries.

Activation of AMPK has been shown to
attenuate lung inflammation and the
severity of lung injuries induced by LPS (50)
and sepsis (51), as well as LPS-induced lung
vascular endothelial permeability (52).
AMPK is activated via phosphorylation of
T172. The reactive aldehyde 4-hydroxy-2-
nonenal (4-HNE) has been shown to
inactivate AMPK via carbonylation and
thus dephosphorylation of AMPK at T172
(53). Similar to what was observed for
4-HNE, acrolein also inhibited AMPK
activity, as indicated by reduced AMPK
phosphorylation at T172. It is possible that
acrolein causes AMPK carbonylation and
thus dephosphorylation at T172.
Additionally, lung AMPK expression levels
were also reduced in mice exposed to
acrolein—an effect that was associated with
lung edema. Importantly, activation of
AMPK with AICAR attenuated acrolein-
induced LMVEC monolayer permeability.
Our results suggest that inhibition of
AMPK signaling may contribute to
acrolein-induced lung injury. The
mechanism by which inhibition of AMPK
leads to endothelial barrier dysfunction and
lung injury is not understood. High-
mobility group box 1 protein (HMGB1), a
component of damage-associated molecular
patterns, is released during tissue injury and
is one of the crucial proinflammatory
cytokines that mediate the response to
infection and inflammation (54). AMPK
activators have been shown to prevent
lethal endotoxin-induced lung
inflammation and improve survival in mice
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by inhibiting LPS-induced HMGB1 release
(55, 56). Whether HMGB1 release
contributes to acrolein-induced alveolar-
capillary barrier permeability and lung
injury remains to be determined.

We showed that acrolein reduced total
AMPK protein levels in vitro and in vivo.
The underlying mechanism remains
unknown. Protein carbonylation may cause
protein misfolding, cross-linking,
aggregation, and degradation (22). We

noted that the acrolein-induced decrease in
total AMPK in LMVECs was not altered by
MG132 (data not shown), suggesting that
the decrease in AMPK protein is
independent of proteasome-mediated
protein degradation. It is possible that
carbonylated AMPK is degraded via the
unfolded protein response, followed by
protein degradation or autophagy/
lysosome-associated protein degradation.
It is also possible that acrolein reduced

AMPK gene transcription. The exact
mechanism of the acrolein-induced
reduction in AMPK protein levels
remains unknown and warrants further
investigation.

Acrolein has been shown to impair
mitochondrial respiration in alveolar type 2
epithelial cells (57). Similarly, we found that
acrolein dose- and time-dependently
impaired LMVEC mitochondrial
respiration. Although Alda-1 and AICAR
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attenuated acrolein-induced LMVEC
permeability, neither Alda-1 nor AICAR
prevented acrolein-induced inhibition of
mitochondrial respiration. It has been
reported that increased monolayer
permeability precedes ATP loss in acrolein-
exposed Calu-3 lung adenocarcinoma cells
(58). Taken together, our results suggest
that acrolein increased LMVEC
permeability and caused lung edema via a
mechanism that is independent of
mitochondrial dysfunction. Because

acrolein not only reduced AMPK activity
but also decreased AMPK total protein
levels, the inability of the AMPK
activator AICAR to prevent acrolein-
induced mitochondrial dysfunction may be
due to overall diminished amounts of
AMPK in acrolein-treated cells. Our results
also suggest that AMPK activity is essential
for endothelial barrier function,
whereas the amount of AMPK
protein is important for mitochondrial
function.

We recognize that in vivo acrolein has
complex effects on multiple cell types.
Alda-1 may target other cells in addition
to LMVECs. Nevertheless, our results
suggest that detoxification of acrolein by
Alda-1 and activation of AMPK by
AICAR may be novel approaches to
prevent and treat acrolein-associated
ALI. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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