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Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple

mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have

been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous

mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we

detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the

genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness.

We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and

found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data

best. However, the best-fitting mutational effects models were highly dependent on the genetic background of the ancestral

strain.
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Genetic variation originates from new mutations and selection act-

ing on genetic variation ultimately leads to evolutionary change.

The fitness properties of new, spontaneous mutations are therefore

of interest in many areas of biology. For example, the rate of muta-

tion per generation can determine the speed at which a population

can adapt to changing environmental conditions (but see de Visser

et al. 1999), and recombination is favoured because it increases

the efficacy of selection against deleterious variants (Otto 2009;

Hartfield et al. 2012). The majority of mutations affecting fitness

seem to have a negative impact (Keightley and Lynch 2003) and

the cumulative fitness impact of new mutations can be significant

over evolutionary time scales (Eyre-Walker and Keightley 1999;

Lynch et al. 1999).

This article corresponds to Singhal, S. 2017. Digest: Unpacking fitness ef-

fects of spontaneous mutations. Evolution. https://doi.org/10.1111/evo.13388.

Although new mutations are of broad interest in evolutionary

biology, their properties have been difficult to study directly. Any

new mutation will be initially rare in a population, and in large

populations, selection will be effective in removing deleterious

mutations (Kimura and Ohta 1971). This implies that standing

genetic variation for fitness is expected to result from the segre-

gation of mutations with small deleterious effects. Consequently,

population genetics approaches to determine the distribution of

fitness effects of mutations are limited to that part of the distribu-

tion that segregates at appreciable frequencies within populations

(Keightley and Eyre-Walker 2010).

To obtain a more complete picture of the distribution of

fitness effects of new mutations, mutation accumulation (MA)

approaches have been widely applied. MA involves propagating

multiple lines from a common ancestor under conditions where

natural selection is minimized, with regular bottlenecking of the
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populations to one or very few individuals (see e.g., Halligan

and Keightley 2009). After the period of MA, the fitness of MA

lines can be compared to that of their ancestral genotypes to

determine the cumulative impact of MA on fitness. With the ex-

ception of strongly deleterious mutations, the accumulation of

mutations is expected to occur randomly in such experiments.

MA experiments have been conducted in many species, ranging

from prokaryotes to multicellular eukaryotes (for a review see

Halligan and Keightley 2009). A common observation from these

studies is that MA lines have higher variance and a lower mean

fitness than their ancestors, the later indicating that the major-

ity of mutations have a negative effect (e.g., Zeyl and De Visser

2001; Charlesworth et al. 2004; Morgan et al. 2014). However,

the overall relationship between the number of mutations and the

decline in fitness remains to be determined. Similarly, the rel-

ative importance of mutations in different parts of the genome

(e.g., in coding vs noncoding DNA regions) on fitness is poorly

understood.

Recently, decreasing costs of whole-genome sequencing

have allowed researchers to determine the number, type, and

position of mutations throughout the genome of MA lines. In

contrast to previous approaches, where mutational properties are

inferred indirectly (Halligan and Keightley 2009), the compari-

son of MA lines with their ancestors allows the mutation rate to

be estimated directly (Denver et al. 2012). In this study, we in-

vestigate previously generated MA lines of the single-celled alga

Chlamydomonas reinhardtii in which mutations have been char-

acterized using whole genome sequencing. We directly examine

the relationship between the numbers of mutation and fitness of

MA lines. To increase the precision of the inferred relationships,

we developed high throughput competitive assays, which allow

us to measure fitness more accurately than has been previously

possible in this system. We then combined this fitness informa-

tion with sequence-based information on the number, type, and

position of mutations. We found that most mutations are either

slightly deleterious or have no observable effect on competitive

fitness (i.e., on growth in direct competition with a nonmutated

line). The total number of mutations was significantly related to

competitive fitness in comparison to the ancestor, an effect at least

partially attributable by a significant negative impact of coding

region-located mutations on fitness. Lastly, to infer properties of

the distribution of fitness effects of mutations, we modeled the

relationship between fitness and the total number of mutations

carried by each line.

Methods
STRAIN GENERATION AND MUTATION CALLING

The MA lines studied in this experiment were generated as de-

scribed previously (Morgan et al. 2014). Briefly, Chlamydomonas

reinhardtii strains (CC-1373, CC-1952, CC-2342, CC-2344, CC-

2931, and CC-2937) were chosen from natural isolates collected

between 1945 and 1993 (Morgan et al. 2014). These strains were

ancestral to the MA lines (henceforth ancestor strains), and were

grown up on standard Bold’s agar medium. To initiate the MA

experiment, 15 individual colonies of each ancestral strain were

randomly chosen and transferred onto fresh Bold’s agar plates

(Bold 1942). Transfers between plates were then performed by

randomly choosing one colony and spreading it on a new plate,

thus bottlenecking each line to a single cell at each transfer, which

is expected to minimize the effectiveness of natural selection.

The interval between transfers was chosen to minimize selection

against slow growing colonies (Morgan et al. 2014). This proto-

col was repeated until the MA lines had undergone approximately

1000 generations. At the end of the MA experiment, one randomly

chosen colony per MA line was stored frozen.

As described in detail elsewhere (Ness et al. 2015a), we char-

acterized the complement of mutations carried by each MA line by

genome sequencing. Briefly, we sequenced DNA from each MA

line using the Illumina GAII platform. The reads were aligned

against the C. reinhardtii reference genome (version 5.3 (Mer-

chant et al. 2007)) using BWA (Li and Durbin 2009) and geno-

types were called with the UnifiedGenotyper of GATK (McKenna

et al. 2010). The genotype information was then used to identify

mutations of each MA line by comparison to its ancestor and

to the other 14 MA lines derived from the same ancestor (Ness

et al. 2015a). These SNPs and indels include 3490 nuclear muta-

tions and 12 plastid mutations. No mutations were detected in the

mitochondria (Ness et al. 2015b).

MEASURING COMPETITIVE FITNESS

To detect mutations with small effects on fitness, precise measures

are necessary. We employed high throughput flow cytometry to

measure competitive fitness, that is fitness in comparison to a

competitor genotype within the same well, based on direct cell

counts (Gullberg et al. 2014). This method provides a number of

advantages over growth rates based on optical density changes.

First, competitor and focal genotype are grown within the same

well, so micro gradients of environmental conditions during the

experiment should impact them both similarly. Second, fitness

measures based on competitive growth rate might provide a more

meaningful fitness proxy than growth in isolation. Third, flow

cytometry makes it possible to distinguish live single cells from

dividing cells, debris, and even bacterial contaminants with high

repeatability and fidelity.

We conducted fitness tests of all MA lines derived from five

of the ancestral backgrounds (CC-1952, CC-2342, CC-2344, CC-

2931, and CC-2937) that were revivable after frozen storage. We

excluded MA lines derived from the CC-1373 ancestor, because

we previously detected signatures of positive selection among
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these lines (Morgan et al. 2014). Since the fitness effect of a

mutation may be environment-specific, we assayed fitness in two

environments, a benign environment comprising standard Bold’s

medium and in an environment known to be more stressful (Bold’s

medium supplemented with 2.5 g/L NaCl (Bell 1992)). We ex-

cluded two lines apparently containing hyper-mutator mutations

(containing >250 mutations: CC-2344_L1 and CC-2931_L5) and

one apparent hypo-mutator (containing only two mutations, CC-

1952_L4). The remaining 60 lines (carrying on average 58 muta-

tions per line) were competed against the C. reinhardtii CC-1690

lab strain marked with the Venus fluorescent protein, hereafter

referred to as “competitor” or “Venus” (kindly provided by S.

Mayfield). Venus excites at 515 nm and emits at 528 nm and

can be clearly distinguished from C. reinhardtii autofluorescence

(Rasala et al. 2013).

We inoculated samples of each MA line growing on solid

Bold’s medium into two 96-well plates filled with 200 μL of

liquid Bold’s medium. At the same time, we inoculated six to

seven pseudoreplicates for each of the six ancestor strains into

wells of the same plates such that each plate contained at least one

pseudoreplicate of each ancestor. The competitor was inoculated

twice into 5 mL Bold’s medium in a six-well plate at the same

time to obtain a sufficient amount of competitor culture for all

competition assays. All cultures were grown shaken for four days

at 25°C at 80% relative humidity.

To precondition the cultures to assay conditions, we diluted

20 μL samples from each MA line and ancestor strain culture

in 180 μL of Bold’s medium and into Bold’s medium supple-

mented with 2.5 g/L of NaCl. The two Venus cultures were com-

bined, then split into three pseudoreplicates for each environmen-

tal condition by adding 500 μL to 4.5 mL of either Bold’s or

Bold’s supplemented with 2.5 g/L NaCl. All cultures were incu-

bated for three more days under the same conditions as described

previously.

On the start day of the growth assay, all Venus pseudorepli-

cates within each environmental condition were mixed to create a

homogenous competitor culture acclimated to each test condition.

For the competition assay, we created mixtures of each test culture

and the Venus culture by combining 30 μL of each. To initiate the

assay, 10 μL of each mixture or each pure MA test culture were

added to 190 μL of Bold’s or Bold’s with 2.5 g/L NaCl. Within

each assay plate, we additionally included two wells inoculated

with 10 μL of Venus as a pure culture control to ensure that flu-

orescence emittance was stable over time. Each assay plate was

duplicated and one randomly chosen plate per pair was used for

the initial destructive cell counts while the other was incubated

shaken at 25°C and 80% relative humidity for 72 hours. All cul-

tures were then diluted 1:10 into fresh media to avoid entry into

stationary phase and incubated for 24 more hours under identical

conditions before being counted again.

FLOW CYTOMETRY

Samples were analyzed using a FACSCanto II flow cytome-

ter (Beckton Dickinson (BD) Immunocytometry Systems, UK)

equipped with a 488-nm argon laser and standard filter set-up run-

ning FACSDiva 6 software. An electronic acquisition gate was ap-

plied to the Forward/Side scatter log-plot around the chlorophyll

positive population and 100,000 events were acquired in this gate.

Chlorophyll was detected based on FL-3 (670–735 nm) fluores-

cence emission and Venus was quantified based on FL-1 (530 ± 30

nm) fluorescence emission. All particle counts were acquired us-

ing a BD High Throughput (HTS) system at 1 μL/s for 30 seconds

with a threshold rate <10,000 events/second from 96-well plates.

Analysis was performed using custom R scripts (an example script

is deposited in Dryad, https://doi.org/10.5061/dryad.4sg14).

DATA PROCESSING

The raw particle counts obtained from the flow cytometer were

filtered according to the following parameters. To exclude cell

clumps and fragments, we removed all particles with forward

scatter area (FSC-A—indicating cell size) values smaller than

50,000 and larger than 250,000. Cells in the process of division

were excluded by removing particles with forward scatter width

(FSC-W—indicating the width of the forward scatter signal) val-

ues smaller than 50,000 and larger than 100,000. Debris was ex-

cluded by removing side scatter (SSC-A—indicative of cell gran-

ularity or complexity) values above 250,000. Lastly, particles not

containing chlorophyll were removed by excluding all particles

corresponding to a PerCP-Cy5-5-A (a fluorochrom with similar

absorption and emission characteristics to chlorophyll) excitation

of below 1000. We recorded the excitation values corresponding

to the PerCP-Cy5-5-A and FITC-A fluorochroms for all cells,

after experimentally determining that these axes are the most ef-

ficient at separating Venus-fluorescent from nonfluorescent cells

in pilot studies.

We log transformed all PerCP-Cy5-5-A and FITC-A excita-

tion values before further data processing. To estimate the number

of Venus-fluorescent and nonfluorescent cells within each com-

petition well, we randomly sampled 500 data points from each

dataset from pure cultures (the pure Venus wells on the plate, as

well as the pure MA line culture) to be used as a training dataset.

We trained a quadratic discriminant analysis model on this dataset

to assign data points to two groups: MA line and fluorescent com-

petitor. The model uses data point identity (MA line or competitor)

as the response variable and the log transformed PerCP-Cy5-5-

A and FITC-A excitation values as the predictor variables. The

resulting model was then utilized to assign the cells within the

corresponding competitive assay wells to either the MA line or

the competitor. We validated each model by utilizing it to reas-

sign the training dataset (where the origin of each data point was

known) to the two parent strains and subsequently evaluating the
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number of correct identifications. On average, quadratic discrim-

inant analysis models assigned 99.3% of data points to the correct

group. We discarded all assays in which the discriminant function

analysis failed to predict the identity of more than 5% of the train-

ing data set correctly (0.05% of all models), as this might indicate

irregular fluorescence within the well. Furthermore, we discarded

assays where the model failed to converge (2.6% of all models),

as well as those were growth failed in either the competition well

or one of the two corresponding pure culture wells (4.8%). See

Fig. S1 for examples of both a training data set (panels A and

B) and a corresponding mixed culture with the groups assigned

(panel C).

The correlations between fitness measures of each MA line

between flow cytometric replicates were consistently higher than

the correlations between line fitness measures based on repli-

cate OD measurements published previously (Morgan et al. 2014,

replicate 1 – 2: r2 = 0.515 ± 0.168 95% confidence interval, repli-

cate 1 – 3: r2 = 0.577 ± 0.155 95% confidence intervals, replicate

2 – 3: r2 = 0.573 ± 0.156 95% confidence intervals, compared

to a correlation of 0.4075 ± 0.201 95% confidence intervals from

Morgan et al. 2014).

CALCULATION OF COMPETITIVE FITNESS

We used the cell counts obtained from flow cytometry to calculate

“competitive fitness,” a measure of the fitness of each line in

direct competition with the Venus competitor within the same

well. Firstly, we calculated the growth rates per hour of focal

strains (rMA) or fluorescence-marked competitors (rV) as:

r = (ln (10N96/N0)) /96, (1)

where N96 is the number of cells counted after 96 hours and N0 is

the number of cells counted at the beginning of the assay, that is

at time point zero. The multiplication factor of 10 in the equation

accounts for the 1:10 dilution done at 72 hours to keep cultures

in exponential phase during the assay. The competitive fitness

of each MA line was subsequently calculated as the difference

between the Venus and MA line growth rates:

wM A = rM A − rV . (2)

Likewise, the competitive fitness of an ancestor (wANC) was

calculated as:

wANC = rANC − rV . (3)

We calculated the selection coefficient (s), as:

s = wANC − wM A. (4)

Additionally, we calculated relative fitness (1 – s) to describe

the competitive fitness of an MA line relative to the competi-

tive fitness of its ancestor. Results based on relative fitness mea-

sures were similar to those based on competitive fitness and can

be found in the supplemental statistics file. To aid comparisons

across studies, we additionally calculated selective effects scaled

by ancestral generation time (sτ) (Supplemental methods, Chevin

2011; Kraemer et al. 2016).

STATISTICAL ANALYSIS

All statistical analyses were conducted using R (R Development

Core Team 2009). We utilized linear-mixed models assuming a

normal error distribution, as implemented in the packages nlme

and lme4 (Bates et al. 2015; Pinheiro et al. 2016) to investigate the

impact of the number and classes of mutations of each MA line

on its competitive and relative fitness. The genetic background of

each MA line was included as a random effect on the intercept.

Ancestors of MA lines were included as lines with zero mutations

in all models. Because we were hypothesis-testing the impact of

different mutational properties on fitness, we did not perform a

sequential model fitting. All model details can be found in Tables

2 and 3 and the supplemental statistics.

INFERENCE OF THE DISTRIBUTION OF EFFECTS OF

MUTATIONS ON COMPETITIVE FITNESS

To investigate if there are models for the distribution of fitness

effects (DFE) of new mutations that can explain the observed pat-

terns of changes in fitness among lines, we developed a maximum

likelihood approach to estimate DFE parameters based on com-

petitive fitness estimates and the numbers of mutations carried by

each line, the latter inferred by genome sequencing (Ness et al.

2015a).

Let Xi be the estimated competitive fitness for MA line or

control replicate i of a given ancestral strain (corresponding to the

fitness measure wMA or wAnc), and ni be the number of mutations

carried by that MA line, with ni = 0 for an ancestor genotype.

Following Kousathanas and Keightley (2013), rather than fitting

a continuous distribution for the DFE, we fitted models incorpo-

rating c categories (c � 1) of discrete mutational effects s = [s1,

s2 . . . sc]. This typically gives a superior fit to the data than a para-

metric distribution, such as the gamma distribution. We assumed

an additive model, increasing the number of categories until there

was no improvement in model fit (likelihood ratio tests, P > 0.05).

We assumed that the first category of mutational effects had no

effect on fitness, that is s1 = 0 (“neutral”), and we estimated the

fitness effects associated with the remaining c – 1 categories. The

proportions of mutational effects in each category were specified

by a vector p = [p1, p2 . . . pc], where p1 is the proportion of the

mutational effect that has no effect on fitness, and �p = 1. There

are therefore c – 1 proportions to be estimated in the model. We
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assumed that the mutations are independently distributed among

the categories, that is multinomially distributed f(c, p, n), where

n = [n1, n2 . . . nc] is a vector of the numbers of mutations in the

different categories carried by an MA line, with �n = ni. Taking a

model with c = 2 categories of mutational effects as an example,

the likelihood for observation Xi is:

Li =
ni∑

j=0

ni − j∑

k=0

f (2, p, n)�(Xi − ks2,μ, VE ), (5)

p = [p1, 1 − p1] , n = [ j, k]

where �(Y, μ, VE) is the density of the normal distribution proba-

bility density function at point Y, μ = the mean for the control or

unmutated lines and VE = the environmental variance (containing

the error variance). Thus, out of n mutations detected in a given

MA line, k will belong to the second mutational effects category

and will reduce fitness by a factor of s2 each. There are similar

equations for c = 1 (a null model of only neutral mutations) and

c = 3 (Supplementary information). For each model, we estimated

μ, VE, the proportion of the mutational effect categories, as well

as their respective selective effects.

We also tested models with an additional parameter, �VE,

which allows for the residual variance to change linearly with

the number of mutations. The addition of this parameter did not

improve the model fit for one or two effects category models

(based on likelihood ratio tests). We present the results of these

models in Table S1.

The overall likelihood across m independently generated MA

lines of a given ancestral genotype was:

logL =
x=m∑

x=1

logL X . (6)

MAXIMIZATION OF LOG LIKELIHOOD

Likelihood was maximized using the simplex algorithm (Nelder

and Mead 1965). The model potentially has a large number of

parameters and there is the possibility of local likelihood maxima,

which the simplex algorithm might find rather than the global

maximum. To find the global maximum log likelihood for each c,

for each strain we estimated the parameters of the model between

20 and 250 times using varying starting values until a plateau

log likelihood value was reached. Starting values were randomly

chosen from the following ranges: μ: mean competitive fitness ±
0.015, VE: replicate variance ± 0.00005, �VE: –0.001 – 0.001,

s2 . . . sc: –0.5 – 0.5, and p2 . . . pc: 0 – 1 with �p2 . . . pc < 1 so

that p1 = 1 – �p2 . . . pc.

Figure 1. Relationship between competitive fitness measures and

growth rate-based fitness calculated [data from Morgan et al.

(2014)]. Error bars indicate standard errors of the mean.

Results
COMPARING COMPETITIVE FITNESS WITH FITNESS

MEASURES BASED ON GROWTH RATES IN

ISOLATION

Competitive fitness (wMA) and fitness based on growth rates in

isolation (data previously published in Morgan et al. 2014) were

highly and significantly correlated (Pearson’s product-moment

correlation coefficient of competitive fitness with fitness calcu-

lated via growth rates: 0.502, P = 2.03 × 105, Fig. 1). Similarly,

relative fitness values calculated based on competitive fitness

(1 – s) and on growth rates in isolation were significantly cor-

related (Pearson’s product-moment correlation coefficient: 0.604,

P = 1.01 × 10−7, Fig. S2).

SELECTIVE EFFECT OF MUTATIONS IN BENIGN

CONDITIONS

To estimate the average selective effect of an individual mutation,

we divided the total selective effect of all mutations (s) of each

line by the total number of mutations it carried (including SNPs

and indels). The average selective effect (s) per mutation and hour

across all MA lines and genetic backgrounds in benign conditions

was 0.000101 (± 0.0000541 standard error, Table 1).

Selective effects per mutation varied significantly between

MA lines derived from different genetic backgrounds (ANOVA

of selective effects as a function of genetic background, P =
0.031). This result was largely driven by one genetic background,

CC-2937, in which the net effect of s was negative, indicating

an increase in fitness. This contrast with the other genetic back-

grounds, in which selective effects were all positive, causing a

decrease in fitness (Table 1). Selective effects scaled by genera-

tion time (sτ) mimic these patterns (Table S1).

The selective effects per mutation calculated here are on

average smaller in magnitude than those calculated based on

growth in isolation (data previously published in Morgan et al.

2014, Table 1). However, this difference does not persist when we

compare selective effects scaled by generation time between the
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Table 1. Average selective effect estimates (s) based on competitive fitness, average selective effect scaled by generation time (sτ ) per

mutation, selective effect per mutation based on growth rates and scaled selective effect based on growth rate (Morgan et al. 2014) ±
standard errors, by genetic background and across all MA backgrounds.

Ancestral
genotypes

Number of
MA lines

s per mutation
(competitive fitness)

sτ per mutation
(competitive fitness)

s per mutation (growth
rate)

sτ per mutation
(growth rate)

CC-1952 13 0.0000732 ± 0.0000977 0.000775 ± 0.00143 0.00126 ± 0.000358 0.00609 ± 0.00177
CC-2342 10 0.000393 ± 0.000224 0.00481 ± 0.00281 0.000984 ± 0.000535 0.00429 ± 0.00248
CC-2344 12 0.000165 ± 0.0000949 0.00193 ± 0.00134 0.000406 ± 0.000258 0.00258 ± 0.00165
CC-2931 11 0.000119 ± 0.0000235 0.00144 ± 0.000305 0.000229 ± 0.0000465 0.00101 ± 0.000216
CC-2937 14 –0.000151 ± 0.0000859 –0.00340 ± 000176 –0.000487 ± 0.000162 –0.00589 ± 0.000137
All
backgrounds

60 0.000101 ± 0.0000542 0.000827 ± 0.00800 0.000447 ± 0.000154 0.00115 ± 0.000896

Table 2. Fixed effects, regression coefficients, and P-values of models with competitive fitness as the response variable.

Model number Fixed effect Regression coefficient P-value

1 MA line or ancestor –0.00751 2.1 × 10−5∗∗∗

2 Total number of mutations –5.326 × 10–5 0.024∗

3 Number of SNPs –4.239 × 10–5 0.22
Number of indels –1.035 × 10–4 0.38

4 Nonsynonymous mutations –2.471 × 10–4 0.13
Synonymous mutations –1.721 × 10–4 0.58

5 Exonic mutations –3.819 × 10–4 0.00080∗∗∗

Intronic mutations 3.799 × 10–4 0.035∗

Intergenic mutations 3.426 × 10–4 0.40
6 Intergenic mutations 2.338 × 10–4 0.57

Intronic mutations 3.898 × 10–4 0.029∗

CDS-located mutations –6.497 × 10–4 0.00014∗∗∗

UTR-located mutations 3.784 × 10–5 0.87

Genetic background was included as a random effect in all models. More model details can be found in the supplemental information.

two datasets (Table 1), indicating a difference in generation time

between assays.

MUTATIONAL EFFECTS ON FITNESS IN BENIGN

CONDITIONS

Competitive fitness of the MA lines was significantly lower than

that of their respective ancestors (linear-mixed model, genetic

background as random effect, P < 0.05, Table 2: model 1) and the

total number of mutations carried showed a significantly negative

relationship with competitive fitness (linear-mixed model, genetic

background as a random effect, P < 0.05, Table 2: model 2, Fig. 2:

open circles and solid lines). In contrast, competitive fitness was

neither significantly impacted by the number of SNPs and indels

(all P > 0.05, Table 2: model 3), nor by the number of synonymous

or nonsynonymous mutations (all P > 0.05, Table 2: model 4, all

linear-mixed models, genetic background as a random effect).

When partitioning the mutations into coding (exonic) and

noncoding (intergenic and intronic) mutations, we detected a

Figure 2. Competitive fitness plotted against the total number

of mutations (open circles and solid lines) and the total number

of coding region mutations (crosses and dashed lines) in the five

genetic backgrounds.
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Table 3. Fixed effects, regression coefficients, and P-values of models investigating the effect of moderate stress with competitive

fitness as the response variable.

Model number Fixed effect Regression coefficient P-value

1 Treatment 4.620 × 10−3 0.052
MA line or ancestor –7.479 × 10−3 0.00028∗∗∗

Treatment × type 1.621 × 10−5 0.10
2 Treatment 5.337 × 10−3 0.0080∗∗

Total number of mutations –6.614 × 10−5 0.013∗

Treatment × total number of mutations –1.690 × 10−5 0.65
3 Treatment 5.306 × 10−3 0.0084∗∗

Number of SNPs –5.663 × 10−5 0.14
Number of indels –1.091 × 10−4 0.41
Treatment × SNPs –6.350 × 10−5 0.23
Treatment × indels 1.997 × 10−4 0.27

4 Treatment 4.962 × 10−3 0.012∗

Number of nonsynonymous mutations –2.940 × 10−4 0.12
Number of synonymous mutations –2.008 × 10−4 0.58
Treatment × nonsynonymous mutations –2.110 × 10−4 0.42
Treatment × synonymous mutations 3.470 × 10−4 0.50

5 Treatment 5.165 × 10−3 0.0097∗∗

Exonic mutations –4.375 × 10−4 0.00061∗∗∗

Intronic mutations 4.215 × 10−4 0.039∗

Intergenic mutations 3.897 × 10−4 0.41
Treatment × exonic mutations 1.171 × 10−4 0.50
Treatment × intronic mutations –4.528 × 10−4 0.12
Treatment × intergenic mutations 7.719 × 10−4 0.25

6 Treatment 5.007 × 10−3 0.012∗

Intergenic mutations 3.029 × 10−4 0.52
Intronic mutations 4.379 × 10−4 0.034∗

UTR-located mutations –5.899 × 10−5 0.81
CDS-located mutations –6.880 × 10−4 0.00041∗∗∗

Treatment × intergenic mutations 7.810 × 10−4 0.25
Treatment × intronic mutations –4.535 × 10−4 0.12
Treatment × UTR mutations –5.344 × 10−5 0.88
Treatment × CDS mutations 2.371 × 10−4 0.39

Genetic background was included as a random effect in all models. More model details can be found in the supplemental information.

significantly negative impact of mutations located within exons

on competitive fitness (P < 0.001, Table 2: model 5, Fig. S3:

circles and solid lines). Surprisingly, intronic mutations had a

slight, but significantly positive impact on competitive fitness.

However, this was exclusively due to MA lines derived from a

single genetic background, CC-2937 (P < 0.05, Table 2: model

5, Fig. S3: crosses and dashed lines). We tested the effect of

mutational location further by partitioning the exonic region into

coding and untranslated regions (UTR). On average, MA lines

carried 20 mutations within their coding regions (CC-1952: 11

mutations, CC-2342: 26, CC-2344: 20, CC-2931: 33, CC-2937:

15). We found a significantly negative effect on competitive

fitness of the number of mutations located within coding regions,

but no significant effect in the case of UTR-located mutations

(linear-mixed model, genetic background as random effect, P <

0.001 and P > 0.05, respectively, Fig. 2: crosses and dashed lines,

Table 2: model 6). Additionally, we recovered the significantly

positive impact of intron-located mutations (P < 0.05, Table 2:

model 6, Fig. S3: crosses and dashed lines).

ARE MUTATIONAL EFFECTS INCREASED UNDER

STRESSFUL CONDITIONS?

It has been suggested that stressful conditions might increase the

mean effects of deleterious mutations or the amount of new mu-

tational variation (Remold and Lenski 2001; Cooper et al. 2005;

Baer et al. 2006; Martin and Lenormand 2006). To further in-

vestigate the effect of stress on mutational effects, we conducted

competitive fitness assays in medium supplemented with 2.5 g/L
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Table 4. Relative log likelihoods for models with different num-

bers of mutational effect categories for the five genetic back-

grounds.

Genetic
background c Relative logL

LRT to models with less
effect categories (P-value)

CC-1952 1 –3.1203
CC-1952 2 –0.00255 0.044∗

CC-1952 3 0 1.00
CC-2342 1 –4.203
CC-2342 2 –1.422 0.062
CC-2342 3 0 0.24
CC-2344 1 –4.0533
CC-2344 2 –0.131 0.020∗

CC-2344 3 0 0.32
CC-2931 1 –8.00563
CC-2931 2 –0.443 0.00052∗∗∗

CC-2931 3 0 0.064
CC-2937 1 –2.0453
CC-2937 2 0 0.13
CC-2937 3 0 1.00

The best-fitting model for each background is indicated in bold. To obtain

P-values, we used a chi-square distribution with degrees of freedom equal

to the number of additional parameters added.

NaCl, representing moderate stress (Kraemer et al. 2015). Mod-

erately stressful conditions represent a more realistic scenario for

environmental conditions that might be encountered by new mu-

tants, in contrast to nearly lethal conditions. Overall, competitive

fitness was slightly, but not significantly higher in moderately

stressful than in benign conditions (linear-mixed model, genetic

background as random effect, P = 0.052, Table 3: model 1). This

indicates that the common competitor genotype may be more

strongly impacted by stressful conditions than the MA lines and

their ancestors. While MA lines are less fit than their ancestors,

we did not find their fitness to be impacted by the stress treatment

(P < 0.05 and P > 0.05, respectively, Table 3: model 1).

The mean selective effect per mutation under stressful con-

ditions was 0.0000178 (± 0.0000561 standard error). However,

mean s per mutation did not differ significantly between benign

and stressful conditions (paired Student’s t-tests for s per muta-

tion per MA line in benign and stressful conditions, P = 0.10).

Likewise, we did not detect any differences in the new mutational

variation between benign and stressful conditions (Levene’s test

for s per mutation per MA line in benign and stressful conditions,

P = 0.705).

The stress treatment did not impact the effect of mutations on

the competitive fitness of MA lines (Table 3). While we recovered

the negative effects of the total number of mutations, of exonic

and CDS-located mutations, as well as the significantly positive

effect of intronic mutations (P < 0.05, Table 3: model 2, model

5, model 6), none of these effects were significantly impacted by

moderate stress (P > 0.05, Table 3: model 2, model 5, model 6).

INFERENCE OF DISTRIBUTIONS OF MUTATIONAL

EFFECTS FOR FITNESS

We investigated the fit of models with different numbers of cat-

egories of mutational effects to our fitness data. The different

genetic backgrounds showed significantly different fitness tra-

jectories, so this analysis was performed independently for each

genetic background. The best-fitting models were determined via

likelihood ratio tests (LRTs) (Table 4). In two cases (CC-2342,

CC-2937), models with one category of mutational effects (c =
1, indicating no significant fitness impact of mutations (i.e., only

neutral mutations)), fitted the data best. For MA lines derived

from the other three genetic backgrounds, models with two ef-

fect categories (c = 2) fitted significantly better than models with

just a single category, suggesting that these genetic backgrounds

have at least one category of mutational effects impacting fitness

under the assay conditions (Table 4, all P < 0.05). Adding an

additional category of mutational effects (c = 3) did not improve

model fit significantly for any of those datasets (Table 4, all P

> 0.05). Incorporating the variance parameter �VE, which al-

lows the residual variance to change linearly with mutation num-

ber, did not improve model fits, based on likelihood ratio tests

(Table S1, Fig. S4). This result is consistent with a lack of de-

tectable relationship between the variance and the mean fitness of

a line (Fig. S5).

To visualize the fit of the models, we simulated data based

on the best-fitting models and plotted it along the observed fitness

data (Fig. 3, observed data: black circles, simulated data: gray

circles). Simulated fitness values based on the best-fitting model

of mutational effects corresponded well to the observed data.

Likewise, we investigated models with different mutational

effect categories of exonic mutations only (Table S2). In this case,

we detected a significant deleterious effect category for lines de-

rived from the CC-2342 background. Moreover, the proportion

of deleterious mutations was higher for MA lines from the back-

grounds CC-1952, CC-2344, and CC-2931.

MUTATIONAL EFFECT CATEGORIES

All mutational effect categories impacting fitness were deleteri-

ous. Somewhat surprisingly though, the mutational effects esti-

mated were quite small (s < 0.1). Mutational effects were also

highly dependent on the genetic background of the MA lines

investigated. For example, we observed differences in the pro-

portions of mutations with and without detectable fitness effects

among the strains (Table 5). While our dataset does not include

a wide enough range of genetic backgrounds to draw systematic

conclusions about the relationship between the similarity of mu-

tational effect class proportions and relatedness, it is noteworthy
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Figure 3. Competitive fitness plotted against the total number of mutations in the five genetic backgrounds. Black dots represent

observed fitness values, gray dots represent predicted fitness values based on the frequencies of mutational effect categories derived

from the best-fitting model of mutational effect categories (Table 3). Black lines indicate a linear model fit of the observed data.

Table 5. Maximum likelihood parameter estimates (± 95% confidence intervals) for each strain for best-fitting models of numbers of

mutational effect categories.

Strain c p1 s1 p2 (± 95% confidence intervals) s2 (± 95% confidence intervals)

CC-1952 2 0.992 0 0.00815 (0.00126, 0.637) –0.0178 (–0.0313, –0.000194)
CC-2342 1 1 0
CC-2344 2 0.996 0 0.00408 (0.00149, 0.00809) –0.0310 (–0.0395, –0.0193)
CC-2931 2 0.886 0 0.114 (0.0134, 1) –0.000105 (–0.00744, –0.0000609)
CC-2937 1 1 0

c, number of categories of mutational effects, p – proportion, s – selection coefficient.

that the mutational effect categories detected vary widely even

between two very closely related genetic backgrounds (CC-2342

and CC-2344, Flowers et al. 2015).

Discussion
Directly determining the fitness effects of new mutations has been

a long-standing goal in evolutionary biology (Kondrashov 1988;

Otto 2009). Lines derived in MA experiments offer the opportu-

nity to study the fitness effects of all but the most deleterious of

mutations, and thus to directly assess traits such as the mutation

rate (Baer et al. 2006; Ness et al. 2015a) and the distribution of

fitness effects of mutations (Halligan and Keightley 2009). Most

mutational effects across the genome are expected to be either

neutral or very mildly deleterious (Keightley and Lynch 2003).

Moreover, such effects may be strongly influenced by the environ-

ment in which they are measured (Martin and Lenormand 2006).

To study mutations of small effect, highly accurate fitness mea-

sures are necessary. Here, we utilized flow cytometry to obtain

such fitness measures to determine the effects of new mutations in

the green algae C. reinhardtii. This study thus connects a fine scale

fitness analysis of MA lines within detailed sequence information

about the number, type, and position of the causal mutations.

A long-standing question in microbial experimental evolu-

tion has also been the extent by which fitness based on growth

rates in isolation proxies the overall evolutionary fitness of a

genotype (i.e., the probability that a newly arising mutant will

outcompete its ancestor (Hall et al. 2014; Vale et al. 2015)). We

estimated the correlation between competitive fitness measured

in this study with a growth rate-based fitness measure from a
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previous study of the same MA lines (Morgan et al. 2014). Over-

all, the two fitness measures, as well as the respective derived

relative fitness measures, were highly significantly and positively

correlated, indicating that competitive fitness can be, to some

degree, compared across studies to previous fitness measures ob-

tained via growth rates in isolation (e.g., Kassen and Bell 2000;

Morgan et al. 2014; Lachapelle et al. 2015). However, we found

that competitive fitness measures consistently have higher inter-

replicate correlations and smaller 95% confidence intervals than

growth rate-based fitness measures and are thus able to provide

more precise estimates of small mutational effects.

In accordance with previous results (Zeyl and De Visser

2001; Charlesworth et al. 2004; Baer et al. 2006; Morgan et al.

2014), lines that have accumulated mutations under reduced se-

lection suffered a reduction in fitness. Moreover, lines are gener-

ally less fit the more mutations they have accumulated. However,

we failed to detect significant effects of the number of different

molecular types of mutations (SNPs or indels) on fitness, although

indels cause larger sequence disruptions than SNPs, and can cause

frame shifts. The absence of a significant effect of indels may be

due to their low overall number (�10 per MA line) compared to

the number of SNPs (48 per MA line).

A priori, we might expect the effects of mutations to be

greatest in coding regions, compared to intergenic or intronic

sites. Indeed, in an analysis restricted to this set of mutations, we

did detect the expected negative relationship. Thus, much of the

reduction in fitness seen in our MA lines appears to be due to

mutations that fall in these regions. While not unexpected, this

is, as far as we are aware, the first study to show this directly.

Within a coding region, we found no evidence to suggest that

this result was due specifically to the number of these mutations

that were nonsynonymous. This might suggest that synonymous

mutations may also have fitness consequences (e.g., Bailey et al.

2014), but more likely was simply due to a lack of statistical

power. Intriguingly and unexpectedly, we also detected a signifi-

cant positive effect of intronic mutations on fitness. However, this

effect seems to be largely caused by a single genetic background

(CC-2937), which actually shows a slight fitness increase dur-

ing MA, indicating that even though care was taken to minimize

selection, lines derived from very slow growing ancestors might

have accumulated beneficial mutations.

To further investigate mutational effects within our dataset,

we used maximum likelihood to estimate the number of discrete

mutational effect categories that best explain our data, and found

that most genetic backgrounds were characterized by either one or

two mutational effect categories. In two of the five genetic back-

grounds, the best-fitting model only allowed for neutral mutations.

In the other three backgrounds a second, slightly deleterious effect

category was fitted. Overall, the best-fitting model represented a

good fit to the actual fitness data (Fig. 3). As expected, the pro-

portion of mutations in a deleterious effect class is increased if

we focus the analysis on mutations more likely to impact fitness,

such as exonic mutations.

The differences in mutational effects among the different

genetic backgrounds opens up the possibility for the existence

of genotype-specific mutational trajectories (i.e., different geno-

types may have different propensities to incur different categories

of mutational effects potentially resulting in different evolutionary

trajectories). However, while genotype-specific trajectories have

been outlined for the case in which different populations adapt

to a fitness peak via beneficial mutations (e.g., different “starting

points” of genotypes in Fisher’s geometric model (Fisher 1930;

Orr 2006)), such hypotheses are difficult to apply to “unselected”

mutations derived from a MA experiment. It is notable that the

closely related strains CC-2342 and CC-2344 were characterized

by very dissimilar estimated frequencies of mutational effect cat-

egories and also varied in the total number of mutations found.

However, a more thorough investigation of mutational effect cate-

gories across a range of relatedness is necessary to determine if the

genetic architecture can influence the frequencies of mutational

effect categories systematically.

It has been proposed that environmental stress might impact

the selective effects of mutations and, for example, lead to a

release of cryptic genetic variation that cannot be observed under

benign conditions (Latta et al. 2015). Here, we focused our test

on moderately stressful conditions (Kraemer et al. 2015), since

these conditions represent a more realistic environmental stress

than nearly lethal stress. The common competitor was on average

more impacted by moderate stress than the MA lines are their

ancestors. This reduced stress-tolerance could be due to a longer

cultivation period in the lab (CC-1690 was isolated in 1955) or

could be a cryptic cost of the genetic manipulation and fluorescent

marking of the strain. We did not observe any significant impact of

stress on the expression of mutational effects. Thus, in our study

moderate stress did not lead to an exacerbation of mutational

effects, nor did we detect differences in the variances of such

effects across different environmental conditions (e.g., Martin

and Lenormand 2006). Our findings contrast with other studies

on the fitness effects of accumulated mutations in a range of model

organisms such as E. coli (Cooper and Lenski 2000; Remold and

Lenski 2001), yeast (Szafraniec et al. 2001; Jasnos et al. 2008),

and Drosophila (Kondrashov and Houle 1994; Fry and Heinsohn

2002; Wang et al. 2009; Young et al. 2009). However, stress-

dependent fitness effects are far from general and their absence has

been reported previously in the same systems (e.g. (Korona 1999;

Kishony and Leibler 2003; Jasnos et al. 2008), and in a previous

study on the same C. reinhardtii MA lines utilizing growth rates

as a measure of fitness (Kraemer et al. 2015). Importantly, this

result indicates that the mutational effects measured here can be

extrapolated across different environments.
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In summary, this study design allowed us to make direct con-

nections between DNA sequence and fitness data to determine

the impact of the number of new mutations on fitness. While MA

lines were less fit on average than their ancestors, this fitness

decline was largely unrelated to the type of mutation (SNPs or in-

dels) carried by each individual MA line. In contrast, the number

of mutations located within exonic and coding regions signifi-

cantly and negatively impacted MA line fitness. Thus, most new

mutations did not have observable fitness effects (at least under

the environmental conditions utilized here) and overall decline in

fitness was due to few mutations of detectable deleterious effects,

many located within coding regions.
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Figure S1. Example of flow cytometry data plots and clustering of groups within mixed cultures. Each data point is plotted based on its PerCP-Cy5-5-A
and FITC-A fluorescence. Upper panel: MA training dataset: 500 data points sampled randomly from all data points of the pure MA culture. Middle
panel: Venus training data set: 500 data points randomly sampled from a pure Venus culture located on the same plate. Lower panel: Example of a mixed
culture with group assignments based on the training data sets. Circles represent MA line cells, triangles Venus competitor cells within the same well.
Figure S2. Correlation between relative fitness values calculated from either competitive fitness or growth rate-based fitness (based on changes in optical
density, data obtained from Morgan et al., 2014). Error bars indicate standard errors of the mean.
Figure S3. Competitive fitness plotted against the total number of exonic mutations (open circles and solid lines) and the total number of intronic mutations
(crosses and dashed lines) in the five genetic backgrounds.
Figure S4. Competitive fitness plotted against the total number of mutations in the five genetic backgrounds. Black dots represent observed fitness values,
grey dots represent predicted fitness values based on the frequencies of mutational effect categories derived from the best-fitting model of mutational
effect categories incorporating the parameter �VE (Supplemental Table 1). Black lines indicate a linear model fit of the observed data.
Figure S5. Mean and variance of unscaled competitive fitness of each MA line. We did not detect a relationship between the mean and the variance of
unscaled competitive fitness.
Table S1. Maximum likelihood parameter estimates for each strain for models of with one or two mutational effect categories, allowing for varying
residual variance.
Table S2. Maximum likelihood parameter estimates for each strain for models of with one or two mutational effect categories, taking only into account
the number of exonic mutations per MA line.
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