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Abstract

Mycobacteria and Candida species include significant human pathogens that can cause localized 

or disseminated infections. Although these organisms may appear to have little in common, several 

shared pathways of immune recognition and response are important for both control and infection-

related pathology. In this article, we compare and contrast the innate and adaptive components of 

the immune system that pertain to these infections in humans and animal models. We also explore 

a relatively new concept in the mycobacterial field: biological commensalism. Similar to the well-

established model of Candida infection, Mycobacterial species colonize their human hosts in 

equilibrium with the immune response. Perturbations in the immune response permit the 

progression to pathologic disease at the expense of the host. Understanding the immune factors 

required to maintain commensalism may aid with the development of diagnostic and treatment 

strategies for both categories of pathogens.
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1. INTRODUCTION

Species in the genera Mycobacteria and Candida include etiological agents of globally 

significant diseases, as well as non-pathogens that live in either soil and aquatic 

environments (i.e. Mycobacteria) or on the surface of animals, plants and insects (i.e. 

Candida). Candida and Mycobacteria species (spp) have very little in common from a 

strictly biological perspective: Candida spp are eukaryotes with a diploid genome that is 

sensitive to external stress and extensively heterozygous1, replicate primarily via asexual cell 

division and hyphal extension, and have polysaccharide-rich cell wall. Mycobacteria are 

prokaryotes with a haploid genome that is relatively stable, divide asymmetrically2, and have 

a multilayered hydrophobic cell wall. However, despite their biological differences Candida 
and Mycobacteria spp share something in common: both are chronic colonizers of large 

numbers of humans, but elicit disease in a relative minority of colonized humans. 

Specifically, an estimated >30% of the world population is colonized with Candida and/or 

Mycobacteria spp, ~90% of whom show no clinical signs of disease.

Several flavors of disease can occur following Candida or Mycobacteria infection. Candida 
infections are categorized as mucocutaneous or disseminated candidiasis. Mucocutaneous 

candidiasis is typified by the hallmark infection of oropharyngeal candidiasis, also known as 

thrush. This disease form can also present as an invasive infection on barrier surfaces of the 

skin, nails, esophagus, or vulvovaginal mucosa. Disseminated candidiasis includes 

bloodstream infections (candidemia) and infection of normally sterile organs including liver, 
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spleen, kidney, heart, and brain. The case-fatality rates for disseminated candidiasis are high, 

with reports of 30–50%, while mucocutaneous candidiasis carries high morbidity for 

patients3,4. Globally, there are an estimated 400,000 cases of candidemia, 10 million cases of 

thrush, and 2 million cases of esophageal candidiasis annually3. Mycobacterial infections 

similarly impact large portions of the globe, and include nontuberculous mycobacterial 

infection (NTMI), leprosy, swimming pool granuloma, buruli ulcer, and tuberculosis (TB). 

TB is particularly significant at the global level, and is caused by aerogenic transmission of 

Mycobacterium tuberculosis, which primarily infects macrophages in the lung alveoli5. In its 

active form, TB is associated with “consumption” of the lung tissue and dissemination of M. 
tuberculosis to other organs; in its latent form, TB is asymptomatic and not infectious. 

Improved public health practices and the use of effective drug treatment have reduced 

exposure and disease rates in many countries. However, the efforts to control TB in many 

other countries are not optimal, casting doubt on the World Health Organization’s goal of 

halving TB incidence by 20506. For these reasons, it is important to have a data-informed 

framework for understanding the relationship between humans and Candida and 

Mycobacteria pathogens.

Here we will introduce a novel concept regarding the biological relationship between 

immune cells and Mycobacterial pathogens that is modeled on established concepts 

regarding the host relationship with Candida spp. Namely, we advocate that humans’ 

relationship with Candida and Mycobacteria spp is best described in terms of biological 

commensalism, and that most individuals maintain the human:commensal equilibrium via 

innate and T cell-associated cytokines. In a relative minority of individuals, too little or too 

much of select cytokines offsets this equilibrium and leads to a diseased state. We term this 

model the “Goldilocks Model.” To support this model, we will review data demonstrating 

that recognition of Candida and Mycobacteria spp by overlapping pattern recognition 

receptors (PRRs) leads to similar innate cytokine profiles, which consequently direct T cell 

differentiation. We also review data concerning how the T cells govern Candida and 

Mycobacterial disease outcome, as well as the polymorphisms in PRR and cytokine 

response genes that associate with disease susceptibility.

2. HUMAN COLONIZATION AS A SURVIVAL STRATEGY FOR CANDIDA AND 

MYCOBACTERIA

Natural selection is the force behind both prokaryotic and eukaryotic evolution, and is the 

process whereby heritable traits that increase a species likelihood of survival become more 

common over successive generations. We can therefore assume that during human history 

the ancestors of what are now Candida and Mycobacteria pathogens found the human niche 

to give them a selective advantage. Their adaptation to humans is understandable, as the 

human niche is stable relative to many other environments, with a regulated temperature and 

wealth of nutrients from the food we ingest. Competition with other bacteria is also limited 

in the human niche: while a common microbial environment such as soil may contain up to 

~3 ×108 CFU per gram of soil7, the human niche is relatively sterile (the gut being an 

exception, with ~3 × 1011 CFU per gram8). For several Mycobacterial and Candida spp, co-

evolution has led to humans now being their only niche. Since most individuals fail to 
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develop disease following initial Mycobacteria or Candida colonization, Mycobacteria and 

Candida spp are best described in ecological terms as commensals in the majority of 

chronically colonized individuals, and exploiters in the minority of chronically colonized 

individuals (FIG 1A).

Candida and Mycobacteria spp use of chronic colonization as a survival strategy contrasts 

with pathogens that solely cause acute disease. FIGURE 1B depicts the life cycle of two 

human pathogens that employ distinct survival mechanisms: Yersinia pestis and 

Mycobacterium tuberculosis. Y. pestis caused the Black Death of the 14th century, and 

passages between rodents and fleas until infecting a human via a flea bite. Human to human 

transmission of pneumonic plague can also occur. Y. pestis employs a rapid bacterial 

replication rate at the expense of host survival, and is best described in ecological terms as 

an exploiter of humans (FIG 1A). By the time its human host dies (a matter of days), Y. 
pestis will have replicated N times (N being an arbitrary number). Contrasting with the life 

cycle of Y. pestis is that of M. tuberculosis, which does not have a non-human host and 

passes between humans via aerosolization of infected sputum. In most infected individuals, 

M. tuberculosis enters a slowly replicating, dormant state that does not cause clinical 

disease. By the time it’s latently infected host dies (a matter of years and/or decades), M. 
tuberculosis will have also replicated N times. A minority of infected individuals (~10%) 

develop active disease and produce the infected sputum that allows for M. tuberculosis 
transmission to a new generation of hosts. For these reasons, we propose that M. 
tuberculosis is best described in ecological terms as a commensal of most infected 

individuals, and an exploiter in the minority of infected individuals (FIG 1A). In contrast to 

the relative novelty of the commensal status of Mycobacteria spp, it is well-established that 

Candida spp live primarily as commensals. The ecological niche for Candida spp is 

primarily on animal or plant hosts, and the relationship is generally benign to the host. 

Certain species are commensals in humans that transmit via physical contact (e.g. the touch 

of caregivers), which correlates with the species that can act as the most common 

opportunistic pathogens in humans (including C. albicans, C. glabrata, C. parapsilosis, C. 
tropicalis, C. lusitaniae and C. krusei). Candida spp colonize the majority of humans in the 

oral cavity, gastrointestinal tract or genital tract. Colonization usually precedes invasive 

infection and is a key predictor of subsequent disease9. In spite of this and the moderate 

replication rate of Candida spp, the majority of colonized humans never develop invasive 

infection and do not require anti-fungal treatment to maintain normal health. Invasive 

infection occurs with breaches in normal host immune or barrier function. Thus, through 

three distinct survival strategies Y. pestis, M. tuberculosis and C. albicans will have both 

replicated the same N times. However, we consider the strategy of M. tuberculosis and C. 
albicans to be more successful in the long term (a matter of millennia) given that neither 

species cause the rapid, deleterious effects on their host population that were characteristic 

of the Black Death.

The concept of Mycobacteria spp being human commensals may initially seem to conflict 

with the fact that Mycobacteria spp also cause significant global mortality. Historical 

perspective is needed to reconcile this dissonance. Using M. tuberculosis as an example: the 

relationship between M. tuberculosis and humans is ancient, having evolved alongside 

humans for the past 10K–70K years10. The organism’s ability to enter latency is important 
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for this long relationship, allowing it to infect an individual without impacting her/his 

evolutionary fitness until she/he becomes immunocompromised with age11. While latent TB 

is asymptomatic and not infectious, active TB is associated with “consumption” of the lung 

tissue and dissemination of M. tuberculosis into the airways; the extensive coughing that 

ensues can then spread M. tuberculosis into the air and enable its infection of a new 

generation of hosts12. The organism’s need to balance between activity versus latency not 

only ensures the survival of M. tuberculosis: it has also selected against M. tuberculosis 
variants that are more pathogenic and, thus, more capable of killing its only natural 

reservoir10. Whatever equilibrium may have existed between M. tuberculosis and its human 

hosts was altered in the 1970s, the beginning of the HIV/AIDS pandemic13. HIV is a 

retrovirus that is transmitted through sexual intercourse (via semen or vaginal fluid), blood 

contamination (via shared needles), or from mother to child perinatally (intrauterine, 

intrapartum or via breastmilk). The ability of HIV to infect and affect immune lineages that 

keep M. tuberculosis in latency, including T cells and macrophages14, results in HIV-

positive (HIV+) individuals being more likely to develop active TB than HIV-negative 

(HIV−) individuals15–18. The HIV/AIDS pandemic has also allowed for the outgrowth of 

more pathogenic clinical isolates since selective barriers are diminished10,19. Thus, whereas 

the organism’s transition from latency to active disease may take decades in HIV− 

individuals (a phenotype consistent with the ecological commensals), the recent evolution of 

HIV and its ability to accelerate the loss of T cells and macrophage lineages results in higher 

rates of active disease (a phenotype consistent with ecological exploiters).

In many respects, our immune symbiosis with M. tuberculosis mirrors that we have with 

non-tuberculous mycobacteria (NTM). NTM include species that colonize human epithelia, 

as well as species that are ubiquitous in soil and aquatic environments20,21. NTM spp that 

colonize human epithelia are rarely pathogenic, include constituents of the healthy 

microbiota, and can be found along the urogenital tract (M. smegmatis, M. 
lentiflavum)22–24, gastrointestinal tract (M. lentiflavum)24, mouth or respiratory tract (M. 
confluentis, M. branderi, M. bohemicum, M. interjectum, M. intermedium, M. 
conspicuum)25–31, and skin (M. smegmatis, M. bohemicum, M. intermedium)32–34. NTM 

spp that are found primarily in soil and aquatic environments include M. vaccae, the M. 
avium complex (MAC, M. avium and M. intracellulare), and M. abscessus complex 

(MABSC, M. abscessus subspecies abscessus, massiliense, and bolletii). M. vaccae is 

unique among soil NTM insomuch that it is also a transient human colonizer35, and benefits 

the host in a manner that resembles ecological mutualism (FIG 1). Specifically, ingested M. 
vaccae inhibits pulmonary allergic inflammation in mice36, and decreases anxiety in both 

mice37 and humans38 via an as-yet-undefined gut-brain-microbiota axis39. MAC was first 

isolated from wood pigeons40, but is now known to be ubiquitous in the environment and 

found in freshwater and salt-water, soil, food, dust, domestic and wild animals41–44. In both 

water and soil, MAC and MABSC species (MAC/MAB) can be free-living, biofilm-

associated, or amoeba-associated45,46. Infection with MAC/MAB can follow exposure to 

aerosols of MAC/MAB-containing water while bathing47,48, or to aerosols of MAC/MAB-

containing soil while gardening49 or during a natural disaster50. The first case of human 

disease due to MAC/MAB was reported in 1943, in a patient with underlying lung disease51. 

After an incubation period suspected to be weeks to months, infection of humans with 
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MAC/MAB can lead to three basic forms of disease: pulmonary disease, lymphadenitis and 

disseminated disease. However, as with M. tuberculosis, most individuals infected with 

MAC/MAB do not develop disease, but instead contain or resolve infection within 

histiocytic infiltrates or granulomas52–56. Whether MAC/MAB colonizes healthy individuals 

is debatable, as there is little primary science literature testing for their presence on healthy 

individuals. Winthrop et al57 demonstrated that among 283 Oregon residents with 

respiratory NTM isolates, 53% of participants did not have NTM lung disease and could be 

considered healthy, colonized individuals. A recent survey of the healthy human microbiome 

at 18 body habitats failed to detect MAC via 16S rRNA sequencing, but did detect MABSC 

in the vaginal posterior fornix58. Regardless of whether MAC/MAB colonizes healthy 

individuals, the frequency of individuals who have unknowingly been infected with 

MAC/MAB is likely high. This is best illustrated by the work of von Reyn et al59–62, who 

demonstrated that 40% of US-born health care workers have a positive delayed type 

hypersensitivity (DTH) response to M. avium Sensitin without previously experiencing 

mycobacterial disease, and that NTM are responsible for most positive Mantoux reactions in 

the same study population61. Rather than affecting the immunocompetent, individuals who 

are immunocompromised due to either an inherited or acquired immunodeficiency are most 

likely to develop MAC disease. Prior to antiretroviral therapy, disseminated MAC infection 

was the most frequent bacterial complication of AIDS, constituting 45% or more of AIDS-

defining infection in the USA, Japan and Europe63. When these MAC/MAB infection data 

are considered along with TB incidence data in HIV/AIDS communities, they indicate that 

intact innate and T cell responses are necessary to maintain Mycobacteria spp in a 

commensal state and limit their transition to becoming ecological exploiters.

In summary, clinical and microbiological data support a model wherein most individuals 

infected with Candida and Mycobacteria spp do not develop disease, and that instead these 

species function as commensals. Their commensal status is kept in check by innate and 

adaptive immune lineages, which when absent (due to either an acquired or inherited 

immunodeficiency) predispose humans to Candida and Mycobacteria disease. Given their 

biological divergence, it is remarkable that Candida and Mycobacteria spp both elicit similar 

innate and adaptive immune responses. In the following sections, we will review the bases of 

these overlapping innate and adaptive responses, as well as literature demonstrating the 

deleterious impact of hyporesponsive innate and adaptive cells. Importantly, we will also 

review literature demonstrating that hyperresponsive innate and adaptive cells are also 

deleterious to the host. Collectively, these literature support a model wherein Mycobacteria 
and Candida spp are kept in a commensal state when there is a balance of two opposing 

forces: immune hyporesponsiveness and immune hyperresponsiveness.

3. INNATE RESPONSES TO CANDIDA AND MYCOBACTERIA SPECIES

Overview of innate responses to Candida and Mycobacteria spp

Cells of the innate immune response are at the interface of Candida and Mycobacterial 
colonizers and the human host. The best-characterized innate responses are those of 

phagocytic lineages: monocytes, macrophages/dendritic cells (DCs) and neutrophils, which 

each respond to prokaryotic and eukaryotic colonizers following the physical interaction of 
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pattern recognition receptors (PRRs) with pathogen associated molecular patterns (PAMPs). 

Candida and Mycobacteria spp relationship to innate immune cells has been described as 

both “immune-evasive” and “immunostimulatory” 64, and the immunogenicity of Candida 
and Mycobacteria PAMPs varies depending on their environmental conditions65–70. C. 
albicans and most pathogenic Candida spp are pleomorphic fungi that grow as yeast, 

pseudohyphae or hyphae forms, and have an outer membrane comprising a lipid bilayer and 

polysaccharide-rich cell wall that promotes adherence to epithelial cells71. The majority of 

Candida PAMPs reside within the cell wall of the yeast form, and include mannose-rich O- 

and N-linked glycoproteins, chitin and β-glucans72 (FIG 2A). The relative abundance of 

these PAMPs declines with Candida spp transition to hyphal form73,74; the greater 

abundance of PAMPs in Candida spp yeast form may influence the relative pro-

inflammatory capacity compared to that of hyphae. However, the transition to the hyphal 

form has been shown to be required for virulence75. Recent evidence indicates that a 

Candida hyphal-derived cytolytic peptide damages epithelial membranes and initiates the 

epithelial immune response76. In addition to differences in PAMPs and virulence factors, the 

hyphal form of, C. albicans can physically escape phagocytosis by DCs70. Mycobacterial 

PAMPs are similarly enriched in the cell wall (FIG 2B), and their immunogenicity is also 

influenced by environmental conditions77–80. For example, when M. tuberculosis grows at 

an air-liquid interface (resembling the lung environment) it produces and accumulates high 

levels of trehalose-6,6′dimycolate (TDM), which is pro-inflammatory and a regulator of M. 
tuberculosis-elicited pathology in animals81.

Remarkably, despite their biological differences and distinct membrane compositions, 

Candida and Mycobacteria PAMPs activate similar host PRRs (FIG 2C). The PRRs activated 

by Candida and Mycobacteria spp include membrane-associated Toll-like receptors (TLRs) 

and C-type lectin receptors (CLRs), as well as cytosolic NOD-like receptors (NLRs) and 

RIG-I-like receptors (RLRs). The PRRs that recognize Candida and Mycobacteria spp are 

listed in FIG 2C, alongside their cognate PAMPs. Because of their recognition by similar 

PRRs, Candida and Mycobacteria spp also trigger overlapping signal pathways in innate 

lineages. After Dectin-1 recognition of Candida spp, both spleen tyrosine kinase (SYK) and 

the serine/threonine kinase RAF1 are independently activated; downstream targets of SYK 

activity include PKCδ, which integrates with RAF1 to activate NFκB82–85. The activities of 

AKT, PI3K and MTOR are also triggered by β-glucan, albeit independent of Dectin-1 and 

Complement Receptor (CR)86,87. Candida PAMP stimulation of Dectin-1, NLRP3 and 

NLRC4 each cause activation of the canonical caspase-1 containing inflammasome67,88,89, 

whereas Dectin-1 can also activate a non-canonical caspase-8 containing inflammasome90. 

MAPK activity in macrophages varies depending on whether they have encountered Candida 
spp in either their yeast or hyphal form91,92. The extent to which neutrophil extracellular 

traps (NETs) are released by PMNs is also governed by Candida and Mycobacteria spp 

aggregation93.

Phagocytic innate cells’ secretion of cytokines is an important consequence of Candida and 

Mycobacteria spp recognition. As anticipated based on their activating similar PRRs, 

Candida and Mycobacteria spp stimulate secretion of similar cytokines at disease sites in 

humans94–101. Among the more genetically important are the IL12B-dependent cytokines 

IL12 and IL23 (IL12/23), which positively-regulate the differentiation of human T helper 
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(TH) cells into TH1 and TH17 lineages102–104. Reflecting the multi-faceted influence of 

IL12/23, individuals who are insensitive to IL12/23 are susceptible to numerous intracellular 

pathogens105,106; paradoxically, IL12/23 also contributes to mycobacteria-driven pathology, 

as repeat BCG-immunization of tuberculous mice causes IL23-dependent lung damage107. 

IL23 is required to prevent mucosal Candida infection. Mice deficient in the p19 subunit of 

IL23 are susceptible to oropharyngeal candidiasis with a phenotype similar to humans with 

chronic mucocutaneous candidiasis (CMC)108. Not surprisingly, a subset of humans with 

CMC are deficient in IL23 or its receptor. When the deficiency is in the subunits shared with 

IL12 signaling (p40 subunit of IL23 or IL12Rβ1 receptor subunit), patients are susceptible 

to both Candida and mycobacterial diseases109,110. These inborn errors of IL12/IL23 

comprise a portion of patients with Mendelian susceptibility to mycobacterial diseases 

(MSMD)111. The IL23 pathway is also involved in control of disseminated candidiasis. Mice 

deficient in IL17 signaling (downstream of IL23) have increased mortality, higher fungal 

kidney fungal loads and lower neutrophil recruitment in a model of disseminated candidiasis 

than wildtype mice112.

Non-phagocytic innate cells at barrier surfaces also respond to Candida and direct the 

phagocytic response. Specifically, γδ T cells and innate TCRαβ+ cells are essential to the 

initial control of Candida in the oral cavity and/or skin113,114. γδ-T cells are a minor subset 

(~1–5%) of T cells whose receptors are distinct from the αβ-TCRs found on the majority of 

human T cells. In mice γδ-T cells can be classified into two subsets based on their TCR 

diversity115. The first subset is found in lymphoid tissues and, like αβ-T cells, displays a 

highly diversified TCR repertoire116. The second γδ-T cell subset is intraepithelial and 

expresses a more restricted TCR repertoire117,118. This is particularly true in the skin and the 

female reproductive tract of mice, where the γδ-T cells are essentially homogeneous115,119. 

The TCR diversity of human peripheral blood γδ-T cells is also limited, as the predominant 

γδ-T cell subset in the peripheral blood expresses Vγ9 Vδ2115. Human γδ-T cells are 

nevertheless activated by a diverse range of antigens, including non-peptide antigens120, 

isoprenoid pathway intermediates121, alkylamines derived from numerous bacteria and 

plants122, mycobacterial ligands123, heat shock proteins124, nucleotide conjugates125 and 

prenyl pyrophosphates126. However, unlike αβ-T cells which must be activated by antigen in 

the context of MHC, the mechanism by which γδ-T cells recognize antigen remains 

obscure127. The oral cavity also has a resident population of innate TCRαβ+ cells, also 

termed “natural TH17 cells” or nTH17, that expand in the face of oropharyngeal Candida 
infection113. Both γδ-T cells and innate TCRαβ+ cells secrete IL17 in response Candida 
challenge without requiring previous priming. Similar to the adaptive immune response, 

innate IL17-producing cells direct immune clearance of Candida through neutrophil 

recruitment and the promotion of antimicrobial peptide production by epithelial cells. In 

contrast to Candida infection, the precise role of γδ-T cells and their effector mechanisms 

during mycobacteria infection remains to be completely defined. Following intravenous 

administration of M. tuberculosis, γδ-T cell deficient mice are more susceptible to infection 

than wild type controls128; however after respiratory infection with the same organism the 

absence γδ-T cells had no effect on bacterial burden129. Nevertheless, increased numbers of 

neutrophils are observed in the granulomas of M. tuberculosis-infected γδ-T cell deficient 
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mice130, suggesting that γδ-T cells may regulate immunopathology during chronic 

infection.

Innate hyporesponsiveness to Candida and Mycobacteria spp is detrimental to the host

Candida and Mycobacteria disease can occur in any tissue, and can be exacerbated by either 

ablation of innate responses in experimental disease models, or the inheritance of human 

alleles that confer innate hyporesponsiveness. Neutrophils are among the first recruits to an 

infected site131–135. Neutrophils, or polymorphonuclear cells (PMNs), are the most abundant 

leukocyte in the circulation; following bacterial infection of the lung, alveolar epithelial cells 

near the infected site express several PMN-attractants (e.g. IL8) and PMN-growth factors 

(e.g. GCSF) that promote the recruitment of PMNs from proximal capillaries into the 

infected space136. Once in the infected space, they are capable of killing pathogens via a 

variety of effector mechanisms137. These mechanisms include NADPH oxidase-dependent 

production of reactive oxygen species (ROS), myeloperoxidase (MPO)-dependent 

production of hypochlorus acid (HOCl), elastase (ELA2)-dependent proteolysis and 

gelatinase B (MMP9)-dependent proteolysis137. These and other effector enzymes are held 

within one of three PMN granule types (azurophilic, specific and gelatinase granules); upon 

recruitment and activation of PMNs to an infected site, degranulation results in their release 

to the extracellular space138. An additional mechanism by which PMNs kill bacteria is by 

attracting monocytes139, which release even greater amounts of ROS than PMNs when 

normalized for cellular content140. For both mucocutaneous and disseminated candidiasis, 

disease susceptibility is induced with neutrophil depletion in animal models135,141,142. 

Neutropenia is a well-described risk factor for disseminated candidiasis in humans143. 

Phagocytosis of Candida by macrophages is also key to control of disseminated 

candidiasis144. People with dysfunctional neutrophils, such as with chronic granulomatous 

disease, are susceptible to fungal infections including candidiasis145. High frequency of 

TH17 cells and associated cytokines does not compensate for the abnormal phagocytes146. In 

contrast to PMNs’ protective role in mucocutaneous and disseminated candidiasis, PMNs’ 

contribution to mycobacterial control in immunocompetent animals is nil to modest 

depending on the model system used147. Specifically, while neutrophils can kill M. 
tuberculosis in vitro147, and are capable of promoting DC presentation of M. tuberculosis 
antigens148, their depletion from immunocompetent mice results in either no or modest 

changes to standard disease readouts147.

In humans, the inheritance of genomic polymorphisms that decrease innate responsiveness 

can increase Candida and/or Mycobacteria disease susceptibility, either by causing a change 

in the amino acid sequence of immune signals and their receptors, or altering the mRNA 

expression levels via cis- or trans-factors. A consequence of this sequence polymorphism is 

variation in disease susceptibility. Non-HLA genes with alleles that associate with Candida 
and/or Mycobacteria disease susceptibility or severity are listed in FIG 3, and can be broadly 

categorized as regulators of pattern recognition, cytokine responsiveness, and antimicrobial 

effectors. For most of the genes in FIG 3, the strength of an association between a given 

allele and disease susceptibility is strongly influenced by ethnicity and gender, as well as the 

presence or absence of a comorbidity149. Although the mechanism by which a 

polymorphism influences disease susceptibility is not always known, those for which the 
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mechanism is known influence innate responsiveness do so by either introducing a nonsense 

mutation (Dectin-1150)a missense mutation (MDA5151), absent protein expression 

(CARD9152), altered PAMP affinity (TLR3153), impaired transcription factor activity via a 

disruption in DNA binding (IRF8154), decreased mRNA expression (DC-SIGN155), lowered 

protein expression (MBL2156; TLR2157; CD14158; SP-A and SP-D159), disrupted 

association with accessory host molecules (MRC1160), attenuated TLR2 signal transduction 

(TIRAP161), and altered signal peptide sequence (TLR8162). Importantly, animal models of 

Candida and Mycobacteria infection demonstrate that the PRRs that respond to Candida and 

Mycobacteria PAMPs are genetically redundant, and a deficiency in one PRR allele is often 

insufficient to confer disease susceptibility. Rather, disease susceptibility is conferred by the 

combinatorial impact of multiple hyporesponsive PRR alleles.

Innate hyperresponsiveness to Candida and Mycobacteria spp is detrimental to the host

Paradoxically, just as innate hyporesponsiveness promotes Candida and Mycobacterial 
disease susceptibility, so too can innate hyperresponsiveness. PMNs’ contribution to host 

defense from Candida spp is tissue-specific and varies with stage of infection. Although the 

PMN response is required for Candida clearance and control of infection in the oral cavity, 

PMNs appear to be responsible for the pathology and symptoms associated with 

vulvovaginal candidiasis163. The influx of PMNs also does not reduce fungal burden during 

vulvovaginal candidiasis. In the context of disseminated candidiasis, the protective effective 

of neutrophils early in infection is reversed later in infection164. Regarding Mycobacteria 
spp, clinical and experimental data demonstrate that PMNs are detrimental in the context of 

TB with comorbid immunodeficiency, and contribute to the latent-to-active TB transition. In 

individuals with active TB/AIDS, the number of BAL PMNs is elevated relative to HIV-

seropositive TB patients without previous AIDS-defining illnesses165–167. PMNs are also 

present at high frequencies in the BAL of HIV− individuals with advanced TB168, as well as 

in the cerebrospinal fluid of individuals with disseminated, tuberculosis meningitis169–171. 

High frequencies of circulating PMNs at the time of TB diagnosis associates with a poor-

prognosis172, and a PMN-driven, IFN-inducible transcript signature in adult whole blood 

correlates with clinical TB severity and distinguishes between those with active and latent 

TB173. Lung PMN infiltrations are prominent in genetically susceptible strains of mice 

infected with M. tuberculosis174–177. Importantly, the survival of M. tuberculosis-infected, 

genetically susceptible DBA/2 mice is extended following depletion of PMNs using anti-

Ly6G, or neutralization of the PMN growth factor GCSF174. Similar to genetically 

susceptible strains, engineered TB-susceptible strains also have prominent PMN-associated 

pathology, and can be rescued by PMN-depletion. For example, in the absence of the 

IFNγR, ifngr−/− mouse neutrophils fail to apoptose and accumulate in large numbers in the 

lung178; PMN depletion extends the life of ifngr−/− mice, without affecting M. tuberculosis 
burden178. PMN-depletion also extends the life of M. tuberculosis -infected card9−/− mice 

179. Collectively, these clinical and experimental data demonstrate that immunodeficiency, 

whether acquired or inherited, results in an environment where PMNs become a significant 

source of tissue pathology during active mycobacterial disease.
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4. ACQUIRED IMMUNITY TO CANDIDA AND MYCOBACTERIAL SPECIES

Acquired immunity to Candida and Mycobacterial spp is that which develops following 

activation of Candida or Mycobacteria antigen-specific T cells and B cells. Having first 

arisen in jawed vertebrates, cells of the adaptive immune system are activated by the 

evolutionarily older innate immune system, and express surface receptors that are specific to 

non-self antigens. The enormous diversity of surface receptors is brought about through 

V(D)J recombination and somatic hypermutation. Adaptive immunity to Candida or 

Mycobacteria is an essential compliment to innate immunity, as deficiencies in various 

aspects of adaptive immunity confer fungal- and mycobacterial-disease susceptibility. The T 

cell subsets that respond to Candida and/or Mycobacteria spp include CD8+ αβ-T cells, 

CD4+ αβ-T cells, and CD1-restricted T cells. Below we will review those aspects of 

Candida and Mycobacteria-specific T cell activation and effector mechanisms that prevent 

disease. Although antibody responses to Candida and Mycobacteria are measurable in 

infected individuals, B cells’ influence on fungal and mycobacterial disease outcome is not 

reviewed here, but has been recently reviewed elsewhere180,181.

Overview of T cell responses to Candida and Mycobacteria spp

CD8+ αβ T-cells—Pathogen clearance by CD8+ αβ-T cells has historically associated 

with viral infections, since the MHC Class I pathway samples and presents proteins that are 

present in the cell cytosol (viral components typically localize to cytosol, whereas bacterial 

components typically localize to the phagolysosome and are thus accessible to the MHC 

Class II pathway). However, CD8+ T cells contribute the control of chronic M. tuberculosis 
infection129, and mycobacterial antigens can escape into the cytosol and access the MHC 

Class I pathway182. CD8+ T cells are protective in vivo, and direct cytolytic activity toward 

M. tuberculosis infected cells in a manner that is perforin-dependent and promoted by 

IL12183–185. In children, the frequency of circulating IFNγ-producing M. tuberculosis-

specific CD8+ T cells is cellular biomarker of primary TB186. In adults, M. tuberculosis-

specific CD8+ T cells are found in high frequency in infected individuals and recognize 

antigen both in the context of classical human leukocyte antigen (HLA) alleles187 and the 

major histocompatibility complex class I-related gene protein (MR1)188. MR1-restricted 

CD8+ cells are enriched in mucosal sites, have a limited TCR diversity, and are “innate-like” 

insomuch as they rapidly respond to pathogens soon after thymic egress189. MR1-restricted 

CD8 cells are also referred to as Mucosal Associated Invariant T (MAIT) cells, and are also 

negatively impacted by HIV infection190.

CD4+ αβ T-cells—CD4+ αβ-T cells, or TH cells, play an important role in maximizing the 

capabilities of the adaptive immune response. Unlike CD8+ αβ-T cells, CD4+ αβ-T cells 

have limited bactericidal, fungicidal or cytotoxic abilities; rather, they manage and direct 

other adaptive and innate cells to perform these tasks. CD4+ αβ-T cells express TCRs that 

recognize antigen bound to Class II MHC molecules. The activation of a naive CD4+ αβ-T 

cell causes it to release cytokines, which influences the activity of many cell types, including 

the APC that activated it. Several types of effector CD4+ αβ-T cell responses can be 

induced by APCs, with each influencing the host’s response to pathogens through secretion 

of cytokines; these types of effector CD4+ αβ-T cell responses are designated as TH1, TH2, 
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TH17, TFH and TH9. TH1 cells secrete IFNγ and TNFα, both of which are critical for the 

eradication of chronic intracellular pathogens such as M. tuberculosis. TH2 cells produce the 

cytokines IL4, IL5, IL6, and IL13, which are essential for optimal antibody production and 

for the elimination of extracellular organisms including helminthes and nematodes. TH17 

cells produce IL17 (also known as IL17A), IL17F and IL22 and, on initial characterization, 

were broadly implicated in autoimmune disease; a more natural role for TH17 cells is 

suggested by studies that have demonstrated preferential induction of IL17 in cases of host 

infection with various bacterial and fungal species including C. albicans108. TFH cells are a 

subset of CD4+ T cells that migrate to B cell follicles after activation and promote germinal 

center formation and B cell Ig isotype switching. Finally, TH9 cells secrete IL9 and IL10 and 

are a relatively recent addition to the list of known CD4+ αβ-T cell responses; while their 

transfer into a lymphopenic host results in autoimmune colitis, a role for TH9 cells during 

the course of a bacterial infection has yet to be demonstrated. Like CD8+ αβ-T cells, most 

of the CD4+ αβ-T cells apoptose upon resolution of infection, with a few remaining as 

CD4+ memory cells.

In oropharyngeal candidiasis, antigen-specific IL17 producing CD4+ cells (Th17 cells) are 

induced in response to repeated exposure to Candida191. Th17 cells confer protection to 

susceptible mice. In the absence of CD4+ cells, IL17 production is transferred to CD8+ cells 

or CD3+CD4−CD8− cells with similar protective function. As mentioned above, CD4+ T 

cells are critical for the control the chronic bacterial pathogen M. tuberculosis. In the 

absence of CD4-expressing cells at the initiation of M. tuberculosis infection typical 

mononuclear granulomatous lesions do not form; depletion of CD4+ T cells from mice that 

have controlled infection results in the recrudescence of M. tuberculosis growth, resulting in 

increased bacterial numbers in various organs, increased lung pathology and decreased 

survival. Reflecting the requirement for CD4+ T cells, the cessation of bacterial growth 

correlates with their arrival into the infected lung. Despite the abundant evidence that CD4 T 

cells play in protecting against bacterial growth, we’ve yet to fully define the mechanisms by 

which they mediate immunity. Of the various CD4 T cell subtypes mentioned above, TH1 

cells are considered most often to be necessary for control of M. tuberculosis. The TH1 

response results in the production of IFNγ, a cytokine that is critical for activation of 

bactericidal mechanisms in infected macrophages (i.e. production of NO and O− radicals).

NKT cells

CD1-restricted T-cells (referred to as NKT cells) are a heterogeneous group of T cells that 

recognize the non-polymorphic CD1 molecules, antigen-presenting complexes that binds 

self- and foreign lipids and glycolipids. They constitute a small fraction of all peripheral 

blood T cells, but are found in abundance in the liver. NKT cells express an αβ-TCR and 

sometimes co-express a variety of molecular markers typically associated with NK cells 

such as NK1.1. They differ from conventional αβ-T cells in that their TCR repertoire is far 

more restricted and that they recognize lipids and/or glycolipids instead of peptides. Upon 

activation, NKT cells rapidly down-regulate their TCR and produce large quantities of 

IFNγ, IL4, GMCSF and multiple other cytokines and chemokines. Although CD1 is 

dispensable for host defense from oropharyngeal candidiasis and experimental TB113,192, 

the activation of NKT cells via α-galactosylceramide affords some protection from 
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subsequent M. tuberculosis infection143. Human CD1 can present mycobacterial mycolic 

acid to human NKT cells in vitro193, and human CD1 transgenic mice present mycobacterial 

lipids in vivo194. Antigen-specific human NKT cell lines can lyse M. tuberculosis-infected 

macrophages, as well as kill mycobacteria directly via release of the antimicrobial peptide 

granulysin195. Circulating NKT cells are dysfunctional in active TB patients relative to non-

diseased controls196, further suggesting that generation of NKT cells is part of protective 

immune response that occurs in most infected individuals.

T cell hyporesponsiveness to Candida and Mycobacteria spp is detrimental to the host

When T cells are either absent or functionally-impaired, Candida and Mycobacteria 
infections are almost universally detrimental to the host, and best described in ecological 

terms as exploitive (FIG 1A). The importance of T cells to mycobacterial resistance was 

established in the 1980s at the Trudeau Institute (Saranac Lake, NY). During that period, 

Orme and Collins demonstrated that thymectomized mice were susceptible to infection with 

Mycobacteria spp, and that resistance could be restored by adoptive transfer of spleen T 

cells197,198. In the absence of thymus-derived cells, mycobacterial growth in multiple organs 

is unrestricted and mice quickly become moribund. The essential nature of T cells is also 

true in the guinea pig TB model199. Sadly, in humans the detrimental effect of T cell 

hyporesponsiveness is demonstrated by the morbidity and mortality associated with TB/HIV 

co-infection, as HIV depletes the T cells that are needed to limit M. tuberculosis growth and 

dissemination. Recent studies of HIV-infected humanized mice demonstrate that acquired T 

cell deficiency causes an increase in proinflammatory cytokine expression, which in turn 

attract PMNs that cause tissue destruction200. This immunological chain of events is 

supported by histological studies of granuloma composition in TB/HIV+ individuals, which 

are enriched in PMNs relative to those of TB/HIV- individuals201. Acquired and inherited 

forms of T cell hyporesponsiveness also result in susceptibility to CMC in humans and mice. 

Inherited defects range from autoimmune diseases with antibodies directed against the T-cell 

derived cytokines (Autoimmune polyendocrinopathy syndrome-I or APS-I) to deletions 

along the IL23/IL17 signaling pathway. CMC is nearly universal in APS-I patients, but they 

are not prone to other infections202,203. Defects in the signaling pathway that result in CMC 

susceptibility include mutations or deficiency in the IL17 receptor (IL17RA), IL17, IL17F, 

signal transducer and activator of transcription 3 (STAT3), dedicator of cytokinesis 8 

(DOCK8), Tyrosine kinase 2 (TYK2), IL-12Rβ1, IL12p40, Caspase recruitment domain-

containing protein 9 (CARD9), and IκBα (FIG 3). Susceptibility to oropharyngeal 

candidiasis is universal in untreated HIV/AIDS204, solid organ transplant recipients and 

those undergoing cancer chemotherapy205, again highlighting the importance of normal TH 

cell responses.

T cell hyperresponsiveness to Candida and Mycobacteria spp is detrimental to the host

At the interface of Candida and Mycobacteria susceptibility are cytokine signaling pathways 

that influence disease by either directing or inhibiting TH cell differentiation. For example, 

signaling through STAT1 results in a TH1 phenotype characterized by IFNα/β, IFNγ and 

IL27 secretion under normal conditions. With a gain-of-function STAT1 mutation, this 

phenotype is further skewed resulting in deficient Th17 signaling and susceptibility to 

CMC206,207. The impact of TH cell cytokine signaling on Candida and Mycobacteria disease 
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susceptibility is also illustrated by the fact that most susceptibility alleles encode regulators 

of TH cell differentiation (FIG3). When inhibition of TH1 and TH17 responses is absent – 

either due to repeated mycobacterial stimulation (e.g. Koch’s phenomenon)107 or a genetic 

deficiency in inhibitory ligands208 – T cell hyperresponsiveness develops and leads to 

pathology at sites of infection. In humans, the detrimental impact of T cell 

hyperresponsiveness is observed in TB patients with immune reconstitution inflammatory 

syndrome (TB-IRIS). IRIS is an inflammatory response in Mycobacteria/HIV co-infected 

individuals that develops after commencing anti-retroviral therapy (ART): concomitant with 

declines in HIV viral loads, there is a rapid expansion of TH cells specific to M. tuberculosis 

or nontuberculous mycobacteria (NTM)209. Accompanying this expansion are high 

circulating levels TH1- and TH17-associated cytokines210–212, which contribute to 

progressive organ dysfunction in animal models of TB-IRIS209.

Among animal models of TB, the negative impact of T cell hyperresponsiveness is most 

notable in M. tuberculosis infected IL27 knockout mice. IL27 is a heterodimeric cytokine of 

the IL12 family that consists of the Epstein-Barr virus-induced gene 3 (EBI3) and IL27p28 

proteins that are expressed from distinct genes213. IL27 is primarily produced by 

macrophages and DCs following activation, but the repertoire of cells that secrete the 

cytokine is expanding. IL27 signals through a receptor that is a heterodimer of WSX-1 and 

gp130 expressed on monocytes, macrophages, DCs, NK cells and lymphocytes214,215. IL27 

is unique in that it can both activate and suppress immune responses. IL27 was originally 

described as a cytokine that promotes differentiation of TH1 cells and production of 

IFNγ216. However, WSX-1-deficient animals mount TH1 responses suggesting that IL27 is 

compensated for in this regard217–220. The anti-inflammatory effects of IL27 have been 

documented in animal models of infectious and chronic disease, including 

tuberculosis217–223. WSX-1 deficient mice exhibit improved control of mycobacterial 

growth218,219. However, these mice are also susceptible to severe immunopathology during 

chronic infection that compromises survival. This includes enhanced T cell proliferation, T 

cell activation, and heightened IFN-γ production217–220. IL-27 is involved with both the 

generation of anti-inflammatory T cells (Tr1) that produce large amounts of IL-10224,225, 

and suppression of TH17 cells that mediate inflammation218,219. IL-27 also has anti-

inflammatory activity toward human macrophages with consequences to control of bacterial 

growth, including M. tuberculosis and M. bovis BCG226–229.

6. THE GOLDILOCKS MODEL OF IMMUNE SYMBIOSIS WITH CANDIDA AND 

MYCOBACTERIA COLONIZERS

In one telling of the fairy tale “Goldilocks and the Three Bears”, Goldilocks is an innocent 

young girl who wanders into a forest, and happens upon the house and home of three bears 

(a Father Bear, Mother Bear and Child Bear). The three bears were not home, and 

Goldilocks enters the home to discover – among other items – three beds which vary in 

softness. Having grown tired from her wanderings, Goldilocks settles into the bed of Child 

Bear, which is neither too hard (as was Father Bear’s bed and demeanor) nor too soft (as was 

Mother Bear’s bed and demeanor). The three bears return home to discover the sleeping 

Goldilocks, who upon waking reacts to sight of Father Bear and Mother Bear by jumping 
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out a window, falling to her death. The tale of Goldilocks has been used by multiple 

academic fields to model how homeostasis or maintenance of an ideal state (represented by 

the sleeping Goldilocks) is maintained by a balance of two opposing forces (represented by 

the hardness of Father Bear and softness of Mother Bear), and that a detrimental outcome 

happens upon an imbalance of these opposing forces (represented by the death of 

Goldilocks). Academic fields that have applied a “Goldilocks Model” include materials 

science230, evolutionary biology231, auditory development232, visual development233, 

vaccinology234 and workplace safety235.

Based on our above review of literature regarding innate and adaptive responses to 

Mycobacteria and Candida spp, we propose a “Goldilocks model of immune symbiosis” 

(FIG 4). In most infected individuals, Candida and Mycobacteria spp are best described as 

commensals, since they benefit from a second species (i.e. the human host) without 

damaging the host. In a relative minority of individuals, Candida and Mycobacteria spp 

transition from being biological commensals to being biological exploiters. The percentage 

of individuals in whom this commensal-to-exploiter transition occurs is ~12% of M. 
tuberculosis infected individuals236, and virtually no C. albicans infected individuals in the 

absence of an immune or barrier defect. The commensal state of Mycobacteria and Candida 
spp is represented by the sleeping Goldilocks at the curve maximum in FIG 4, while the 

commensal-to-exploiter transition is represented by red curve minima. Mycobacteria and 

Candida spp are kept in a commensal state when there is a balance of two opposing forces: 

immune hypo-responsiveness (represented by Mother Bear) and immune hyper-

responsiveness (represented by Father Bear). The commensal-to-exploiter transition occurs 

when there is an imbalance between these two forces, such as that caused by acquired 

immunodeficiency (e.g. HIV) or reoccurring immune stimulation (e.g. Koch’s 

phenomenon). As depicted by the steep slope on either side of sleeping Goldilocks (FIG 4), 

the commensal-to-exploiter transition is irreversible in the absence of medical intervention.

Based on our model we can make several predictions that impact upon Candida and 

Mycobacteria disease prevention and treatment. First, we would predict that boosting 

immune responses in hypo-responsive individuals will maintain Mycobacteria and Candida 
spp in a commensal state and prevent disease. This prediction is supported by clinical data in 

children, whose immune system is hypo-responsive to mycobacterial stimuli relative to 

adults. Specifically, BCG-vaccination increases resistance to mycobacterial disease in 

children237. Similarly, infants less than 6 months of age are unable to maintain oral Candida 
in a commensal state and are therefore prone to thrush. A second and more surprising 

prediction is that immunosuppression would be effective in some individuals to prevent 

Candida- and Mycobacteria-related pathology. Vitamin D3 suppresses human TH1/TH17 

differentiation, yet promotes resolution of TB pathology in humans and experimental 

models238,239. There are also situations in which steroidal and non-steroidal anti-

inflammatory drugs are effective adjuncts to TB chemotherapy238,239, as well as host 

directed therapy for treating TB-IRIS209. In terms of Candida infection, there is a surprising 

disconnect between the severity of immune dysfunction in HIV/AIDS infection and the 

susceptibility and/or severity of vulvovaginal candidiasis. The discrepancy along with the 

association of exuberant neutrophil responses with this form of candidiasis again suggests a 

role for dampening the immune response to treat symptomatic infection240. While using 
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anti-inflammatory drugs in any infected patient should of course be done cautiously, their 

documented value in some individuals supports the model depicted in FIG 4.

In conclusion, despite the obvious differences between Candida and Mycobacteria spp, there 

is remarkable overlap in the pattern recognition pathways that respond to these species, 

which in turn lead to similar innate and adaptive responses. Candida and Mycobacteria spp 

include pathogens that can cause localized or disseminated infections in a relative minority 

of colonized individuals. However, since the majority of colonized individuals are 

asymptomatic, Candida and Mycobacteria spp are best described in ecological terms as 

commensals which can transition to an exploitive state following immune perturbations. 

These perturbations can be either hyporesponsive or hyperresponsive in nature, and can 

originate from innate and adaptive lineages. Although the commensal status of Mycobacteria 
spp is a newer concept in the field of mycobacterial immunology, the commensal status of 

Candida spp is a well-accepted concept in the field of fungal immunology. Based on this 

model, understanding the immune factors that maintain Candida and Mycobacteria spp in a 

commensal state may aid the development of diagnostic and treatment strategies for both 

categories of pathogens.
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FIGURE 1. 
Candida and Mycobacteria species exist as commensals in the majority of infected 

individuals. (A) A table listing the six types of ecological relationships that can exist 

between two biological species, as well as examples of such species in relation to human. 

(B) A comparison of the survival strategies of two human pathogens: Yersinia pestis and 

Mycobacterium tuberculosis. Y. pestis can transmit via flea bite to rodents or a human, in 

whom disease disseminates and can then spread to other humans via cough. Y. pestis has a 

high replication rate at the expense of the human host, whose post-infection survival is short; 

in this manner, Y. pestis reaches an arbitrary number (N) of replications. In most individuals, 

M. tuberculosis survive via a different approach. Namely, M. tuberculosis combines a low 

replication rate with long prolonged host survival. In this manner, M. tuberculosis can reach 

the same N replications without causing disease in most individuals.
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FIGURE 2. 
(A–B) Candida and Mycobacteria spp. differ substantially in morphology and size: Candida 
spp (A) are eukaryotes that have fimbriae, a cell wall, cell membrane, intracellular 

organelles (e.g. nucleus and mitrochondria), and a large size relative to Mycobacterial spp 

(B) that are prokaryotes with an extracellular hydrophobic cell wall, cell membrane and 

intracellular compartment. The depiction and relative sizes of Candida and Mycobacteria 
spp are based on the electron microscopy studies of Fekete et al241 and Shoonmaker et al242, 

respectively. (A) Depiction of Candida spp cell wall and the relative localization of common 

Candida PAMPs. (B) Depiction of Mycobacteria spp cell wall and the relative localization of 

common Mycobacteria PAMPs, based on recent reviews of the cell wall structure243,244. (C) 
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Listed are the human PRRs activated by Candida and Mycobacteria spp, alongside their 

cognate PAMPs from each pathogen class. The superscript number(s) next to each 

mycobacterial PAMP indicates a corresponding reference that documents its association 

with or activation of TLR2245–247, TLR4248, TLR6249, TLR9250, NOD2251, MINCLE252, 

MARCO253, Dectin-2254, Dectin-3255, Mannose Receptor256,257, CR258,259, DC-

SIGN260,261, Galectin-3262,263, CD36264, MBL265, Dectin-1266, NLRP3267. The superscript 

number(s) next to each Candida PAMP indicates a corresponding reference that documents 

its activation of either TLR2268–270, TLR4269,270, Dectin-1271, Mannose Receptor269, 

Dectin-2272,273, DC-SIGN274, Galectin-3275, MINCLE276, SCARF1277, CD36277, MBL278, 

CR3279, Dectin-3280, TLR9281,282, NLRP3283, NOD2282.
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FIGURE 3. 
Human susceptibility to Candida and Mycobacteria disease associates with polymorphic 

alleles of genes involved in pathogen recognition, cytokine responsiveness, and 

antimicrobial effector mechanisms. Listed in the white portion of the Venn diagram are non-

HLA genes with alleles that associate with Candida disease susceptibility150,151,153,284–298. 

Likewise, listed in the black portion are non-HLA genes with alleles that associate with 

Mycobacteria disease susceptibility160–162,299–315. Listed in the gray overlap are nine genes 

with alleles that associate with both Candida and Mycobacteria disease susceptibility: 

IRF8154, MBL2156,316,317, TLR2157,314,318, IL10319–321, IL12B110,320, IL12RB1322–325, 

RLTPR326, RORC327 and STAT1206,207,328–332. As indicated by labels on the left, each gene 

is further classified as being a regulator of either pathogen recognition (top row), cytokine 

responsiveness (middle row) or antimicrobial effector mechanisms (bottom row).
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FIGURE 4. 
Goldilocks model of immune symbiosis with Candida and Mycobacteria Colonizers. 

Depicted by Mother Bear and Father Bear are two equally important but opposing forces: 

immune-hyporesponsiveness (FHYPO) and immune-hyperresponsiveness (FHYPER). In the 

majority of humans these two forces are balanced, a consequence of which is maintenance 

of Candida and Mycobacteria spp in a commensal state (represented by sleeping 

Goldilocks). Depicted below sleeping Goldilocks is a bell curve, the maxima of which 

represents those individuals in whom Candida and Mycobacteria spp remain in perfect 

equilibrium with the forces of immune-hyporesponsiveness and immune-

hyperresponsiveness. Proximity to this equilibrium is a characteristic of most individuals 

infected with Candida or Mycobacteria spp, and is not associated with disease. In a relative 

minority of individuals, an imbalance exists between the forces of immune-

hyporesponsiveness and immune-hyperresponsiveness (examples of which are provided in 

our review for both innate and adaptive immune cells), leading Candida and Mycobacteria 
spp to transition from a commensal to exploitive state. This transition from commensal to 

exploiter leads to disease, and is irreversible in absence of medical intervention.

Robinson and Huppler Page 43

Cytokine. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical abstract
	1. INTRODUCTION
	2. HUMAN COLONIZATION AS A SURVIVAL STRATEGY FOR CANDIDA AND MYCOBACTERIA
	3. INNATE RESPONSES TO CANDIDA AND MYCOBACTERIA SPECIES
	Overview of innate responses to Candida and Mycobacteria spp
	Innate hyporesponsiveness to Candida and Mycobacteria spp is detrimental to the host
	Innate hyperresponsiveness to Candida and Mycobacteria spp is detrimental to the host

	4. ACQUIRED IMMUNITY TO CANDIDA AND MYCOBACTERIAL SPECIES
	Overview of T cell responses to Candida and Mycobacteria spp
	CD8+ αβ T-cells
	CD4+ αβ T-cells


	NKT cells
	T cell hyporesponsiveness to Candida and Mycobacteria spp is detrimental to the host
	T cell hyperresponsiveness to Candida and Mycobacteria spp is detrimental to the host

	6. THE GOLDILOCKS MODEL OF IMMUNE SYMBIOSIS WITH CANDIDA AND MYCOBACTERIA COLONIZERS
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4

