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 Functional vs. Traditional Analysis in Biomechanical Gait Data: 

An Alternative Statistical Approach 

by 

Jihong Park1, Matthew K. Seeley2, Devin Francom3, C. Shane Reese4, J. Ty Hopkins2 

In human motion studies, discrete points such as peak or average kinematic values are commonly selected to test 

hypotheses. The purpose of this study was to describe a functional data analysis and describe the advantages of using 

functional data analyses when compared with a traditional analysis of variance (ANOVA) approach. Nineteen healthy 

participants (age: 22 ± 2 yrs, body height: 1.7 ± 0.1 m, body mass: 73 ± 16 kg) walked under two different conditions: 

control and pain+effusion. Pain+effusion was induced by injection of sterile saline into the joint capsule and hypertonic 

saline into the infrapatellar fat pad. Sagittal-plane ankle, knee, and hip joint kinematics were recorded and compared 

following injections using 2×2 mixed model ANOVAs and FANOVAs. The results of ANOVAs detected a condition × 

time interaction for the peak ankle (F1,18 = 8.56, p = 0.01) and hip joint angle (F1,18 = 5.77, p = 0.03), but did not for 

the knee joint angle (F1,18 = 0.36, p = 0.56). The functional data analysis, however, found several differences at initial 

contact (ankle and knee joint), in the mid-stance (each joint) and at toe off (ankle). Although a traditional ANOVA is 

often appropriate for discrete or summary data, in biomechanical applications, the functional data analysis could be a 

beneficial alternative. When using the functional data analysis approach, a researcher can (1) evaluate the entire data as 

a function, and (2) detect the location and magnitude of differences within the evaluated function. 

Key words: functional data analysis, statistics, joint kinematics. 

 

Introduction 
In order to study movement, adaptations 

to movement and movement intervention, large 

sets of biomechanic, neurologic and physiologic 

data must be collected and interpreted. This 

process can be difficult and many limitations can 

impede it. The statistical approach for analyzing 

these data sets can be one of these limitations. For 

example, joint angles during movement have been 

compared using various statistical analyses such as 

t-tests (Powers et al., 2012), analyses of variance 

(ANOVA) (Torry et al., 2000) and covariance 

(Carneiro et al., 2012), and multivariate analyses of 

variance (Mundermann et al., 2005). These 

traditional statistical approaches are sound, but  

limited in a similar way. An ANOVA can only  

 

 

provide information regarding a discrete time 

point (e.g., peak knee flexion) or grouping of points 

(e.g., mean knee flexion) that were involved in the 

movement or a part of the movement. 

While an ANOVA only provides 

information regarding a discrete data point(s), a 

functional data analysis considers entire functions 

(Ramsay and Silverman, 2005). More specifically, a 

functional data analysis can be used to compare 

condition effects on entire time functions (e.g., the 

entire stance phase of the gait) (Hopkins et al., 

2012). In this way, a functional data analysis may  

be more informative, relative to other statistical  

approaches that analyze discrete points in time, 

because a functional data analysis can compare all  
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collected data as functions. A functional data 

analysis may detect whether a difference exists, 

multiple differences over time, the magnitude and 

meaningfulness of the difference, and when 

statistical differences occur in time. A functional 

data analysis may result in a plot showing mean 

differences and corresponding effect sizes, plotted 

against the “normal” time function. 

The purpose of this technical report is to 

describe the value of a functional data analysis in 

analyzing joint angles (in the sagittal plane) during 

walking. We analyzed these data using a 

functional linear model and a more traditional 

approach (ANOVA). The data reported here were 

collected for a study that was conducted to better 

understand neuromechanical alterations due to 

experimental knee effusion and pain in able-

bodied participants. We chose to report sagittal 

plane joint kinematics because they are commonly 

measured and reported in the biomechanical 

literature (Nadeau et al., 1997; Sulzer et al., 2010). 

Methods 

Participants and Procedures 

 Nineteen able-bodied participants (10 

males and 9 females; age: 22 ± 2 yrs; body height: 

1.73 ± 0.10 m; body mass: 73 ± 16 kg) arrived at the 

lab, gave informed consent approved by the 

University’s Review Board, and were prepared for 

motion analysis. For this study, we determined 

joint angles using previously described methods 

(Seeley et al., 2013), except that, presently, we 

calculated the hip joint center using a functional 

approach (Schwartz and Rozumalski, 2005). 

Participants completed the pre-injection walking 

trials (all walking trials were performed at a self-

selected speed).  Next, participants received one of 

the conditions (pain+effusion or control/no 

injection). To induce pain and effusion, we used 

the common injury models of pain (Park and 

Hopkins, 2013) and effusion (Hopkins et al., 2002). 

The post-injection walking trials were performed 

five minutes following the last injection. Three 

walking trials were recorded under each condition 

and all trials were used in analysis.  The spatial 

coordinates for each reflective marker were 

determined and tracked using Vicon Nexus 1.7 

(Vicon, Centennial, CO, USA) and then exported to 

Visual3D (C Motion, Germantown, MD, USA).  

The data were smoothed using a 4th-order low-pass 

Butterworth filter with a cut off frequency of 6 Hz  

 

(Hunt et al., 2010). 

Statistical Analyses 

 To test condition effect over time, we 

performed five separate 2×2 ANOVAs for peak 

ankle dorsiflexion, ankle plantarflexion, knee 

flexion, hip flexion, and hip extension angles 

throughout stance (SAS 9.3, SAS Institute Inc., 

Cary, NC, USA). Tukey-Kramer post-hoc tests 

were carried out for post-hoc comparisons (p = 

0.05).  We also conducted three separate functional 

analyses for the sagittal plane ankle, knee and hip 

joint angles (R 2.15.1, R development core team, 

http://madison.byu.edu/FDA.html). We used a 

modified version of a functional data analysis 

procedure (Andrade et al., 2014). This requires use 

of basis functions, warping and a statistical 

framework, as described below.   

Key Applications 

 In order to better understand the 

functional data analysis process, we will detail 

some of the steps. First the data must be defined in 

terms of curve or function characteristics (re-

parameterization). Next the data are warped or 

time registered. Finally the data are fit to a model 

for hypothesis testing. 

Re-parameterization using Basis Functions 

 A functional data analysis allows us to 

compare functional responses over time. The first 

step in a functional data analysis is to identify a set 

of characteristics that are comparable from curve to 

curve.  Curves are re-parameterized using basis 

functions. A basis representation of a curve 

consists of a set of basis functions and 

corresponding set of weights. The weighted sum of 

the basis functions yields the original curve. 

An example of a curve is created using 

basis functions ሼ1, ,ݔ ,ଶݔ  ଷሽ with weightsݔ

ሼ15,3, െ2, െ1.5ሽ, resulting in the polynomial 

݂ሺݔሻ ൌ 15 ൅ ݔ3 െ ଶݔ2 െ  .ଷ (Figure 1)ݔ1.5

Choosing the number of basis functions to 

represent any given curve and the corresponding 

weights is a difficult estimation problem. For 

instance, in the bottom right plot in Figure 1, if we 

considered only functions ሼ1, ,ݔ  ଶሽ, theݔ

representation of the original curve would not 

have been exact (as seen in the plot in the bottom 

row, 3rd column in Figure 1). While suitable for 

some simpler curves, polynomials are not as 

flexible as other choices (Ramsay and Silverman,  

2005).  

One example of a more flexible choice is a  
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spline basis. A spline is formed by splitting the 

domain (the possible x values of f(x)) of a curve 

into pieces and representing the corresponding 

pieces of the curve with local polynomial 

functions. Cubic polynomials are often sufficient, 

resulting in a cubic spline. Constraints can be 

employed to assure that the pieces fit together 

smoothly. 

More formally, a basis function 

representation of a function ݂ can be written as 

݂ሺݔሻ ൌ ∑ ݄௜ሺݔሻߚ௜
௣
௜ୀଵ  where ݄௜ሺݔሻ is a basis 

function, ߚ௜ is the corresponding weight and ݌ is 

the number of basis functions. Say we choose to 

break the domain of a curve into ݆ pieces (the 

locations of the breaks we call knots). Then we can 

fit a cubic spline to the curve by letting the basis 

functions be:  
݄ଵሺݔሻ ൌ 1 
݄ଶሺݔሻ ൌ  ݔ
݄ଷሺݔሻ ൌ  ଶݔ
݄ସሺݔሻ ൌ  ଷݔ

݄ହሺݔሻ ൌ ሺݔ െ ݇ଵሻଷܫሺݔ ൒ ݇ଵሻ 
݄଺ሺݔሻ ൌ ሺݔ െ ݇ଶሻଷܫሺݔ ൒ ݇ଶሻ 

∶ 

௝݄ାସሺݔሻ ൌ ൫ݔ െ ௝݇൯
ଷ
ݔ൫ܫ ൒ ௝݇൯ 

 

and fitting the linear model  

ݕ ൌ෍݄௜ሺݔሻߚ௜ ൅ ߝ

௣

௜ୀଵ

 

 

to find the weights. Here ܫ is the indicator function 

(1 if the argument is true and 0 otherwise), ݇ is a 

particular knot, ݕ is ݂ሺݔሻ and ߝ is the model error. 

This choice of basis functions ensures that the 

resulting function will be smooth. 

Now, consider a function not as easily 

represented with a polynomial (Figure 2). Fitting a 

cubic spline to this curve with 10 equally spaced 

knots (equally spaced from each other and the start 

and end points of these data, which are -1 and 1) 

yields a reasonable fit to the data. The basis 

functions and their cumulative weighted sum are 

shown in Figure 3. 

 An important step in a functional data  

analysis is to time register or warp the data. Time 

registering entails aligning in time specific  

landmarks in each function. This can reduce noise  

(due to time differences between each participants’ 

walking) observed in the x-axis of the functions,  

allowing for the often more relevant y-axis 

variation to be better analyzed. Landmarks often  

 

 

include peaks, valleys, and the start and end points 

(Ramsay and Silverman, 2005). For some 

biomechanical data, these landmarks could 

correspond to events like initial contact or toe-off. 

After choosing landmarks, we transform the data 

so that the landmarks occur at roughly the same 

points in time within the stance phase. To 

transform the data, we fit warping functions, 

which have as inputs the location of the landmarks 

(in the stance phase) before warping and output 

the location of the landmarks after warping. Using 

linear functions, we smoothed over the rest of the 

stance phase around the landmarks. Thus, using 

these warping functions, we can transform data to 

have landmarks occur at similar points in time and 

have the rest of the data match the pattern 

accordingly.   

Problems may arise when using landmark 

registration. Landmark analysis warps the input 

space of the functions, often making them less 

interpretable. In order to make these functions of 

percent stance phase an interpretable quantity, in 

this analysis we chose initial contact and toe-off in 

the stance phase as the start and end points for 

landmarks (Figure 4). We then transformed each 

function to have the same start and end points 

using a line through the two chosen landmarks. 

 After time registering these data, we used 

a B-spline basis with 19 basis functions to represent 

each curve in the dataset. B-splines are a more 

stable and computationally efficient basis than 

cubic splines, and any cubic spline basis can be 

represented with B-splines (De Boor, 1972). This 

means that each curve in the dataset is composed 

of the same 19 basis functions (weighted and 

added together), though the weights are allowed to 

vary from curve to curve.  In order to perform a 

functional data analysis, we statistically analyze 

these weights.   

Consider the traditional two factor 

ANOVA model 
௜௝௞ݕ ൌ ߤ ൅ ௝ߙ ൅ ௞ߚ ൅ ௝௞ߚߙ ൅  ௜௝௞ߝ

 

where ߙ௝ is the factor one level j effect, ߚ௞  is the  

factor 2 level k effect, ߚߙ௝௞  is the interaction 

between these two factors at the prescribed levels,  

and ߤ is the overall mean. The two factor functional 

data analysis equivalent is  

 
ሻݐ௜௝௞ሺݕ ൌ ሻݐሺߤ ൅ ሻݐ௝ሺߙ ൅ ሻݐ௞ሺߚ ൅ ሻݐ௝௞ሺߚߙ ൅  ሻݐ௜௝௞ሺߝ
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where t is time (percent stance phase in this case). 

Thus, the data and each effect in the model are 

functions of time. Similarly, the standard errors for 

each of the fitted effects are functions of time. We 

are particularly interested if there was an 

interaction (and main effect) as well as the pairwise 

comparisons of the model effects, which is to say 

we are interested in  

ሻݐଵ௞ሺߚߙ െ  ሻݐଶ௞ሺߚߙ
ሻݐଶ௞ሺߚߙ െ  ሻݐଷ௞ሺߚߙ
ሻݐଵ௞ሺߚߙ െ  ሻݐଷ௞ሺߚߙ

etc. for each level of k and  

ሻݐ௝ଵሺߚߙ െ  ሻݐ௝ଶሺߚߙ
ሻݐ௝ଶሺߚߙ െ  ሻݐ௝ଷሺߚߙ
ሻݐ௝ଵሺߚߙ െ  ሻݐ௝ଷሺߚߙ

etc. for each level of j. These are the differences 

between interactions that are meaningful. We plot  

our estimates of these pairwise comparison  

 

 

functions as well as 95% confidence bands to 

determine significance. If these confidence bands 

do not cross the zero line, we consider the 

difference significant. 

Results 

 Using a traditional ANOVA approach, we 

found interactions in ankle plantarflexion (F1,18 = 

8.56, p = 0.001) and hip extension (F1,18 = 5.77, p = 

0.03). Under the pain+effusion condition, 

participants walked with 2° less peak dorsiflexion 

(p = 0.008) and 2.5° less peak hip extension (p = 0.02) 

compared to the pre-injection measurement. There 

was no difference in knee flexion angles (Table 1). 

The original kinematic data of the control group at 

post-injection measurements are presented in the 

left column of Figure 5. 

(Insert Table 1 here) 

 

 

 

 

Table 1 

Means (SD) for Peak Sagittal Plane Joint Angles During the Stance Phase of Walking. 
 Condition 

Results of 2 × 2 ANOVA  

and post-hoc comparisons Variable Time Control Pain+effusion 

Hip flexion (°) Pre 
13.23 (6.20) 11.81 (5.33) 

F1,18 = 0.32, p = 0.58 

Post 
12.54 (6.99) 11.64 (6.18) 

Hip extension (°)* Pre 
23.98 (6.84) 24.62 (5.95) 

F1,18 = 5.77, p = 0.03;  

(Pre vs. Post in PE: p = 0.02) 
Post 

23.97 (7.32) 22.11 (6.85) 

Knee flexion (°) Pre 
53.48 (2.55) 52.40 (4.44) 

F1,18 = 0.36, p  = 0.56 

Post 

54.16 (3.01) 52.47 (4.80) 

Ankle  

dorsiflexion (°) 

Pre 

12.56 (4.28) 12.51 (4.20) 

F1,18 = 0.04, p  = 0.84 

Post 

12.49 (4.51) 12.59 (4.56) 

Ankle  

plantarflexion (°)* 

Pre 
16.95 (5.79) 16.94 (5.79) 

F1,18 = 8.56, p  = 0.01;  

(Pre vs. Post in PE: p  = 0.01) 
Post 

17.24 (5.70) 14.25 (5.63) 

Pre: pre-injection; Post: post-injection; PE: pain+effusion 

Asterisks indicate condition × time interactions.   

A post-hoc test revealed that peak ankle plantarflexion  

and hip extension decreased due to the pain+effusion condition,  

relative to the pre-injection measurement. 
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Figure 1 

 The top row of plots shows the weighted basis functions  

and the bottom row shows those functions added together,  

one by one, to represent the original curve.   

That basis functions are functions of the same inputs  

as the function they are being used to represent (functions of time in the present case). 

 

 

 

 

 

 

 

 
Figure 2 

 Polynomial curves to represent a function 

The curve in the left column plot is more representative  

of the type of the stance phase curve we are considering.  

However, the stance phase data we actually observe and use to fit curves  

are discrete, which may look more like the curve in the right column  plot. 
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Figure 3 

Basis functions and cumulative sum 

These figures explain the sum of basis functions one at a time, sequentially.  

The first row of the plot shows the first four basis functions added together with the fitted weights.  

The left side of the next 10 rows shows the basis functions that involve the 10 knots.  

The right side of the next 10 rows shows the cumulative sum of this basis functions.  

By the time we add the 10th basis function, we have successfully represented our data with a curve. 
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Figure 4 

Raw and time-normalized kinematic data for the hip joint 

The left column plot represents the raw kinematic data for the hip joint. The right column plot represents  

the time-normalized data. Note that each function (trace) has different end points.  

The right column plot represents time registration using the two chosen landmarks (start and end points). 

 

 

 
Figure 5 

Results of functional data analyses in kinematic data 

The left column plots represent the original kinematic data for each joint. These data were used  

to choose peak angles for ANOVAs. The middle and right columns are the results of each FANOVA.  

We compared the joint angle between the time intervals (pre- and post-injection) for both conditions.  

For example, ankle angle C/Pre – C/Post (the middle plot at the bottom row) represents the mean difference between  

the pre- and post-injection measurement under the control condition. 

The x-axes represent percent of stance (from heel strike to toe-off). The y-axis for the left column  

epresents the mean function degrees while the y-axes for the middle and right column 

 represent the mean difference in the ankle joint angle measured in degrees. The black line represents the average of differences 

between two time intervals (Pre and Post). When the 95% confidence bands (the shaded area) do not cover the zero line,  

a statistical between-time difference exists. For the ankle angle, during the pain+effusion condition,  

the injections caused subjects to walk with 2˚ less dorsiflexion at initial contact (0-5%), 2˚ greater dorsiflexion  

through the mid-stance (40-60%), and 4˚ less dorsiflexion at toe off (90-100%).  

For the knee angle, subjects after injections walked with 4˚ greater knee flexion at initial contact (0-5%: 4°) and 6˚ less knee 

extension approximately between 30-90% of the stance phase. For the hip angle, injections caused subjects  

to walk with 4˚ less hip extension approximately between 40-85% of the stance phase. 

C: control; PE: pain+effusion; Pre: pre-injection; Post: post-injection 
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Figure 6 

Sample traces of vertical ground reaction forces during walking  

(a sample mean of a subject) 

The left and right column plot represents the data prior to and post injection, respectively.  

The injection appears to have significantly altered vertical  

ground reaction force during the stance phase of walking. 

 

 

 

 

 

According to the results of functional analyses, 

the pain+effusion condition resulted in 

participants walking with 2° less dorsiflexion at 

initial contact (0-5% of the stance), 2° greater 

dorsiflexion in the mid-stance (40-60% of the 

stance), and 4° less dorsiflexion at toe off (90-100%; 

Figure 5) compared to the pre-injection 

measurement. For the knee angle, participants 

under pain+effusion walked with 4° greater knee 

flexion at initial contact (0-5%) and 6° greater knee 

flexion between 30-90% of the stance phase 

compared to the pre-injection measurement 

(Figure 5). For the hip angle, participants under 

pain+effusion condition walked with 4° less hip 

extension between 40-85% of the stance phase 

compared to the pre-injection measurement 

(Figure 5). 

Discussion 

The purpose of this technical report was to 

describe the potential value of a functional data 

analysis in evaluating joint kinematics during 

walking. Using ANOVAs, we discovered a 

condition × time interaction for the peak ankle and 

hip joint angle, and subsequently detected 

between-time differences in peak ankle 

plantarflexion and peak hip extension for the  

 

pain+effusion condition. In comparison to the 

ANOVA, the results of functional data analysis 

revealed between-time differences at initial contact 

(ankle and knee joint), in the mid-stance (each 

joint) and at toe off (ankle joint). Furthermore, with 

mean difference functions surrounded by 95% 

confidence intervals (Figure 5), an estimation of 

effect size was also included for interpretation. 

Analysis of an ensemble of curves and 

other comparisons of data over time is not a 

completely novel concept, but the application 

strength and sophistication used in the analysis 

varies. A recent paper describing a functional data 

analysis of variance approach (FANOVA) also 

used B-spline basis functions (Andrade et al., 

2014). This paper proposed the simple effects 

model with one factor, as in  ݕ௜௝ሺݐሻ ൌ ሻݐሺߤ ൅
ሻݐ௝ሺߙ	 ൅  ሻ is the overallݐሺߤ ሻ, whereݐ௜௝ሺߝ

functional mean and   is the effect of the jth level of 

Factor A. Our approach considers a cell means 

model version of this approach that allows for a 

more general treatment structure (two or more 

factors), meaning multiple independent variables 

can be used in the model. A summary of our model 

is: ݕ௜௝௞ሺݐሻ ൌ ሻݐ௜௝ሺߤ ൅	ߝ௜௝௞ሺݐሻ,  where the effects 

of  
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Factor A (subscript i) and the effects of Factor B 

(subscript j) are allowed to interact with each other.   

Functional main effects and individual 

functional interaction effects can be estimated by 

constructing functional linear combinations of the 

cell means.  

Other previously reported studies looking 

at data over time (Chicote et al., 2013; Mallor et al., 

2010; Prosser et al., 2010; Ryan et al., 2006; 

Schollhorn et al., 2002) provide useful insights 

about the structure of the data using functional 

principle component analysis (PCA). PCA is used 

to describe the structure of data, not for making 

inference (p-value or confidence interval). The 

methods used in this paper (functional data 

analysis) yield additional insight via statistical 

inference, from which we obtain confidence bands 

and thus decide if treatments yield statistically 

different outcomes. The results of functional 

analyses specify where the differences exist in the 

stance phase, thus our data clearly describe some 

of the advantages of using functional analyses in 

joint kinematics when compared with typical 

ANOVAs. 

Advantages of Functional Analyses 

A functional data analysis is capable of 

detecting differences at any point in time, 

throughout the entire stance phase (or any other 

defined human motion). In comparison, while 

using ANOVA to evaluate differences, researchers 

could potentially fail to detect existing differences 

between discrete values if the differences do not 

occur precisely at the time of statistical evaluation 

(in this case, at the time of peak angle). Within the 

present data set, for example, participants 

demonstrated increased dorsiflexion throughout 

40-60% of the stance after injections, relative to the 

pre-injection measurement. Relative to the results 

of the ANOVA, this finding is more informative as 

kinematic values between 40-60% of the stance 

phase are not often selected for analysis because 

peak dorsiflexion and plantarflexion do not 

typically occur during part of the stance phase.   

The characteristics of a curve (peaks, 

valleys, amplitudes, times, etc.) provide very 

useful information about the entire stance phase, 

therefore providing meaningful results that would 

not otherwise be observed. Figure 6 shows  

a representative function for ground reaction  

 

 

forces (GRF) prior to and after injection. Changes 

in the vertical ground reaction force during the 

unloading phase of gait, due to pain+effusion 

(Figure 6) demonstrate the value of a functional  

data analysis, relative to ANOVA.  These GRF data 

were simultaneously recorded with the kinematic 

data reported in this paper. Before injection (Figure 

6A), the GRF appears to be typical and there are 

distinct discrete points: peak impact, unloading 

and push-off. However, following injection (Figure 

6B), the GRF appears to be altered as a result of the 

intervention (pain + effusion). In this case, an 

analysis of peak or mean GRF would likely not 

capture a significant difference due to 

pain+effusion; however a functional data analysis 

would capture the difference in functions, 

providing important information about where and 

how the GRF changes over time within the 

framework of a statistical model.  

Limitation of Functional Analysis 

While the application of a functional data 

analysis is very appealing, statistical modeling can 

be very complex and difficult to understand. Those 

who wish to incorporate a functional data analysis 

in exercise science related research will likely need 

to consult with someone who has experience in this 

area. Furthermore, not all data suit themselves to a 

functional approach. Data which are collected over 

time could be best for a functional data analysis.  

Conclusion 

 We introduced a functional data 

analysis statistical approach for analyzing data 

collected over time and compared the results to 

those of a traditional ANOVA approach. The 

functional data analysis approach considers all 

collected data in a meaningful way. While the 

ANOVA detected differences in ankle 

plantarflexion and hip extension, the functional 

data analysis detected many differences 

throughout the entire stance phase in all joints, 

providing qualifying information about the data. 

Although in many situations, a traditional 

ANOVA is appropriate, in some biomechanical 

applications, the FANOVA could be a beneficial 

alternative.   

What does this article add? 

 We introduced and explained the 

key applications of a functional data analysis for  
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human movement data. The functional data 

analysis procedure used here is a modification of  

the previous model (Andrade et al., 2014). Our 

approach considers a more general cell means 

model version of the previous approach that 

allows for a general treatment structure of multiple 

factors. 

Although a traditional ANOVA is often 

appropriate, in some biomechanical applications a  

 

 

functional data analysis could be a beneficial  

alternative. A functional data analysis approach 

considers all collected data in a meaningful way. 

When using a functional data analysis approach, a 

researcher can (1) evaluate and consider the entire 

data set as a function, and (2) detect the location 

and magnitude of differences within the evaluated 

function. 
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