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Abstract

Treatment of patients with triple negative (ER-negative, PR-negative, HER2-negative) breast 

cancer remains a challenge. Although PARP inhibitors are being evaluated in clinical trials, 

biomarkers are needed to identify patients that will most benefit from anti-PARP therapy. We 

determined the response of three PARP inhibitors: veliparib, olaparib, and talazoparib in a panel of 

eight triple-negative breast cancer cell lines. Therapeutic responses and cellular phenotypes were 

elucidated using high-content imaging and quantitative immunofluorescence to assess markers of 

DNA damage (53BP1) and apoptosis (cleaved-PARP). We determined the pharmacodynamic 

changes in percentage of cells positive for 53BP1, mean number of 53BP1 foci per cell, and 

percentage of cells positive for cleaved-PARP. Inspired by traditional dose-response measures of 

cell viability, an EC50 value was calculated for each cellular phenotype for each PARP inhibitor. 

The EC50 values for both 53BP1 metrics strongly correlated with IC50 values for each PARP 

inhibitor. Pathway enrichment analysis identified a set of DNA repair and cell cycle associated 

genes that were associated with 53BP1 response following PARP inhibition. The overall accuracy 

of our 63 gene set in predicting response to olaparib in seven breast cancer patient-derived 

xenograft tumors was 86%. In triple-negative breast cancer patients not treated with anti-PARP 

therapy, the predicted response rate of our gene signature was 45%. These results indicate that 

53BP1 is a biomarker of response to anti-PARP therapy in the laboratory, and our DNA damage 

response gene signature may be used to identify patients who are most likely to respond to PARP 

inhibition.
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Introduction

Although the overall survival of patients with breast cancer has improved over the past two 

decades (1), patients with triple-negative breast cancer have a poor prognosis with shorter 

disease-free survival and overall survival (2). Lacking expression of estrogen receptor, 

progesterone receptor, and HER2, triple-negative breast tumors constitute 15–20% of all 

breast cancers, are genomically and phenotypically heterogeneous, and have few effective 

therapeutic options (3). One of the strongest risk factors that have been identified for 

developing triple-negative breast cancer is a deleterious mutation in the BRCA1 gene, which 

is present in 10–15% of patients with triple-negative breast cancer (4). One family of 

targeted therapeutic agents that have shown promise for patients with BRCA1/2 mutations 

and triple-negative breast cancer are PARP (Poly-ADP Ribose Polymerase) inhibitors (5).

PARP inhibitors have two main mechanisms of action: synthetic lethality, and PARP-DNA 

trapping. The underlying premise for synthetic lethality is that of a two-hit theory; PARP 

inhibition in combination with defective BRCA1/2 function results in complex chromatid 

rearrangements and ultimately, cell death (6,7). PARP inhibitors target PARP1, an enzyme 

when recruited to single-strand breaks, binds to DNA, and catalyzes the synthesis of PARP 

chains onto a series of protein substrates (PARylation). In this process, PARP1 recruits DNA 

repair proteins and eventually autoPARylates, leading to its release from damaged DNA. 

PARP inhibitors also have been shown to trap PARP1/2 enzymes on damaged DNA, creating 

trapped PARP-DNA complexes that induce cytotoxicity (8,9).

Several PARP inhibitors are currently undergoing testing in the preclinical and clinical 

settings. We focus here on three PARP inhibitors: veliparib (ABT-888, Abbvie), olaparib 

(AZD2281, AstraZeneca), and talazoparib (Pfizer, formerly called BMN 673). While all 

three PARP inhibitors are orally available and have been shown to target PARP1/2 activity, 

talazoparib has demonstrated the greatest potency in trapping PARP-DNA complexes (8–

10). Over 100 clinical trials have been undertaken with PARP inhibitors, with the greatest 

emphasis on patients with BRCA1/2 mutations (10). Of these three PARP inhibitors, 

olaparib is the most advanced in its clinical development, having been granted FDA approval 

for use in ovarian cancer (11). Current clinical trials are testing PARP inhibitors as a single 

agent and in combination with other therapeutic agents in patients with triple-negative breast 

cancer and other types of cancers (10,12).

Our goal in this study was to identify pharmacodynamic biomarkers of response and genes 

that will predict response to PARP inhibitors. We accomplished this by assessing responses 

in a panel of well-characterized triple-negative breast cancer cell lines to three PARP 

inhibitors and correlating these responses with molecular features measured from the cell 

lines. In our study, we used high content imaging (13,14) to measure cellular changes in 

DNA damage and cell death in response to PARP inhibition. We found the DNA damage 

response to correlate strongly with IC50 values, and identified the genes and critical 

pathways associated with DNA damage response to PARP inhibition. Finally, we validated 

the predictive value of our gene signature in a publically available dataset of patient-derived 

xenografts, and identified the clinical relevance of these genes in breast cancer patients with 

triple-negative disease.
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Materials and Methods

In-vitro drug sensitivity assay

We first performed experiments to identify optimal cell seeding densities to ensure an 

average of 75% confluence of control cells at the end of the assay. Cells were assessed in a 

96-well plate format, where each plate tested two drugs, and 9 concentrations of each drug 

that were distributed in a randomized layout. Perimeter wells were not used. We tested each 

concentration in triplicate wells and in one to three replicate assays. Cells were plated and 

allowed to adhere for 24 hours, followed by drug treatment (Fig. 1). Media and drug were 

changed after 4–5 days. For all experiments, cells were treated for 10 days. After 10 days, 

cells were fixed and permeabilized with 4% paraformaldehyde, diluted from stock 

Paraformaldehyde 32% Solution, EM Grade (Cat No. 15714, Electron Microscopy 

Sciences), and 0.3% Triton X-100 (Cat No. T9284, Sigma-Aldrich).

We tested three PARP inhibitors: veliparib, olaparib, and talazoparib (Selleckchem, Cat Nos. 

S1004, S1060, S7048, respectively). Chemical formulations can be found in Fig. 2A–C. We 

used 1:5 serial dilutions, with concentrations optimized for each compound: veliparib and 

olaparib tested at 0.25 nM to 100 µM; and talazoparib, tested at 0.0128 nM to 5 µM.

We studied eight molecularly-characterized triple-negative breast cancer (TNBC) cell lines 

from our laboratory (15): MDAMB436, MDAMB231, MDAMB453, MDAMB468, 

HCC1143, HCC1937, HCC1806, and HCC1395 (Supplementary Table S1). Short tandem 

repeat (STR) DNA profiling (Genetica DNA Laboratories, Burlington, NC) performed in 

October 2014 prior to conduction of chemosensitivity experiments, confirmed cell line 

authenticity, and PCR analysis verified the absence of Mycoplasma. Molecular features of 

the cell lines, including gene cluster information (15,16), breast cancer subtype (15,17), 

mutational status for BRCA1/2, ATM, ATR (18,19), and PTEN deficiency status (20), are 

summarized in Supplementary Table S1.

Immunofluorescence

We prepared a primary and secondary antibody solution using 2% Bovine Serum Albumin 

(Cat No. 001-000-162, Jackson Immunoresearch). We used the following primary 

antibodies: cleaved-PARP (cl-PARP) (1:200, Cat No. 9546, Cell Signaling Technology) and 

53BP1 Antibody (1:500, Cat No. NB100-904, Novus Biologicals). Secondary antibodies 

used were: Alexa 488 donkey anti-mouse (1:300, Cat No. A21202, Life Technologies) and 

Alexa 647 donkey anti-rabbit (1:300, Cat No. A31573, Life Technologies). We used HCS 

Nuclear Mask (1:2000, Cat No. H10325, Life Technologies) to stain the nucleus, which was 

added at the time of the secondary antibody solution.

High-content imaging

We performed wide-field microscopy using a scan^R microscope (Olympus, Germany) 

alongside an ORCA-R2 CCD Digital Camera (Hamamatsu, Japan) (21) with a 10× objective 

and filter sets for Alexa 488 and Alexa 647. We scanned 25 images per well and performed 

image analysis with spot identification using scan^R analysis software version 2.4.1.1.
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Statistical analysis for immunofluorescence: We analyzed the DMSO control wells to 

identify the baseline level of 53BP1 foci per nucleus and cl-PARP intensity for each cell 

line.

We calculated two metrics for 53BP1: 1) percentage of cells positive for 53BP1 foci 

formation; and 2) mean number of 53BP1 foci per nucleus. In the control cells, we identified 

the number of foci at the 95th percentile, such that 5% of cells were considered positive for 

53BP1 foci formation. We used these thresholds to identify the percentage of positive cells 

for 53BP1 foci formation for each drug concentration of each cell line. We also determined 

the mean number of 53BP1 foci per nucleus for each drug concentration of each cell line.

We used a similar approach to analyze the cl-PARP intensity signal. Here, the 99th 

percentile of the intensity cl-PARP in the DMSO control cells was used to threshold cells 

into positive and negative bins. Cells positive for cl-PARP expression were interpreted to be 

apoptotic. The threshold of 1% was chosen based on what was previously reported (22), and 

was kept constant across all cell lines. We also calculated the percentage of apoptotic cells 

for each drug concentration. All single-cell analysis was performed using STATA SE 

(version 13.1, Statacorp, Texas).

Data visualization

For each PARP inhibitor concentration, we created heatmaps to visualize three metrics: 1) 

percentage of cells positive for 53BP1, 2) mean number of 53BP1 foci per nucleus; 3) 

percentage of cells positive for cl-PARP. In all cases, data from each drug treatment were 

normalized to the DMSO control. Values were scaled to the maximum value to compare 

across cell lines. Heatmaps were created using Multi Experiment Viewer (MeV) software 

(23). A double gradient color scheme was used, where 10% of the elements were at the 

lowest and highest levels of color saturation.

Calculation of EC50 curves: We calculated EC50 cells for each of the following cellular 

phenotypes: percentage of cells positive for 53BP1, mean number of 53BP1 foci per cell, 

and percentage of cells positive for cl-PARP. EC50 is defined as the drug concentration 

required to induce a response halfway between the baseline and maximum response. For 

each phenotype, we normalized the values for each well of each drug concentration by 

subtracting the mean value of triplicate wells for the DMSO control. We divided the 

normalized values for each drug concentration by the maximal value (mean of triplicate 

wells). These normalized metrics were plotted against the log-transformed molar drug 

concentrations with a top constraint of 100. We fit a sigmoidal curve to these data and 

interpolated to identify the drug concentration at 50% of the maximal response. Spearman’s 

rank correlations were used to correlate EC50 values with IC50 values. EC50 values and 

correlations were calculated using Graph Pad Prism (version 6.0d for Mac OS X, Graph Pad 

Software, California).

Cell cycle analysis

We determined the cell cycle distribution of DNA content by analyzing frequency 

histograms of total DAPI intensity. We first set up gates in the control (DMSO) population 

of each plate, and then these gates were applied to each treatment well. Constraints were 
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applied to the mean peak population of 2N and 4N, and to the coefficient of variation, such 

that the coefficient of variation of 4N was set at the same as 2N. We reported the results of 

cell cycle analysis when cell numbers per well were greater than 200. We performed all cell 

cycle analysis using FlowJo (v10.1r5, Oregon).

Gene association analysis

We identified genes associated with the 53BP1 response and assessed their clinical 

significance using the pipeline described in Figure S1. For this analysis, we stratified the cell 

lines into two groups: sensitive and resistant to PARP inhibition using the percentage of cells 

positive for 53BP1 response. The PARP inhibitors were grouped to determine the three 

common sensitive cell lines and three common resistant cell lines. We used previously 

published gene expression data from untreated cell lines (15) and calculated a log fold-

change metric by dividing the average gene expression of the sensitive cell lines by the 

average gene expression of the resistant cell lines to create a rank list. We also created a 

curated list of gene sets from gene sets previously shown to be implicated in predicting 

response to olaparib (20,24), talazoparib (25), BRCAness (26), BRCA1 (27), BRCA2 (27), 

homologous recombination deficiency (HRD) (28), and DNA damage response pathways 

(29). We used our rank gene list and the curated gene set list to perform a preranked gene set 

enrichment analysis (GSEA) to identify enriched gene sets and core enriched genes. There 

are four statistical parameters that are used to describe and interpret the GSEA output. The 

normalized enrichment score (NES) reflects the degree to which a gene set is 

overrepresented at the top or bottom of a ranked list of genes, taking into account differences 

in gene set size. The nominal p-value represents the statistical significance of the enrichment 

score for a single gene set. The false discovery rate (FDR) is the estimated probability for a 

false positive finding of a gene set with a given NES. FDR is adjusted for gene set size and 

multiple hypothesis testing. The rank metric score is the position of the gene in the ranked 

list of genes. GSEA was performed using GenePattern (Version 3.9.8, Build Id: 140) (30).

To determine which pathways were statistically associated with the core genes, Reactome 

Pathway Enrichment analysis was performed within Cytoscape v3.3.0. We identified 

enriched pathways and the genes associated with these pathways, with an FDR q-value < 

0.1. The pathways were organized into their hierarchy of major, minor, subpathways, and 

components, based on the hierarchical organization provided by Reactome within 

Cytoscape. We considered a pathway to be significant only if the major or minor pathways 

were statistically significant (FDR q-value < 0.1).

We evaluated the clinical significance of our 63 pathway-enriched genes by assessing their 

frequency of mutation in triple-negative breast cancer patients (n=82), and ER-positive 

patients (n=594) from The Cancer Genome Atlas (TCGA dataset) (31) available in 

cBioPortal (32). Mutation frequency was also assessed in breast cancer patients with the 

following subtypes: basal (n = 81), luminal B (n=133), and luminal A (n = 235) (33).

We tested the predictive potential of our gene signature using previously published 

expression data of seven breast cancer tumors that were treated with olaparib in a patient-

derived xenograft (PDX) model (34). We normalized the gene expression data as previously 

described (20) and used a weighted voting algorithm (30). Sensitivity and resistance to 
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olaparib was defined as per Bruna et al (34). We also determined the performance of 

previously published gene signatures predictive of response to PARP inhibition or 

BRCAness (20,24–28) with treatment to olaparib in patient-derived xenografts. For each of 

the gene signatures, our 53BP1 cell-line response was used to train the response to PARP 

inhibition, and a weighted voting algorithm was used to predict response in mice. 

Parameters that were used to compare performance of gene signatures include: overall 

accuracy ((true positives + true negatives)/(true positives + false positives + true negatives + 

false negatives)), sensitivity, specificity, positive predictive value, negative predictive value, 

and a positive test, referring to the sum of tumors wherein the test was sensitive to olaparib.

We also determined the predictive potential of our gene signature and those previously 

published in a cohort of 82 triple-negative breast cancer patients from TCGA. We obtained 

FPKM-upper quartile normalized gene expression data from the NCI Genomic Data 

Commons portal (35), and processed the data as previously described (20). Prediction of 

response to PARP inhibition was calculated using the same weighted voting algorithm that 

was used to predict response in the PDX model (30,36). The prediction of response or 

sensitivity to PARP inhibition was defined as a positive test.

Results

Talazoparib has greater potency in triple-negative breast cancer cell lines than veliparib or 
olaparib

We used a 10-day assay to measure responses of eight TNBC cell lines to three PARP 

inhibitors (Fig.2, Supplementary Fig. S2, Supplementary Tables S1 and S2). As expected, 

the two most sensitive cell lines, MDAMB436 and HCC1395, were BRCAMUT (BRCA 

mutant) and the most resistant cell line, HCC1143, was BRCAWT (BRCA wild-type) (Fig. 

2D and Supplementary Fig. S2). Talazoparib demonstrated the greatest potency, with mean 

IC50 values ranging between 0.20 nM and 28.0 nM. Olaparib IC50 values ranged from 

0.003 µM to 3.8 µM, while IC50 values for veliparib varied between 0.03 µM and 67.1µM. 

Olaparib is 5–50 fold more potent than veliparib, and talazoparib is 15–170 fold more potent 

than olaparib, depending on the cell line (Supplementary Table S3).

To better understand the significance of the IC50 values in the context of patients, we 

annotated Fig. 2D with the plasma concentrations achieved in patients for each compound. 

We obtained the peak plasma concentrations of each compound within 24 hours of drug 

administration from clinical trials. The average plasma concentrations described in the 

literature are: 9.9 µM for veliparib (37,38), 14 µM for olaparib and 25 nM for talazoparib 

(39,40). Therefore, the IC50 values for olaparib and talazoparib were mainly at physiologic 

concentrations, whereas the IC50 values for veliparib exceeded the maximum plasma 

concentrations for three of the eight cell lines.

Variability in DNA damage response and apoptosis across cell lines and PARP inhibitors

We examined the DNA damage response, represented by 53BP1 foci formation following 

treatment with each PARP inhibitor (Fig. 3A–C, Supplementary Fig. S3). We observed 

variability in the number of 53BP1 foci across cell lines, with greater number of foci in 
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HCC1806, and the fewest foci in HCC1143. Treatment with olaparib or talazoparib also 

resulted in cells with larger nuclei in the HCC1806 and MDAMB231 cell lines, as compared 

to HCC1143. Our imaging approach allowed us to quantitatively compare the effect of 

PARP inhibition on cell cycle and hyperploid cell populations (Supplementary Figs. S4 and 

S5). In comparison to HCC1143, increasing concentrations of all three PARP inhibitors was 

associated with an increasingly greater proportion of hyperploid cells in MDAMB231 and 

HCC1806 cell lines. Since HCC1806 is much more sensitive to PARP inhibition than 

MDAMB231 and HCC1143, it is plausible that an increase in DNA content is associated 

with response to PARP inhibition. Treatment with olaparib or talazoparib was also 

associated with a greater proportion of cells undergoing apoptosis, in comparison to 

veliparib (Fig. 3D–E, Supplementary Fig. S6).

Strong correlation between EC50 values for 53BP1 response and IC50 values

We calculated EC50 values for each of the phenotypic endpoints: percentage of cells 

positive for 53BP1, number of 53BP1 foci per cell, and percentage of cells positive for cl-

PARP (Supplementary Figs. S7 and S8). Overall, the EC50 values for 53BP1, computed 

from both percentage of cells and mean number of foci, demonstrated a similar trend across 

all the cell lines. The EC50 values for percentage of cells positive for cl-PARP were 

generally higher than the IC50 values. We performed correlations between IC50 and EC50 

values for each PARP inhibitor. Supplementary Fig. S9 shows statistically significant 

correlations for each of the PARP inhibitors between IC50 and EC50 values for percentage 

of cells positive for 53BP1 for veliparib (r = 0.83, P = 0.01), olaparib (r = 0.96, P = 0.003), 

and talazoparib (r = 0.93, P = 0.002). We also identified positive correlations between IC50 

and EC50 values for 53BP1 foci for veliparib (r = 0.95, P = 0.001), olaparib (r = 0.93, P = 

0.007), and talazoparib (r = 0.83, P = 0.01). There were no statistically significant 

correlations between IC50 values and EC50 values for percentage of cells positive for cl-

PARP.

We determined the dose dependent effect of veliparib, olaparib, and talazoparib upon 

percent cells positive for 53BP1, mean number of 53BP1 foci per cell, and percentage of 

cells positive for cl-PARP (Fig. 4). For the two 53BP1 metrics (Fig. 4A,B), we see a shift in 

the response from veliparib to olaparib to talazoparib, with increased 53BP1 foci formation 

or percentage of cells positive for 53BP1 at progressively lower concentrations for all cell 

lines. Since the concentration range tested was in the same micromolar range for veliparib 

and olaparib, while the concentration range for talazoparib was mainly in the nanomolar 

range, this suggests that the 53BP1 response is similar across all three PARP inhibitors, but 

the differences observed may be attributed to differences in affinity between the PARP 

inhibitors. Fig. 4C shows the dose response of each PARP inhibitor upon apoptosis. The 

effect is more dichotomous, and the induction of apoptosis occurs near the peak plasma 

concentrations observed in patients.

Gene association analysis of 53BP1 response

One of our aims was to identify a set of genes that was associated with response to all three 

PARP inhibitors (Supplementary Fig. S1). We created a transcriptome-wide ranked list of 

differential gene expression between the sensitive and resistant cell lines (Supplementary 
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File 1). This ranked gene list was used in a GSEA analysis to assess whether gene sets 

previously shown to be involved with response to PARP inhibition, BRCAness, BRCA1/2 
mutation status, HRD, or DNA damage repair (20,24–28) are differentially expressed in 

sensitive and resistant cell lines (see Supplementary File 2 for gene set lists). The total 

number of genes from these lists is 1091, of which there are 919 unique genes. Six of the 

eight gene sets were significantly differentially expressed between sensitive and resistant cell 

lines at q-value < 0.25 (Supplementary Figure S10A, S11). Significant gene sets include the 

two olaparib associated gene sets, BRCA1 and BRCA2 signatures, BRCAness, and the HRD 

signature. These gene sets have a negative enrichment score, which indicates that their 

downregulation is associated with sensitivity to PARP inhibition. We identified 189 core-

enriched genes, (Supplementary File 3), of which, twelve of these genes were present in 

more than two or three gene sets: MCM2, RAD51C, HELLS, ESCO2, TIMELESS, NBN, 
BRCA1, MCM3, ATAD5, ANLN, FAM83D, and SHCBP1 (Supplementary Figure S10B). 

Since these genes were derived from two or three different independent methods, we 

consider these genes to be of high interest.

We were also interested in determining the pathways enriched in the 176 core genes 

associated with response to PARP inhibition. Using Reactome pathway enrichment analysis, 

we identified three major pathways: DNA repair, cell cycle, and programmed cell death 

(Table 1, Supplementary File 4). Major and minor pathways have been defined above in the 

Materials and Methods section. Within the major pathway of DNA repair, several minor 

pathways involved in single-strand break and double-strand break repair were identified 

including base excision repair, nucleotide excision repair, mismatch repair, and homology-

directed repair. Of note, genes implicated in DNA damage bypass, such as translesion 

synthesis were also enriched. Cell cycle genes were also enriched, including checkpoint 

factors, as well as genes involved in DNA replication, chromosome maintenance, and 

telomere maintenance.

Clinical significance of pathway enriched genes

From the list of enriched major and minor pathways, we identified a unique set of 63 genes. 

Because inactivation of DNA damage response pathways typically leads to increased 

genomic instability (29), we analyzed the frequency with which these genes are mutated 

(including truncating, inframe and missense mutations) in different breast cancer subtypes 

using patient datasets from TCGA (31,33) within cBioPortal (32) (Supplementary Fig. 

S12A). As expected, the mutational frequency of these genes was enriched in patients with 

triple-negative, basal breast cancer or ER-negative breast cancers (Supplementary Fig. 

S12B). 85% of the patients with triple-negative breast cancer demonstrated a mutation in 

these genes, and in total we observed mutations in 21 of the 63 genes were mutated. This 

contrasts with a frequency of 31% for patients with ER-positive disease (31). The trend for 

this mutational frequency was also present in the intrinsic subtypes: 90% for basal, 38% for 

luminal B, and 17% for luminal A subtypes (33).

It is plausible that synergy with anti-PARP therapy may be achieved by targeting members 

of DNA repair or other DNA damage response pathways. Possible druggable targets of the 

DNA damage response pathways was extensively reviewed previously using several 
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approaches including targets with druggable structures, ligand-based approach, network-

based approach, and based on the availability of compounds of submicromolar activity or 

affinity (29). We found that 19 of the 21 mutated genes demonstrated druggable potential 

and are candidates for co-treatment with PARP inhibitors (Supplementary Table S4) (29).

Predictive performance of our gene signature

We determined the predictive value of our gene signature in patient-derived xenografts 

treated with olaparib using previously published data of seven breast cancer tumors (34). 

Three of these tumors were BRCA1MUT, of which 2 were sensitive to olaparib and 1 was 

resistant. The clinical characteristics of these tumors were previously reported (34). We 

found that our combined PARP inhibitor gene signature correctly predicted response in 6/7 

tumors. Our signature performed comparably to olaparib (24), talazoparib (25) and HRD 

(28) gene signatures, which predicted response in 5/7 tumors, and better than the gene 

signatures associated with BRCA1/2 mutations (27), which demonstrated a poorer 

specificity (Table 2).

We also determined the predictive value of the gene signatures in 82 triple-negative breast 

cancer patients from TCGA that were not reported to receive anti-PARP therapy (Table 2). 

Our combined PARP inhibitor gene signature predicted that 45% of triple-negative breast 

cancer patients would respond to anti-PARP therapy. Overall, the predicted response rate in 

TNBC patients was similar to the frequency of a positive test identified in-vivo. Because the 

patient TCGA cohort did not receive anti-PARP therapy, false positives could not be 

identified, and so our prediction of response rate is not a reflection of overall accuracy.

Discussion

The efficacy of PARP inhibitors in cell lines has been previously published using different 

approaches, with varying assay lengths – from 72 hours to 15 days, and different 

measurements of cell viability, such as sulforhodamine B or Alamar Blue (resazurin) 

(17,20,41). We used an automated approach to measure nuclear counts as a rapid and more 

direct means of determining therapeutic response after ten days of treatment. In the context 

of triple-negative breast cancer, we found that talazoparib had the greatest potency, with 

IC50 values in the nanomolar range, followed by olaparib and veliparib, with IC50 values in 

the micromolar range. We also found that talazoparib was about 100-fold more potent than 

olaparib, in terms of IC50 values in most of the cell lines. Since talazoparib was previously 

shown to be 100-fold more potent than olaparib at trapping PARP-DNA complexes (9), it is 

plausible that the PARP-trapping mechanism is mainly responsible for talazoparib’s greater 

potency in therapeutic response.

Our study is the first to use high content imaging to demonstrate heterogeneity in expression 

of 53BP1 and the apoptosis across multiple breast cancer cell lines. Although semi-

quantitative and manual approaches have been previously used to measure the level of 

double-strand or single-strand breaks (42), and to identify the percentage of cells that 

express γ-H2AX or 53BP1 in response to PARP inhibition (25,43), high-content imaging 

allows screening of several cell lines and drug concentrations in a high-throughput manner 

and single cell-analysis. We found that the EC50 values of 53BP1 foci formation or 
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percentage of cells positive for 53BP1 strongly correlated with IC50 values, suggesting the 

significance of the DNA damage response as a phenotypic endpoint. Of note, we did not 

identify a statistically significant correlation between the EC50 values for apoptosis and any 

of the three PARP inhibitors. This could be due to the presence of alternative mechanisms of 

cell death, such as mitotic catastrophe, for example, which may result from an accumulation 

of chromatid aberrations.

Although clinical trials have focused on patients with BRCA1/2 mutations, the search for 

predictors of BRCAness for breast cancer tumors is ongoing (10). A vast array of 

methodologies has been used to identify gene signature predictors of response to PARP 

inhibitors or BRCAness. These include genetic screens using siRNA/shRNA libraries 

(24,25,28), and computational approaches using in vitro response and genes that were 

previously known to be involved in DNA repair (20). Gene signatures for BRCAness, 

BRCA1 and BRCA2, have also been derived from breast cancer or ovarian cancer patients 

without any prior selection for genes involved with DNA repair (26,27). Our novel approach 

of comparing the 53BP1 response in sensitive and resistant cell lines provides insight into 

the pathways associated with response to the three PARP inhibitors.

Our core gene set enrichment analysis identified some of the critical genes previously found 

to be important in determining response to PARP inhibition. For example, Daemen et al. 

(20) identified 5 genes associated with response to olaparib, namely, BRCA1, NBN, TDG, 
XPA, and MRE11A. Interestingly, we also identified CDK12 to be a core-enriched gene 

from Bajrami et al.’s gene set (24), which has been shown to play a role in resistance to 

PARP inhibition (44).

We identified key pathways associated with response to PARP inhibition using pathway 

enrichment analysis. In addition to DNA repair pathways, we also found other pathways 

involving translesion synthesis, telomere maintenance, as well as cell cycle and checkpoint 

factors associated with response to PARP inhibition. This is not surprising as genes 

associated with transcription, chromatin modification, mitosis, and apoptosis have 

previously been reported to be associated with PARP function (10). Furthermore, pathways 

involving translesion synthesis, telomere maintenance and checkpoint factors, have all been 

shown to be important components of the DNA damage response pathways (29).

We determined the clinical significance of the pathway-enriched genes in breast cancer 

patients. We found an enrichment in the mutational frequency of our 63 genes in basal and 

triple-negative breast cancers in comparison to Luminal A, and ER-positive breast cancers, 

suggesting that our panel of breast cancer cell lines is representative of the genetic 

aberrations in triple-negative breast cancer patients. This is concordant with what we and 

others previously demonstrated, in that panels of breast cancer cell lines capture much of the 

genomic, transcriptomic and biological heterogeneity of primary breast tumors (16,45), and 

can be used to demonstrate a differential response to therapy (15). We also identified 

druggable potential of most of the mutated genes, suggesting the possibility for identifying 

novel therapeutic agents that could be used in combination with anti-PARP therapy.
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We further validated our combined PARP inhibitor gene signature on patient-derived breast 

cancer xenografts and found that the overall accuracy of our gene signature in predicting 

response to olaparib was 86% in seven tumors. Although there were a small number of 

tumors in this validation cohort, we still compared the performance of other BRCAness gene 

signatures. We found that our gene signature was one of the higher performing signatures. 

We also determined the predicted response rate of our combined PARP inhibitor gene 

signature to be 45% in triple-negative breast cancer patients.

In summary, we used high content cell-imaging to determine chemosensitivity of PARP 

inhibitors in a panel of eight breast cancer cell lines. We identified a novel approach to 

characterize the DNA damage and cell death response. Using gene set and pathway 

enrichment analysis, we identified gene predictors of 53BP1 response to PARP inhibition. 

When mutated, these genes are prevalent in triple-negative breast cancer patients, and are 

suggestive of druggable targets that could be used in combination with anti-PARP therapy. 

The high overall accuracy of our gene signature in patient-derived xenografts and predicted 

response rate in triple-negative breast cancer patients leads the way for clinical studies to 

validate the predictive potential of our gene signature in triple-negative breast cancer 

patients.
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Figure 1. 
Workflow of identification of genes and pathways associated with 53BP1 response to PARP 

inhibition.
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Figure 2. 
Chemical structures of A, veliparib, B, olaparib, C, talazoparib. D, IC50 values for veliparib, 

olaparib, and talazoparib compiled for 8 breast cancer cell lines. Average values for triplicate 

wells and replicate assays were used. Error bars refer to standard error of the mean of 

replicate assays. Light grey bars refer to BRCA-mutant cell lines, while dark grey bars refer 

to BRCA wild-type cell lines. Grey arrows refer to plasma concentrations of the PARP 

inhibitors achieved in patients. N/A refers to not available.
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Figure 3. 
Cleaved-PARP and 53BP1 expression. Representative images with 10× objective from high-

content imaging of control cells in the left column, and cells treated with veliparib, olaparib, 

and talazoparib in three right columns. 53BP1 expression is seen in: A, HCC1143; B, 

MDAMB231; and C, HCC1806. Blue represents nuclear staining and pink foci represent 

53BP1 foci. Cleaved-PARP expression is seen in D, HCC1143 and E, HCC1806. Blue 

represents nuclear staining and green represents cleaved-PARP expression.
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Figure 4. 
Heatmap of PARP inhibitors and cellular phenotype. Along the x-axis are nine increasing 

concentrations of each PARP inhibitor, and along the y-axis are eight different cell lines. 

Three metrics visualized are: A, percentage cells positive for 53BP1; B, mean number of 

53BP1 foci per cell; and C, percentage of cells positive for cleaved-PARP. Grey arrows refer 

to peak plasma concentrations of the PARP inhibitors achieved in patients.
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