TABLE VI.
Baseline | G-mean (%) | SEN (%) | SPEC (%) | AUC | #F | |
---|---|---|---|---|---|---|
TCFA | SVM RFE+SVM | 85.9 | 92.7 | 79.6 | 0.87 | 16 |
mRMR+SVM | 74.3 | 76.4 | 72.2 | 0.77 | 12 | |
SVM RFE+MLP | 83.1 | 85.5 | 80.7 | 0.88 | 15 | |
mRMR+MLP | 71.9 | 76.4 | 67.7 | 0.75 | 27 | |
RF | 77.9 | 70.9 | 85.6 | 0.82 | 16 | |
| ||||||
ThCFA | SVM RFE+SVM | 81.7 | 91.7 | 72.8 | 0.84 | 13 |
mRMR+SVM | 66.3 | 58.3 | 75.4 | 0.77 | 14 | |
SVM RFE+MLP | 79.6 | 83.3 | 76.0 | 0.85 | 17 | |
mRMR+MLP | 75.4 | 88.9 | 64.0 | 0.82 | 20 | |
RF | 68.0 | 58.3 | 79.2 | 0.77 | 7 | |
| ||||||
nonFA | SVM RFE+SVM | 77.0 | 63.6 | 93.3 | 0.92 | 37 |
mRMR+SVM | 78.7 | 75.8 | 81.8 | 0.87 | 12 | |
SVM RFE+MLP | 83.7 | 97.0 | 72.3 | 0.87 | 12 | |
mRMR+MLP | 81.9 | 90.9 | 73.9 | 0.88 | 6 | |
RF | 78.7 | 75.8 | 81.7 | 0.89 | 7 | |
| ||||||
PB≥70% | SVM RFE+SVM | 80.8 | 77.7 | 84.0 | 0.88 | 26 |
mRMR+SVM | 70.3 | 75.0 | 66.0 | 0.81 | 16 | |
SVM RFE+MLP | 74.8 | 74.1 | 75.5 | 0.83 | 10 | |
mRMR+MLP | 72.4 | 79.5 | 66.0 | 0.82 | 12 | |
RF | 78.9 | 77.1 | 80.8 | 0.87 | 9 | |
| ||||||
PB<70% | SVM RFE+SVM | 85.6 | 85.3 | 85.9 | 0.93 | 25 |
mRMR+SVM | 76.0 | 70.5 | 82.0 | 0.87 | 37 | |
SVM RFE+MLP | 82.4 | 88.5 | 76.7 | 0.89 | 22 | |
mRMR+MLP | 76.2 | 72.1 | 80.5 | 0.88 | 8 | |
RF | 78.6 | 75.4 | 81.9 | 0.89 | 10 | |
| ||||||
MLA≤4mm2 | SVM RFE+SVM | 81.6 | 86.4 | 77.0 | 0.86 | 27 |
mRMR+SVM | 73.5 | 75.7 | 71.4 | 0.81 | 17 | |
SVM RFE+MLP | 77.9 | 81.4 | 74.6 | 0.86 | 8 | |
mRMR+MLP | 76.3 | 75.7 | 77.0 | 0.81 | 21 | |
RF | 76.0 | 77.4 | 74.6 | 0.83 | 11 | |
| ||||||
MLA>4mm2 | SVM RFE+SVM | 80.1 | 83.3 | 77.0 | 0.86 | 18 |
mRMR+SVM | 71.4 | 77.8 | 65.6 | 0.78 | 3 | |
SVM RFE+MLP | 74.6 | 74.4 | 74.8 | 0.83 | 17 | |
mRMR+MLP | 72.4 | 72.2 | 72.6 | 0.77 | 2 | |
RF | 73.3 | 70.0 | 76.8 | 0.80 | 20 | |
| ||||||
Average | SVM RFE+SVM | 81.8 | 83.0 | 81.4 | 0.88 | 23 |
mRMR+SVM | 72.9 | 72.8 | 73.5 | 0.81 | 16 | |
SVM RFE+MLP | 79.4 | 83.5 | 75.8 | 0.86 | 14 | |
mRMR+MLP | 75.2 | 79.4 | 71.7 | 0.82 | 14 | |
RF | 75.9 | 72.1 | 80.1 | 0.84 | 11 |
mRMR (minimal-redundancy-maximal-relevance): based on mutual information.
MLP (multilayer perceptron): 1 hidden layer with the number of neurons = (# features + # classes) / 2, epochs = 500, and learning rate = 0.01.
RF (random forests): 100 trees with the size of features for node splitting