Skip to main content
. Author manuscript; available in PMC: 2019 Jan 1.
Published in final edited form as: IEEE Trans Med Imaging. 2017 Jul 11;37(1):151–161. doi: 10.1109/TMI.2017.2725443

TABLE VI.

Comparison of three different feature selection and classification methods.

Baseline G-mean (%) SEN (%) SPEC (%) AUC #F
TCFA SVM RFE+SVM 85.9 92.7 79.6 0.87 16
mRMR+SVM 74.3 76.4 72.2 0.77 12
SVM RFE+MLP 83.1 85.5 80.7 0.88 15
mRMR+MLP 71.9 76.4 67.7 0.75 27
RF 77.9 70.9 85.6 0.82 16

ThCFA SVM RFE+SVM 81.7 91.7 72.8 0.84 13
mRMR+SVM 66.3 58.3 75.4 0.77 14
SVM RFE+MLP 79.6 83.3 76.0 0.85 17
mRMR+MLP 75.4 88.9 64.0 0.82 20
RF 68.0 58.3 79.2 0.77 7

nonFA SVM RFE+SVM 77.0 63.6 93.3 0.92 37
mRMR+SVM 78.7 75.8 81.8 0.87 12
SVM RFE+MLP 83.7 97.0 72.3 0.87 12
mRMR+MLP 81.9 90.9 73.9 0.88 6
RF 78.7 75.8 81.7 0.89 7

PB≥70% SVM RFE+SVM 80.8 77.7 84.0 0.88 26
mRMR+SVM 70.3 75.0 66.0 0.81 16
SVM RFE+MLP 74.8 74.1 75.5 0.83 10
mRMR+MLP 72.4 79.5 66.0 0.82 12
RF 78.9 77.1 80.8 0.87 9

PB<70% SVM RFE+SVM 85.6 85.3 85.9 0.93 25
mRMR+SVM 76.0 70.5 82.0 0.87 37
SVM RFE+MLP 82.4 88.5 76.7 0.89 22
mRMR+MLP 76.2 72.1 80.5 0.88 8
RF 78.6 75.4 81.9 0.89 10

MLA≤4mm2 SVM RFE+SVM 81.6 86.4 77.0 0.86 27
mRMR+SVM 73.5 75.7 71.4 0.81 17
SVM RFE+MLP 77.9 81.4 74.6 0.86 8
mRMR+MLP 76.3 75.7 77.0 0.81 21
RF 76.0 77.4 74.6 0.83 11

MLA>4mm2 SVM RFE+SVM 80.1 83.3 77.0 0.86 18
mRMR+SVM 71.4 77.8 65.6 0.78 3
SVM RFE+MLP 74.6 74.4 74.8 0.83 17
mRMR+MLP 72.4 72.2 72.6 0.77 2
RF 73.3 70.0 76.8 0.80 20

Average SVM RFE+SVM 81.8 83.0 81.4 0.88 23
mRMR+SVM 72.9 72.8 73.5 0.81 16
SVM RFE+MLP 79.4 83.5 75.8 0.86 14
mRMR+MLP 75.2 79.4 71.7 0.82 14
RF 75.9 72.1 80.1 0.84 11

mRMR (minimal-redundancy-maximal-relevance): based on mutual information.

MLP (multilayer perceptron): 1 hidden layer with the number of neurons = (# features + # classes) / 2, epochs = 500, and learning rate = 0.01.

RF (random forests): 100 trees with the size of features for node splitting =#features