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Abstract

Costello syndrome (CS) is a gain of function Rasopathy caused by heterozygous activating 

mutations in the HRAS gene. Patients show brain dysfunction that can include abnormal brain 

white matter. Transgenic activation of HRas in the entire mouse oligodendrocyte lineage resulted 

in myelin defects and behavioral abnormalities, suggesting roles for disrupted myelin in CS brain 

dysfunction. Here we studied a mouse model in which the endogenous HRas gene is conditionally 

replaced by mutant HRasG12V in mature oligodendrocytes, to separate effects in mature 

myelinating cells from developmental events. Increased myelin thickness due to decompaction 

was detectable within one month of HRasG12V expression in the corpus callosum of adult mice. 

Increases in active ERK and Nitric Oxide (NO) were present in HRas mutants and inhibition of 

NO synthase (NOS) or MEK each partially rescued myelin decompaction. In addition, genetic or 

pharmacologic inhibition of Notch signaling improved myelin compaction. Complete rescue of 

myelin structure required dual drug treatments combining MAPK, NO or Notch inhibition; with 

MEK + NOS blockade producing the most robust effect. We suggest that individual or 

concomitant blockade of these pathways in Costello syndrome patients may improve aspects of 

brain function.
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Introduction

Rasopathies are genetic disorders in which patients are heterozygous for germline mutations 

in genes of the Ras-MAPK signaling pathway (Tidyman and Rauen 2016). Costello 

syndrome (CS) is a rare gain of function Rasopathy caused by a heterozygous mutation of 
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the HRAS gene on chromosome 11p15.5, which results in neurocognitive impairment and 

relative macrocephaly (Quezada and Gripp 2007). Other manifestations include facial 

dysmorphism, growth retardation, gastrointestinal, skin and musculoskeletal anomalies, 

cardiovascular abnormalities, and tumor predisposition. Most CS patients show HRASG12S 
mutation, which causes psychomotor delay with low intelligence and developmental index 

scores (Zampino et al. 2007). Furthermore, a rare HRASG12V mutation was linked to a 

severe form of CS (Aoki et al. 2005). All these mutations increase HRAS-GTP and 

activation of downstream signals, including activation of the MAPK signaling pathway that 

results in phosphorylation of the kinases MEK1/2 and ERK1/2 (Quezada and Gripp 2007). 

Correlating with severe patient phenotypes, the G12V mutant of HRAS displays the lowest 

GTPase activity among known HRASG12 mutations (Colby et al. 1986), and is a 

predominant mutation in human cancers (Aoki et al. 2005).

Mental retardation, macrocephaly and variable cognitive delay are frequent in CS patients 

(Axelrad et al. 2007; Gripp et al. 2010; Rauen 2007). Moreover, synaptic plasticity may be 

affected in CS patients (Mainberger et al. 2016). At cellular level, brain neurons and 

astrocytes have been studied in models of CS. Increased HRAS-GTP promotes production of 

cortical neurons with morphological deficits (Rooney et al. 2016). Human induced 

pluripotent stem cells from RASG12S CS patients differentiate to astroglia more rapidly 

than wild type cells. Additionally, RASG12S cells show abnormal astrocyte-to-neuron 

signaling, as do astrocytes in an astrocyte-driven RASG12V mouse model (Krencik et al. 

2015). Interestingly, MRI studies have shown brain white matter (WM) abnormalities in CS 

patients, suggesting that delayed myelination and/or abnormal myelin contribute to CS 

developmental delays (Delrue et al. 2003). These studies, together with research relating 

defective oligodendrocyte function with mental illness (Haroutunian et al. 2014), suggest 

that hyperactive RAS in myelinating cells may contribute to CS pathology.

Myelin sheaths are plasma membrane projections of oligodendrocytes that spirally wrap 

axons and myelin layers become compacted, increasing axon conduction velocity (Bauer et 

al. 2009; Franklin and Gallo 2014). The Ras-MAPK pathway kinases MEK and ERK 

regulate several aspects of developmental, injury-induced and in vitro oligodendrogenesis as 

well as regulate the number of myelin wraps produced by normal oligodendrocytes (Fyffe-

Maricich et al. 2011; Fyffe-Maricich et al. 2013; Guardiola-Diaz et al. 2012; Ishii et al. 

2013; Xiao et al. 2012). In contrast, mice expressing the Ras-activating HRasG12V allele in 

cells of the oligodendrocyte lineage starting at embryonic day 12.5, exhibit myelin 

decompaction at intraperiod lines in adult mice. These mutants show hyperactive behavior 

and increased response to startle, correlating with the presence of abnormal myelin (Mayes 

et al. 2013). These results are consistent with the hypothesis that defects in myelinating cells 

contribute to phenotypes in Rasopathies.

Elevated Ras signaling through MEK/ERK can increase reactive oxygen and nitrogen 

species (ROS) (Heimfarth et al. 2013), and in CNPase;HRasG12V mice, nitric oxide (NO) 

mediates myelin decompaction (Mayes et al. 2013); HRasG12V-expressing white matter 

showed elevated NO synthases (NOS) and ROS, and blockade of NOS rescued aberrant 

behavior and myelin compaction. NO signaling inhibition also rescued myelin decompaction 

caused by inactivation of the Ras-GTP inhibitor Nf1 in oligodendrocytes and, interestingly, 
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blocking NO production rescued abnormally hyperactive Notch signaling (López-Juárez et 

al. 2017). Cell-cell interactions through Notch signaling negatively regulate oligodendrocyte 

maturation and myelin wrapping (Wang et al. 1998; Watkins et al. 2008). While a direct link 

between RAS and Notch in mOLs has not been identified, in other systems multiple levels 

of crosstalk between these signaling pathways are known (Sundaram 2005). Ras-GTP can 

act upstream of Notch signaling and the Notch pathway can feedback to antagonize the Ras 

pathway (Baumgart et al. 2015). Here, we aimed to delineate effects downstream of 

HRasG12V mutation in mature oligodendrocytes (mOLs).

A limitation of transgenic HRasG12V mice to model the CS brain is that transgenic 

expression of activated RAS often fails to accurately model disease, due to altered levels, 

timing and/or strength of activating alleles in specific cell types (Di Nicolantonio et al. 2008; 

Sarkisian et al. 2007; To et al. 2008). For example, CNPase;HRasG12V was expressed early 

in development, in immature and mature oligodendrocytes, and lacks normal genomic 

regulation (Mayes et al. 2013). To better mimic human HRasG12V mutation in CS, we 

conditionally substituted the endogenous wild type HRas with the mutant HRasG12V (Chen 

et al. 2009) in mature oligodendrocytes (mOLs). We found that myelin decompaction occurs 

rapidly after oligodendrocyte HRasG12V hemizygous expression. Compaction is improved 

by individual inhibition of signal pathways and is fully rescued by combined inhibition of 

MEK and NOS.

Materials and Methods

Mouse Husbandry

All mouse studies were approved by The Cincinnati Children’s Hospital Research 

Foundation, Institutional Animal Care and Use Committee (IACUC). Mice were housed in a 

temperature- and humidity- controlled vivarium on a 12-hour light-dark cycle with free 

access to food and water. Adult (<8 weeks old) male and female mice were used for 

experimentation.

Mouse Strains

See description in table below. All mice were maintained on a C57Bl/6 background. Mice 

were genotyped by PCR as previously described (references).

Tamoxifen Injections

Tamoxifen (Sigma-Aldrich) (100 µL; ~75mg/kg of body weight) in sunflower seed oil was 

administered I.P. twice daily for 4 consecutive days. Treatment was performed at 8 week of 

age in littermate WT and mutant mice, of both sexes. No genotype- or sex-dependent 

changes in body weight were observed.

Tissue Processing

Mice were anesthetized and perfused with 0.9% saline followed by ice cold 4% 

paraformaldehyde. Tissues were removed, post-fixed in 4% paraformaldehyde overnight and 

sectioned using a vibratome (Leica) or transferred to 20% sucrose for subsequent frozen 

sectioning.
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Immunohistochemistry and Antibodies

Cryostat or vibratome sections were processed for immunohistochemistry using antibodies 

for markers; Rabbit anti-pERK (1:200; Cell Signaling) and Mouse anti-APC (CC1 1:300, 

Calbiochem). Fluorescent secondary antibodies (donkey anti-rabbit conjugated to Cy3 and 

donkey anti-mouse conjugated to Cy5, Invitrogen, Carisbad, CA) were used at 1:300 

dilution. Fluoromount G was used to mount fluorescent sections.

Image Analysis

Fluorescent images were captured on a Nikon C2 Confocal microscope using a 20× 

objective (2× Zoom for 40×) with lasers (405, 488, 561). Cell counting was performed using 

an ImageJ micromanager plugin and Imaris Software.

Electron Microscopy

Wild type and experimental littermate mice were processed at the same time to minimize 

myelin structure artifacts caused in processing. Mice were perfused with 4% 

paraformaldehyde/2.5% glutaraldehyde and post–fixed in the same fixative overnight. The 

corpus callosum was dissected and transferred to 0.175M cacodylate buffer, osmicated, 

dehydrated and embedded in Embed 812 (Ladd Research Industries). Ultrathin sections 

were stained in uranyl acetate and lead citrate, and then imaged on a Hitachi Model H-7600 

transmission electron microscope.

Myelin Analysis

To quantify total decompaction, myelin sheaths were rated as compacted or decompacted, as 

defined by the presence or absence of fibers with disruption of the myelin sheath (i.e. 

decompacted = presence of areas with splitting of myelin lamellae). To measure severity of 

decompaction, we analyzed each quartile of each fiber (4 measurements per myelinated 

axon cross section), and report results as 1, 2, 3, or 4 quadrants showing decompaction 

(color coded in figures 3–6). The g-ratio of myelinated fibers was obtained by dividing the 

diameter of each axon by the fiber diameter (300–500 axons/mouse, n=3–5 mice/genotype/

condition), using ImageJ software. When a fiber was identified as compact, or showed 4 

quadrants decompacted, 1 measurement was collected for g-ratio. However, if a fiber 

showed 2 quadrants decompacted, then 2 measurements were collected, perpendicular to 

each other; if a fiber showed 1 or 3 quadrants decompacted, 4 measurements at 90° angles 

were collected for measurement of myelin thickness. Measurement was carried out by 

individuals blinded to sample identify and treatment.

Flow Cytometry

Adult murine brains were processed for flow cytometry as described (Robinson et al. 2014). 

Flow cytometry was performed using FacsDiva software for acquisition on an LSR II flow 

cytometer. We used antibodies recognizing oligodendrocyte progenitors (PDGFRα 1:50; 

Millipore), and mature oligodendrocytes (GalC 1:100; Millipore). An ENZO Life Sciences 

kit was used to detect Nitric Oxide (ENZ-51013-200). Importantly, a positive control (L-

arginine, a nitric oxide synthase substrate) and a negative control (C-PTIO, a nitric oxide 

scavenger) validated staining specificity for nitric oxide (Kalyanaraman et al. 2012). 
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Analysis was performed using FlowJo10 software. Compensation was carried out using 

positive and negative controls, as well as Fluorescence Minus One (FMO) samples, which 

were dissociated forebrain cells incubated with all stains except the marker of interest, to 

allow for appropriate compensation.

Drug Treatments

Gamma secretase inhibitor (GSI; MRK-003) was prepared fresh weekly and dosed at 300 

mg/kg in 0.5% methocel by oral gavage (Lewis et al. 2007; Sparey et al. 2005). For 

histology, we dosed mice once weekly for 4 weeks, and sacrificed them 6 hours after the last 

dose (n=5 doses). Fresh solution of L-NG-Nitroarginine Methyl Ester (L-NAME) at 

0.4mg/kg (100µM in 1× PBS) was administered daily. For pathology and flow analysis, mice 

were injected intraperitoneally (IP) daily with 100µL for 7 days and sacrificed 6 hours after 

the last dose. MEK inhibitor (PD0325901 from Pfizer) was made fresh weekly and dosed at 

1.5 mg/kg in 0.5% methocel/0.2% Tween 80 by oral gavage. For histology, we dosed mice 

every day for 3 weeks.

Statistical Analysis

The minimal number of independent experiments/mice per statistically significant 

experiment was 3. Comparison between two groups used Student’s t-tests with significance 

cutoff of p<0.05. For comparison of three or more groups, one-way ANOVA followed by 

Tukey post hoc test with significance cutoff of p<0.05. Linear regression of g-ratio vs. axon 

diameter was performed using Graph Pad software.

Results

RasG12V Mutation in Mature Oligodendrocytes Activates MAPK Signaling Without 
Affecting Oligodendrocyte Numbers

To study how the CS mutation HRasG12V affects myelinating mOLs, we induced the 

expression of HRasG12V from the Ras endogenous locus. Mice carrying the mutant allele 

HRasG12V downstream of the endogenous HRas gene flanked by loxP sites (Chen et al. 

2009) were crossed with mice carrying a tamoxifen-inducible Cre recombinase under the 

transcriptional regulatory elements of proteolipid protein 1 (Plp1CreERt2) (Doerflinger et al. 

2003). In these mice, tamoxifen treatment induces the expression of HRasG12V upon 

excision of the endogenous HRas (Fig. 1A). Recombination using this PlpCre driver targets 

~35% of mOLs in the corpus callosum (CC), and essentially no NG2+ oligodendrocyte 

progenitors or GFAP+ astrocytes are recombined (Koenning et al. 2012; Mayes et al. 2013). 

Numerous studies indicate that diverse phenotypes are caused by varying levels of Ras-

MAPK activation (Cox and Der 2003; Serrano et al. 1997). With respect to myelin defects, 

decreasing gene-dose of Nf1, a negative regulator of Ras, correlates with progressively 

increasing levels of decompaction (López-Juárez et al. 2017); therefore, we studied both 

HRasG12V homozygous and hemizygous mutants. Adult (>8 week old) hemizygous 

PlpCreERt2;HRasG12V/+ (henceforth pRsG/+) and homozygous PlpCreERt2;HRasG12V/G12 

(henceforth pRsG/G) RasG12V mutants, as well as control PlpCreERt2 or RasG12V/+ 

littermates, were treated with tamoxifen, and analysis of the CC at different time points was 

performed. No phenotypic differences were observed between control PlpCreERt2 and 
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pRasG12V/+ mice (henceforth referred as wild type; WT) and, in agreement with a previous 

report (Doerflinger et al. 2003), we did not observe spontaneous activity of PlpCreERt2. We 

confirmed Ras hyper-activation specifically in mOLs by assessing the presence of the 

phosphorylated form of ERK (pERK), a downstream target of Ras-GTP, in cells stained with 

the mOL marker CC1 (Fig. 1B). The number of CC1+ mOLs in the CC of RasG12V mutants 

was not significantly different from that in WT mice (Fig. 1C). In contrast, significantly 

increased numbers of pERK+CC1+ mOLs were detected in pRsG/G and pRsG/+ mutants 1 

month after tamoxifen treatment (Fig. 1D). We note that high variability in the number of the 

pERK+;CC1+ mOLs occurred in homozygous RsG12V mutants, yet specific induction of 

hyperactive Ras was achieved in both Ras mutants.

Constitutive HRas Activation in Mature Oligodendrocytes Decreases g-ratio

To study WM abnormalities after Ras activation, we analyzed the ultrastructure of axons and 

myelin in sagittal sections at the midline of the CC of RasG12V mutants using electron 

microscopy (Fig. 2A). Unbiased counting of myelinated axons revealed significantly 

decreased g-ratio in pRsG/+ and pRsG/G mutants 1 month post-tamoxifen treatment, as 

compared to WT mice (Fig. 2B). We did not count numbers of small unmyelinated axons; 

however, numbers of large caliber unmyelinated axons in the CC did not change with 

genotype (n= 3 mcie/genotype, one-way ANOVA p=0.057, with Tukey’s multiple 

comparison test WT vs, pRsG/+; 0.072; WT vs, pRsG/G; p=0.093). Further, decreases in g-

ratio were observed in both mutants at 6 months post-tamoxifen (Fig. 2B), indicating that 

the decrease in g-ratio is progressive. One month post tamoxifen, low g-ratio was not 

preferentially associated to small or large diameter axons, as indicated by linear regression 

analysis of g-ratio vs. axon diameter in mutant vs WT mice (Fig. 2C). However, at six 

months post-tamoxifen, an increased association of low g-ratio with small caliber axons was 

observed in both homozygous and hemizygous HRasG12V mutants as compared to WT 

mice (Fig.2D); indicating that small caliber axons contribute to progressive abnormal g-

ratio, and/or axons shrink over time (Fig. 2B). Myelinating cells regulate axon caliber (Cole 

et al. 1994; Colello et al. 1994), so myelin defects caused by HRas activating mutation in 

mOLs might disrupt axon structure. In fact, quantification of myelinated axon diameter 

indicated a significant skew to decreased axon diameter in both pRsG/+ and pRsG/G 
mutants, as compared to WT (Fig. 2E). As neurons whose axons project through the CC do 

not express the PlpCre allele (Koenning et al. 2012; Mayes et al. 2013), change in axon 

diameter is likely to be secondary to disturbed myelin integrity (Cole et al. 1994; Colello et 

al. 1994), thus we focused on the analysis of the myelin structure.

Hyperactivation of HRas in Mature Oligodendrocytes Results in Myelin Decompaction

The MAPK signaling pathway regulates numbers of myelin wraps as well as compaction of 

myelin in mOLs (Ishii et al. 2013, López-Juárez et al. 2017). We observed that myelin 

thickness was increased in RasG12V mice, as both homozygous and hemizygous mutants 

displayed myelin decompaction at intraperiod lines (Fig. 2A, arrows), without showing 

changes in the number of myelin lamellae wrapping axons (Fig. 3A). Therefore, the two 

parameters determining g-ratio, axon diameter and myelin thickness, were abnormal in 

HRas mutants. Quantification of the fibers showing decompaction indicated a significant 

increase in the percent of myelin sheaths with decompaction in both RasG12V mutants 1 

Titus et al. Page 6

Glia. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



month after tamoxifen treatment, as compared to WT mice (Fig. 3B). This phenotype was 

sustained for at least 6 months post-tamoxifen with no obvious worsening of decompaction. 

To determine changes in the severity of myelin decompaction, we divided myelinated fibers 

into quadrants and reported the percent of fibers showing decompaction in 1, 2, 3 or 4 

quadrants around each axon. We corroborated similar decompaction patterns in both 

RasG12V mutants over time (Fig. 3B, bottom; color code). Thus, hyperactivation of HRas in 

mOLs disrupts myelin structure within 1 month, and this phenotype is sustained, while the 

non-cell-autonomous effects on axons appear progressive. Next, we analyzed whether small 

or large diameter axons preferentially show myelin decompaction. As shown in figure 3C, 

small myelinated axons (<0.9 µm) of homozygous and hemizygous HRas mutants, and 

medium caliber myelinated axons (0.91 – 1.2 µm) of homozygous mutants, were affected by 

myelin decompaction 1 month post-tamoxifen. These results indicate that myelin 

decompaction impacts small caliber axons in the short-term and may cause axon shrinkage 

over time (Fig. 2B–E). As hemizygous HRasG12V mutation most closely models CS 

patients, we focused additional study on the analysis of signaling pathways controlling 

myelin decompaction in pRsG/+ mutants.

Myelin Decompaction is Partially Rescued by Inhibition of MEK or NOS, and Full Rescue is 
Achieved by the Concomitant Treatment in Hemizygous HRas Mutants

In order to gain insight into molecular mechanisms driven by HRas activating mutations that 

affect oligodendrocytes, we first evaluated the effect of blocking MEK, the major effector 

pathway downstream of Ras-GTP in Rasopathies. We analyzed myelinated fibers in the CC 

of mice treated with the blood brain barrier-permeable MEK inhibitor (MEKi) PD0325901, 

starting 1 month post-tamoxifen (Barrett et al. 2008). Administration of MEKi did not 

significantly change myelin decompaction in WT mice, although a trend toward increased 

decompaction was observed (Fig. 4A). Likewise, no differences in g-ratio were observed 

between vehicle-treated WT and MEKi-treated mice (Fig. 4B). MEKi treatment slightly 

improved compaction in pRsG/+ mutants, as compared to vehicle-treated mutants, but this 

was not significant (Fig. 4A). In contrast, MEKi significantly normalized g-ratio in pRsG/+, 

however full recovery to WT levels was not achieved (Fig. 4B). These results indicate that 

MEKi, at a therapeutically relevant dose, does not fully rescue myelin defects caused by 

HRasG12V in mOLs. We therefore searched for additional effectors downstream of Ras.

It was previously reported that myelin defects resulting either from activation of HRas in the 

oligodendrocyte lineage, or from inactivating the Ras regulator Nf1 in mOLs, can be 

partially rescued by blocking the production of Nitric Oxide in vivo (López-Juárez et al. 

2017; Mayes et al. 2013). Therefore, we first tested whether NO signaling is abnormally 

increased in pRsG/+ mutants at a time point when myelin defects are evident. We 

dissociated cells from the forebrain of WT and pRsG/+ mice and stained them with cell-type 

markers as well as a dye that emits fluorescence in the presence of NO. Flow cytometry 

analysis revealed that the number of GalC+ mOLs showing staining for NO dye was 

significantly increased in the pRasG12V mutants as compared to WT mice, while the 

number of PDGFRa+;NO+ oligodendrocyte precursors remained unchanged (Fig. 4C). 

Therefore, we evaluated myelin defects in pRasG12V hemizygous mutants treated with L-

NAME, an inhibitor of NO synthases, starting at 1 month post-tamoxifen. L-NAME 
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treatment caused a significant decrease in the number of fibers with decompaction in the CC 

of pRsG/+ mice (Fig. 4A) and a significantly increased g-ratio (Fig. 4B), as compared to 

vehicle-treated Ras mutants. However, neither myelin compaction nor g-ratio were fully 

restored to WT levels.

To determine whether the combination of NOS and MEK inhibition provides an additive 

benefit, we assessed myelin properties in pRsG/+ mutants treated with MEKi and L-NAME 

and found that pathologic myelin decompaction was abolished (Fig. 4A). In fact, under these 

conditions, myelin was more compact than in untreated WT CC, and g-ratio was increased 

over the levels observed in WT mice (Fig. 4B); suggesting that basal MAPK-NO signaling 

contributes to the maintenance of normal compact myelin. Taken together, these data show 

that disturbed MAPK and NO signaling cooperate to disrupt myelin structure upon 

HRasG12V expression.

Inhibition of Notch Signaling Rescues Myelin Defects in Hemizygous HRasG12V Mutants

We recently reported that myelin defects in a model of NF1 Rasopathy result in part from 

abnormal hyper-activation of Notch in mOLs, and that mice overexpressing the Notch 

Intracellular Domain (the active form of Notch that translocates to the nucleus) show 

disrupted myelin compaction and a reduced g-ratio (López-Juárez et al. 2017). Therefore, 

we hypothesized that myelin abnormalities in pHRasG12V mutants may also require Notch 

activation. We used the tamoxifen-inducible allele Rbpjfl/fl to inactivate recombining 

binding protein suppressor of hairless (RBPJ), the essential transcriptional co-factor for 

canonical Notch signaling, in pRsG/+ mutants. Analysis of myelinated axons in the CC of 

PlpCreERt2;HRasG12V/+;Rbpjfl/fl (henceforth pRsG/+;pRBPJ) mutants showed only a trend 

toward a decrease in the percent of decompacted fibers at 1 month post-tamoxifen treatment, 

versus pRsG/+ mutants (Fig. 5A). Similarly, no significant differences were found between 

the g-ratio of pRsG/+;pRBPJ and pRsG/+ mutants (Fig. 5B).

Upon Notch ligand binding, active NICD is released by the action of Gamma secretase. 

Therefore, inhibition of this enzyme prevents Notch signaling. As a secondary strategy to 

evaluate the Notch pathway contribution to abnormal myelin in pRasG12V mutants, we 

treated mice with Gamma secretase inhibitor (GSI). Analysis of CC myelinated axons 

revealed a significant decrease in the number of fibers with decompaction (Fig. 5C) and an 

increase in g-ratio (Fig. 5D) in GSI-treated pRsG/+ mutants as compared to vehicle-treated 

pRsG/+ mice. Although the rescue of the phenotypes was not to the level of WT mice, these 

data support participation of Notch signaling downstream of RasG12V mutation. The 

different level of rescue observed in RBPJ loss model and GSI treatment (compare Fig. 5A–

C and 5B–D) may include compensation for the absence of RBPJ in mOLs, GSI effects on 

cells in addition to mOLs, and/or effects of GSI on other γ-secretase substrates (Langosch et 

al. 2015).

Concomitant Inhibition of Notch Signaling and MAPK or NO Signal Pathways Fully 
Rescues Myelin Abnormalities in HRasG12V Mutants

Given that neither treatment with MEKi, nor treatment with L-NAME, fully rescued myelin 

compaction in pRsG/+ mutants, and that blocking both pathways fully rescued the 
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phenotypes, we tested whether inhibition of Notch pathway lead to additive effects on 

myelin structure. We evaluated myelinated axons in the CC of pRsG/+;pRBPJ double 

mutants after treatment with MEKi or L-NAME. The combination of inducible genetic 

Notch inactivation with MEKi treatment decreased myelin decompaction significantly, to 

levels observed in WT mice (Fig. 6A). Fiber g-ratio was significantly improved in pRsG/
+;pRBPJ double mutants treated with MEKi as compared to vehicle-treated mice of the 

same genotype (Fig. 6B). However, this combination did not improve g-ratio more than 

MEKi treatment alone, possibly because non-cell autonomous effects on axon diameter are 

not affected by pRBPJ mutation in mOLs (Fig. 2C).

Additionally, pRsG/+;pRBPJ double mutant mice treated with L-NAME showed improved 

myelin compaction (Fig. 6C). Furthermore, g-ratio improved to WT levels (Fig. 6D). 

Overall, these data support the idea that myelin decompaction caused by increased levels of 

Ras-GTP can be restored through use of combinations of drugs targeting MAPK, NO, and/or 

Notch. However, rescue of g-ratio occurs only with the combination of drugs targeting both 

MAPK and NO. Taken together, our results suggest that pharmacological tools targeting 

MAPK, NO, and/or Notch signal pathways, alone or in combinations, may ameliorate CNS 

manifestations in Costello Syndrome.

Discussion

RAS regulators, RAS effectors, and RAS proteins themselves can be mutated in Rasopathies 

and are the subject of intensive research, with new mutations still being detected (Tidyman 

and Rauen 2016). Precisely how increases in active RAS-GTP impair brain function is still 

poorly understood. In CS, as in many Rasopathies, hyperactive Ras signaling can cause 

neurodevelopmental abnormalities, including cognitive impairment, autism spectrum 

disorders, and white matter abnormalities. Here we report that the Ras-activating mutation 

HRasG12V, conditionally expressed in the endogenous H-Ras locus, causes pathological 

myelin decompaction mediated by MAPK, Nitric Oxide, and Notch signaling.

Strong evidence supports the idea that overexpression of mutant RAS can result in altered 

localization and cellular responses, versus RAS-GTP activated physiologically (Di 

Nicolantonio et al. 2008; Quinlan et al. 2008; Sarkisian et al. 2007). This is thought to result 

because local regulatory elements control RAS expression and downstream effects within 

tissues (To et al. 2008). Therefore, use of the HRasG12V in its endogenous locus should 

accurately mimic cell autonomous effects of the Costello mutation in OL. Previously we 

reported myelin decompaction in a transgenic CNP-HRasG12V model, in which HRasG12V 
is expressed in developing OPCs and oligodendrocytes (Mayes et al. 2013). Our new study 

of HRasG12V induction in its endogenous locus in mOLs, confirms a role of hyperactive 

HRas in pathological myelin decompaction and, importantly, shows the onset of this 

phenotype in mature OLs of the adult mouse, rather than in developmental stages with lower 

potential for therapeutics. While HRasG12V is a rare mutation associated with severe 

manifestations in CS patients (Aoki et al. 2005), experimental G12V mutation mimicked 

phenotypes found in models of the most common HRas mutation (G12VS) (Rooney et al. 

2016).
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Several studies using gain and loss of function models have shown that the RAS effectors 

ERK1 and ERK2 promote the establishment and maintenance of myelin thickness, 

regulating both the number of myelin wraps and the abundance of major myelin proteins 

(Fyffe-Maricich et al. 2011; Fyffe-Maricich et al. 2013; Guardiola-Diaz et al. 2012; Ishii et 

al. 2013). In contrast, we show that HRasG12V expression in mOL causes myelin 

thickening due to pathological myelin decompaction, without an increase in the number of 

myelin lamellae. Myelin decompaction was also reported in the CNP-HRasG12V mouse 

model in which changes in expression of tight junction, not myelin, proteins were observed 

(Mayes et al. 2013). Differences in myelin phenotypes may be due to the mutants analyzed 

and their effects on levels of RAS activation. Mechanistically, Ras-GTP activation of ERK1/

ERK2 activates feedback regulation that dampens or enhances Ras signaling (Rauch et al. 

2016). For example, the Ras-MAPK negative regulator Sprouty 2, induced on growth factor 

stimulation through MAPK, is highly expressed in the brain, where it dampens the impact of 

MAPK pathway activation in germline-HRasG12V mutants. Strong activation of MEK/ERK 

is observed in the liver of the same mice, where Sprouty2 is virtually absent (Chen et al. 

2009). This is important because high levels of Ras-MAPK activation mediate cell 

senescence and apoptosis, while lower levels alter cell proliferation and differentiation (Cox 

and Der 2003; Serrano et al. 1997). Therefore, differences in feedback regulation in cells 

with Ras activation differ from those with direct MEK/ERK activation. In addition, RAS-

GTP activates multiple effector cascades parallel to MAPK activation, which may contribute 

to decompaction in Ras but not in MEK or ERK mutants.

Based on this and previous studies, maintenance of myelin compaction is controlled by Ras-

MAPK. Thus, HRasG12V expression or Nf1 mutation in mOLs causes decompaction in 

previously myelinated fibers (López-Juárez et al. 2017). However, once a maximum level of 

decompaction is reached (60–75% of total myelinated fibers), no further increase is 

observed over time. This result suggests that adhesion systems may maintain this residual 

compaction. Compact myelin proteins such as Claudin 11, proteolipid protein, and connexin 

32 (Gielen et al. 2006; Martini and Schachner 1997) are likely to be involved. It is also 

possible that as-yet-unidentified signaling pathways contribute to maintaining myelin 

compaction. Additional phenotypes caused by HRas mutation in mOLs, such as axon caliber 

decrease, appear to be non-cell-autonomous effects and show slower progression.

We directly show elevated NO in pRsG/+ mOLs, consistent with roles for Ras-NO signaling 

in the myelin decompaction phenotype and supporting the involvement of this signal 

downstream of HRasG12V expression. Notably, in CNP-HRasG12V mice behavioral 

abnormalities were rescued by blocking NO generation using L-NAME (Mayes et al. 2013). 

In ex-vivo brain preparations, Ras signaling through MEK/ERK also increased reactive 

oxygen/nitrogen species, and NO protected oligodendrocytes through inhibition of 

nitrotyrosine-induced ERK phosphorylation (Heimfarth et al. 2013). At higher levels, NO 

can be toxic; suppressing myelin gene transcription, translation of myelin proteins (Jana and 

Pahan 2013), and promoting apoptosis (Li et al. 2011). In pRsG/+ mOLs, while inhibition of 

NO production decreased myelin decompaction, additionally targeting MEK was able to 

fully rescue the myelin phenotype. Why both inhibitors are necessary in pRsG/+ mOLs 

remains unclear; it may result from vertical inhibition (e.g. the additive impact of blocking 

two members of the same signaling pathway) and/or from blocking pathway crosstalk.
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In mOLs lacking the Nf1 Rasopathy gene, thereby activating RAS-GTP, NO links MAPK 

and Notch signaling (López-Juárez et al. 2017). Our data support a role for Notch signaling 

in mOLs, but in HRasG12V mOL the evidence is less robust than for the Nf1 model. Thus, 

while we demonstrate a trend toward improvement in myelin compaction in HRasG12V 
mice lacking Rbpj, the effect is not significant (unlike in the Nf1 setting). Additionally, 

given that gamma secretase has at least 90 substrates, the effects of GSI, while significant, 

cannot be taken as specific to inhibition of Notch signals. Yet, Rpbj loss in HRasG12V mice, 

sensitized mutant cells to MEK or NOS inhibition, supporting the view that Notch signaling 

is relevant in this model. It may be that levels of active Notch in HRasG12V mice are low, 

and/or that feedback interaction between the Ras-MAPK and the Notch pathway occurs; 

possibly through decreasing activity of one increasing dependence on the other. In either 

event, our results indicate that Ras and Notch signals are involved in myelin compaction.

We observed consistent “more-than-complete” rescue of phenotypes following 

combinatorial drug treatments in HRasG12V hemizygous mutants. This effect was shown 

previously for myelin decompaction in Nf1 and CNP-HRas mOL mice treated with 

inhibitors (López-Juárez et al. 2017; Mayes et al. 2013). This response could result from off 

target activity of pharmacological tools. We support the alternative explanation that 

combination treatments overshoot dose(s) needed for optimal rescue. If this is the case, 

expression of Rasopathy genes, including HRasG12V, uncover signaling pathways that 

maintain normal myelin compaction by balancing levels MAPK, NO and Notch. 

Relationships between MEK-NOS-Notch pathways controlling normal and pathological 

myelin in a cell-autonomous manner are likely to be complex, and future studies will need to 

consider titering levels of response to optimize inhibitor effects in specific settings. 

Furthermore, non-cell-autonomous activation of these pathways seems to add complexity to 

the system. Recombination is elicited by the PlpCreER driver in about 35% of mature carpus 

callosum oligodendrocytes (Koenning et al. 2012, Mayes et al., 2013). In contrast, 

decompaction is observed in ~60–70% of myelinated fibers, making it unlikely that only 

recombinant oligodendrocytes show abnormal myelin. In previous studies (Mayes et al. 

2013, López-Juárez et al. 2017), as well as in this study, we show data supporting the idea 

that non-cell-autonomous effects are mediated at least in part by a diffusible signal, NO.

In summary, MEK, NOS, and gamma secretase inhibitors each partially rescue aberrant 

myelin decompaction in a Costello Syndrome Rasopathy model. It will be interesting to 

determine whether myelin alterations are present in Costello Syndrome patients, in whom 

many (in somatic mosaic patients) or all (in germline heterozygotes) brain cells are 

heterozygous for HRAS activating mutations. Lastly, clinical trials are ongoing in many 

disorders in which MAPK, NO, and Notch signals are targeted/impacted; therefore, in the 

case of Rasopathies, treatment trials using inhibitors of these pathways are feasible.

Acknowledgments

We are indebted to James Fagin (UTSW), Brian Popko (University of Chicago, Chicago, IL) and Tasuku Honjo 
(Kyoto-U) for providing mouse lines, Monica DeLay for assistance with Flow, and Merck for MRK-003. This work 
was supported by grants from the DOD program on Neurofibromatosis and NIH R01 NS091037 (to NR). The 
Cincinnati Children’s Hospital Research Foundation Flow Cytometry and Pathology Cores provided partial support 
for these studies (NIH P30 DK0909710551).

Titus et al. Page 11

Glia. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bibliography

Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, 
Kure S, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 
2005; 37:1038–40. [PubMed: 16170316] 

Axelrad ME, Nicholson L, Stabley DL, Sol-Church K, Gripp KW. Longitudinal assessment of 
cognitive characteristics in Costello syndrome. Am J Med Genet A. 2007; 143A:3185–93. 
[PubMed: 17963256] 

Barrett SD, Bridges AJ, Dudley DT, Saltiel AR, Fergus JH, Flamme CM, Delaney AM, Kaufman M, 
LePage S, Leopold WR, et al. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and 
PD 0325901. Bioorg Med Chem Lett. 2008; 18:6501–4. [PubMed: 18952427] 

Bauer NG, Richter-Landsberg C, Ffrench-Constant C. Role of the oligodendroglial cytoskeleton in 
differentiation and myelination. Glia. 2009; 57:1691–705. [PubMed: 19455583] 

Baumgart A, Mazur PK, Anton M, Rudelius M, Schwamborn K, Feuchtinger A, Behnke K, Walch A, 
Braren R, Peschel C, et al. Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine 
non-small cell lung cancer model. Oncogene. 2015; 34:578–88. [PubMed: 24509876] 

Chen X, Mitsutake N, LaPerle K, Akeno N, Zanzonico P, Longo VA, Mitsutake S, Kimura ET, Geiger 
H, Santos E, et al. Endogenous expression of Hras(G12V) induces developmental defects and 
neoplasms with copy number imbalances of the oncogene. Proc Natl Acad Sci U S A. 2009; 
106:7979–84. [PubMed: 19416908] 

Colby WW, Hayflick JS, Clark SG, Levinson AD. Biochemical characterization of polypeptides 
encoded by mutated human Ha-ras1 genes. Mol Cell Biol. 1986; 6:730–4. [PubMed: 3537694] 

Cole JS, Messing A, Trojanowski JQ, Lee VM. Modulation of axon diameter and neurofilaments by 
hypomyelinating Schwann cells in transgenic mice. J Neurosci. 1994; 14:6956–66. [PubMed: 
7965091] 

Colello RJ, Pott U, Schwab ME. The role of oligodendrocytes and myelin on axon maturation in the 
developing rat retinofugal pathway. J Neurosci. 1994; 14:2594–605. [PubMed: 7514208] 

Cox AD, Der CJ. The dark side of Ras: regulation of apoptosis. Oncogene. 2003; 22:8999–9006. 
[PubMed: 14663478] 

Delrue MA, Chateil JF, Arveiler B, Lacombe D. Costello syndrome and neurological abnormalities. 
Am J Med Genet A. 2003; 123A:301–5. [PubMed: 14608654] 

Di Nicolantonio F, Arena S, Gallicchio M, Zecchin D, Martini M, Flonta SE, Stella GM, Lamba S, 
Cancelliere C, Russo M, et al. Replacement of normal with mutant alleles in the genome of normal 
human cells unveils mutation-specific drug responses. Proc Natl Acad Sci U S A. 2008; 
105:20864–9. [PubMed: 19106301] 

Doerflinger NH, Macklin WB, Popko B. Inducible site-specific recombination in myelinating cells. 
Genesis. 2003; 35:63–72. [PubMed: 12481300] 

Franklin RJ, Gallo V. The translational biology of remyelination: past, present, and future. Glia. 2014; 
62:1905–15. [PubMed: 24446279] 

Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH. The ERK2 mitogen-activated protein kinase 
regulates the timing of oligodendrocyte differentiation. J Neurosci. 2011; 31:843–50. [PubMed: 
21248107] 

Fyffe-Maricich SL, Schott A, Karl M, Krasno J, Miller RH. Signaling through ERK1/2 controls 
myelin thickness during myelin repair in the adult central nervous system. J Neurosci. 2013; 
33:18402–8. [PubMed: 24259565] 

Gielen E, Baron W, Vandeven M, Steels P, Hoekstra D, Ameloot M. Rafts in oligodendrocytes: 
evidence and structure-function relationship. Glia. 2006; 54:499–512. [PubMed: 16927294] 

Gripp KW, Hopkins E, Doyle D, Dobyns WB. High incidence of progressive postnatal cerebellar 
enlargement in Costello syndrome: brain overgrowth associated with HRAS mutations as the 
likely cause of structural brain and spinal cord abnormalities. Am J Med Genet A. 2010; 152A:
1161–8. [PubMed: 20425820] 

Guardiola-Diaz HM, Ishii A, Bansal R. Erk1/2 MAPK and mTOR signaling sequentially regulates 
progression through distinct stages of oligodendrocyte differentiation. Glia. 2012; 60:476–86. 
[PubMed: 22144101] 

Titus et al. Page 12

Glia. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, 
oligodendrocytes, and serious mental illness. Glia. 2014; 62:1856–77. [PubMed: 25056210] 

Heimfarth L, Loureiro SO, Pierozan P, de Lima BO, Reis KP, Torres EB, Pessoa-Pureur R. 
Methylglyoxal-induced cytotoxicity in neonatal rat brain: a role for oxidative stress and MAP 
kinases. Metab Brain Dis. 2013; 28:429–38. [PubMed: 23378107] 

Ishii A, Furusho M, Bansal R. Sustained activation of ERK1/2 MAPK in oligodendrocytes and 
schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. J 
Neurosci. 2013; 33:175–86. [PubMed: 23283332] 

Jana M, Pahan K. Down-regulation of Myelin Gene Expression in Human Oligodendrocytes by Nitric 
Oxide: Implications for Demyelination in Multiple Sclerosis. J Clin Cell Immunol. 2013; 4

Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, 
Moore K, Roberts LJ 2nd, Ischiropoulos H. Measuring reactive oxygen and nitrogen species with 
fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012; 52:1–6. [PubMed: 
22027063] 

Koenning M, Jackson S, Hay CM, Faux C, Kilpatrick TJ, Willingham M, Emery B. Myelin gene 
regulatory factor is required for maintenance of myelin and mature oligodendrocyte identity in the 
adult CNS. J Neurosci. 2012; 32:12528–42. [PubMed: 22956843] 

Krencik R, Hokanson KC, Narayan AR, Dvornik J, Rooney GE, Rauen KA, Weiss LA, Rowitch DH, 
Ullian EM. Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci Transl 
Med. 2015; 7:286ra66.

Langosch D, Scharnagl C, Steiner H, Lemberg MK. Understanding intramembrane proteolysis: from 
protein dynamics to reaction kinetics. Trends Biochem Sci. 2015; 40:318–27. [PubMed: 
25941170] 

Lewis HD, Leveridge M, Strack PR, Haldon CD, O'Neil J, Kim H, Madin A, Hannam JC, Look AT, 
Kohl N, et al. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced 
by pharmacological inhibition of notch signaling. Chem Biol. 2007; 14:209–19. [PubMed: 
17317574] 

Li S, Vana AC, Ribeiro R, Zhang Y. Distinct role of nitric oxide and peroxynitrite in mediating 
oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis. 
Neuroscience. 2011; 184:107–19. [PubMed: 21511012] 

López-Juárez A, Titus HE, Silbak S, Pressler JW, Rizvi TA, Bogard M, Bennett MR, Williams MT, 
Vorhees CV, Ratner N. Oligodendrocyte Nf1 Controls Aberrant Notch Activation and Regulates 
Myelin Structure and Behavior. Cell reports. 2017; 9:545–557.

Mainberger F, Langer S, Mall V, Jung NH. Impaired synaptic plasticity in RASopathies: a mini-review. 
J Neural Transm (Vienna). 2016; 123:1133–8. [PubMed: 27565148] 

Martini R, Schachner M. Molecular bases of myelin formation as revealed by investigations on mice 
deficient in glial cell surface molecules. Glia. 1997; 19:298–310. [PubMed: 9097074] 

Mayes DA, Rizvi TA, Titus-Mitchell H, Oberst R, Ciraolo GM, Vorhees CV, Robinson AP, Miller SD, 
Cancelas JA, Stemmer-Rachamimov AO, et al. Nf1 loss and Ras hyperactivation in 
oligodendrocytes induce NOS-driven defects in myelin and vasculature. Cell Rep. 2013; 4:1197–
212. [PubMed: 24035394] 

Quezada E, Gripp KW. Costello syndrome and related disorders. Curr Opin Pediatr. 2007; 19:636–44. 
[PubMed: 18025929] 

Quinlan MP, Quatela SE, Philips MR, Settleman J. Activated Kras, but not Hras or Nras, may initiate 
tumors of endodermal origin via stem cell expansion. Mol Cell Biol. 2008; 28:2659–74. [PubMed: 
18268007] 

Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signalling dynamics regulate cell 
fate decisions and drug resistance. Curr Opin Struct Biol. 2016; 41:151–158. [PubMed: 27521656] 

Rauen KA. HRAS and the Costello syndrome. Clin Genet. 2007; 71:101–8. [PubMed: 17250658] 

Robinson AP, Rodgers JM, Goings GE, Miller SD. Characterization of oligodendroglial populations in 
mouse demyelinating disease using flow cytometry: clues for MS pathogenesis. PLoS One. 2014; 
9:e107649. [PubMed: 25247590] 

Titus et al. Page 13

Glia. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rooney GE, Goodwin AF, Depeille P, Sharir A, Schofield CM, Yeh E, Roose JP, Klein OD, Rauen 
KA, Weiss LA, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras 
Signaling in Costello Syndrome. J Neurosci. 2016; 36:142–52. [PubMed: 26740656] 

Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA. Dose-dependent oncogene-
induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol. 2007; 
9:493–505. [PubMed: 17450133] 

Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell 
senescence associated with accumulation of p53 and p16INK4a. Cell. 1997; 88:593–602. 
[PubMed: 9054499] 

Sparey T, Beher D, Best J, Biba M, Castro JL, Clarke E, Hannam J, Harrison T, Lewis H, Madin A, et 
al. Cyclic sulfamide gamma-secretase inhibitors. Bioorg Med Chem Lett. 2005; 15:4212–6. 
[PubMed: 16054361] 

Sundaram MV. The love-hate relationship between Ras and Notch. Genes Dev. 2005; 19:1825–39. 
[PubMed: 16103211] 

Tidyman WE, Rauen KA. Pathogenetics of the RASopathies. Hum Mol Genet. 2016; 25:R123–R132. 
[PubMed: 27412009] 

To MD, Wong CE, Karnezis AN, Del Rosario R, Di Lauro R, Balmain A. Kras regulatory elements 
and exon 4A determine mutation specificity in lung cancer. Nat Genet. 2008; 40:1240–4. 
[PubMed: 18758463] 

Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA. Notch 
receptor activation inhibits oligodendrocyte differentiation. Neuron. 1998; 21:63–75. [PubMed: 
9697852] 

Watkins TA, Emery B, Mulinyawe S, Barres BA. Distinct stages of myelination regulated by gamma-
secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron. 2008; 60:555–69. 
[PubMed: 19038214] 

Xiao L, Guo D, Hu C, Shen W, Shan L, Li C, Liu X, Yang W, Zhang W, He C. Diosgenin promotes 
oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 
activation to accelerate remyelination. Glia. 2012; 60:1037–52. [PubMed: 22461009] 

Zampino G, Pantaleoni F, Carta C, Cobellis G, Vasta I, Neri C, Pogna EA, De Feo E, Delogu A, 
Sarkozy A, et al. Diversity, parental germline origin, and phenotypic spectrum of de novo HRAS 
missense changes in Costello syndrome. Hum Mutat. 2007; 28:265–72. [PubMed: 17054105] 

Titus et al. Page 14

Glia. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Main Points

• In a Costello syndrome model, HRasG12V expression in mature 

oligodendrocytes activates the MAPK pathway, causing myelin 

decompaction.

• Combining inhibition of any two pathways, of MAPK, Nitric Oxide and 

Notch signaling, rescues myelin defects.
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FIGURE 1. RasG12V mutation in mature oligodendrocytes activates MAPK pathway without 
affecting oligodendrocyte numbers
A: Schematic representation of the genomic region containing the endogenous HRas gene in 

PlpCreERt2;HRasG12V mice (pRsG12V). Left: the WT HRas gene (cyan) flanked by loxP 
sites [exons 1–4 (Chen et al. 2009)] is localized upstream of the mutant HRasG12V gene 

(purple). Right: following tamoxifen administration, active Cre recombinase mediates the 

excision of WT HRas, allowing the expression of the mutant HRasG12V allele from the 

HRas locus. The mutant allele is not expressed unless the WT copy is excised. B: Corpus 

callosum (CC) of WT mice (top), hemizygous (middle), and homozygous (bottom) 

pRsG12V mutants, one month (1mo) after tamoxifen treatment showing staining for the 

marker of mature oligodendrocytes CC1 (green), the phosphorylated form of ERK (pERK, 

red), and overlap (right column). Positive cells for both markers are indicated with arrows 

within the insets from the squared areas. St: striatum. C: Quantification of CC1+ cells 

indicates no differences in the number of oligodendrocytes in pRsG/+ (n= 6 mice, unpaired t 
test, p=0.66) or pRsG/G (n= 3 mice, unpaired t test, p=0.31) mutants, as compared to WT 

mice (n= 9 mice). D: Quantification of CC1+;pERK+ cells indicates significantly increased 
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ERK activation in oligodendrocytes of pRsG/+ (n= 6 mice, unpaired t test, **p=0.002) or 

pRsG/G (n= 3 mice, unpaired t test, *p=0.034) mutants, as compared to WT mice (n= 9 

mice). All data are presented as the mean ± s.e.m.
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FIGURE 2. HRas hyperactivation in mature oligodendrocytes decreases g-ratio
A: Electron micrographs of myelinated axons in the corpus callosum (CC) at the midline of 

WT, pRsG/+, and pRsG/G mice 1 month after tamoxifen treatment. High magnifications 

(50,000×) are shown at right; regions with myelin decompaction (See also figure 3A) are 

indicated with arrows. B: Analysis of only myelinated axons indicates decreased g-ratio in 

pRsG/+ and pRsG/G mutants at 1 month (1mo, n= 3 mice per genotype) and 6 months (6mo, 

pRsG/+ mice; n= 5, pRsG/G mice; n= 3 mice) post-tamoxifen (****p<0.0001), as compared 

to g-ratio in WT mice (n= 6 mice). The g-ratio was further decreased in pRsG/+ and pRsG/G 
mutants at 6 months post-tamoxifen, as compared to pRsG/+ and pRsG/G mice 1 month 
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after tamoxifen (####p<0.0001), respectively. C–D: Scatterplots and linear regression of the 

axon diameter vs. g-ratio from myelinated fibers in WT (black), pRsG/+ (pink), and pRsG/G 

(green) mice, 1 month (C) and 6 months (D) after tamoxifen treatment. The slopes of g-ratio 

vs. axon diameter are similar in HRas mutants compared to WT mice at 1 mo (C, black 

arrow); however, small g-ratio in HRas mutants is associated to small diameter axons at 6 

mo (D, black arrow vs. red arrow). E: Evaluation of the diameter of myelinated axons shows 

significant decreases in pRsG/+ (n= 3 mice, **p=0.001) and pRsG/G (n= 3 mice, 

****p<0.0001) 1 month after tamoxifen treatment, as compared to WT mice. One way 

ANOVA and Tukey’s multiple comparisons test was used in the analyses. All data are 

presented as the mean ± s.e.m.
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FIGURE 3. HRas hyperactivation in mature oligodendrocytes causes myelin decompaction
A: Left: Representative image of the number of myelin lamellae (triangles) wrapping an 

axon in WT and pRsG/+ mice. Right: quantitative analysis indicates no significant changes 

in the number of myelin wraps between WT and pRsG/+ mice (unpaired t test, p=0.64). B: 

Analysis of myelinated axons indicates significantly increased percent of fibers with myelin 

decompaction in pRsG/+ mutants at 1 month (1 mo, n= 3 mice, ****p=0.0001) and 6 

months (6 mo, n= 5 mice, ***p=0.0006) post-tamoxifen, compared to WT mice (n= 3 mice). 

Myelin decompaction was also observed in pRsG/G mutants at 1 mo (n= 3 mice, 

***p=0.0009) and 6 mo (n= 3 mice, ***p=0.0005) post-tamoxifen, as compared to WT 

mice. No significant changes were observed among different time points in both pRsG12V 
mutants. The percent of fibers showing decompaction in 1–4 quadrants (color code; bottom) 

is shown within the total fibers with decompaction, as a reference for severity of the 

phenotype. C: Significantly increased percent of decompacted myelin was detected in fibers 

containing small axons (<0.9 µm, n= 3 mice, **p=0.001) in pRsG/+ mutants, and small (n= 
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3 mice, *p=0.037) and medium (0.91–1.2 µm, n= 3 mice, *p=0.048) axons of in pRsG/G 
mutants 1 month post-tamoxifen, as compared to WT mice (n= 6 mice). One way ANOVA 

and Tukey’s multiple comparisons test was used in all analyses, except in panel A (Student’s 

t test). All data are presented as the mean ± s.e.m.
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FIGURE 4. Myelin defects in pRsG/+ mutants are susceptible to MEK and NOS pharmacological 
inhibition
A: Quantification of total fibers with myelin decompaction, and quadrants with 

decompaction (color code), in WT and pRsG/+ mutants subjected to the indicated 

pharmacological treatments 1 month post-tamoxifen. No significant changes (but a trend 

toward increase) are observed in the percent of decompacted fibers in MEK inhibitor 

(MEKi)-treated WT (n= 6), as compared to vehicle-treated WT mice (n= 3, ns: not 

significant, p=0.219). Vehicle-treated pRsG/+ mutants (n= 3) show increased myelin 

decompaction, as compared to vehicle-treated WT mice (methocel for MEKi; **p=0.002 

and PBS for L-NAME; **p=0.003). No significant changes (but a trend toward decrease) 
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were observed in decompaction in pRsG/+ mutants treated with MEKi (n= 3 mice), as 

compared to vehicle-treated mutants (ns, p=0.261). Significantly decreased percent of 

decompacted fibers were observed in pRsG/+ mutants treated with L-NAME (n= 4 

mice, $p=0.030), and myelin compaction was fully rescued to WT levels by concomitant 

treatment with L-NAME and MEKi, as compared to vehicle-treated mutants (n= 4 

mice, ####,$$$$p<.0001). B: The g-ratio comparison of WT and pRsG/+ mutants subjected to 

the indicated pharmacological treatments 1 month post-tamoxifen (same cohort of mice as in 

panel A). No significant changes were observed in g-ratio of vehicle-treated vs. MEKi-

treated WT mice (ns, p=0.996). Vehicle-treated pRsG/+ mutants show decreased g-ratio, as 

compared to WT mice (PBS or methocel ****p<0.0001). Significantly increased g-ratio was 

observed in pRsG/+ mutants treated with MEKi (####p<0.0001) or L-NAME 

($$$$p<0.0001), as compared to vehicle-treated mutants, respectively. Furthermore, 

increased g-ratio was observed in pRsG/+ mutants concomitantly treated with MEK and L-

NAME (####,$$$$p<0.0001). C: Flow cytometry analysis of forebrain cells indicates no 

change in the number of PDGFRa+ OL precursors showing Nitric Oxide (NO) signals (ns, 

p=0.225); however, the number of GalC+;NO+ mOLs are significantly increased in pRsG/+ 
mutants (n= 3 mice, t test, *p=0.042), as compared to WT mice (n= 3 mice). Data are 

presented as the mean ± s.e.m. One-way ANOVA and Tukey's multiple comparisons test 

were used in all panels, except in C.
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FIGURE 5. Effects of Notch signaling inhibition on myelin defects in HRasG12V mutants
Quantification of total fibers with myelin decompaction and quadrants with decompaction 

(panels A and C), and g-ratio evaluation (panels B and D), in WT (n= 6 mice), pRsG/+ (n= 3 

mice), pRsG/+;pRBPJ (n= 5 mice), and GSI-treated pRsG/+ (n= 6 mice) mice, 1 month 

post-tamoxifen. A: No significant changes (but a trend toward decrease) were observed in 

the percent of decompacted fibers in pRsG/+;pRBPJ mutants, as compared to pRsG/+ mice 

(ns, p=0.091). B: No significant changes were observed in the g-ratio of pRsG/+;pRBPJ 
mutants, as compared to pRsG/+ mice (ns, p=0.086). C: Significantly decreased percent of 

decompacted fibers was observed in GSI-treated pRsG/+ mutants, as compared to vehicle-

treated pRsG/+ mice (*p=0.011). D: A significant increase in g-ratio was detected in GSI-

treated mutants, as compared to pRsG/+ mice (ns, p<0.0001). In all panels; WT values are 

shown for reference, One-way ANOVA and Tukey's multiple comparisons test were used, 

and data are presented as the mean ± s.e.m.
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FIGURE 6. Concomitant inactivation of RBPJ and MEK or NOS pharmacological inactivation 
fully rescues myelin abnormalities in HRasG12V mutants
Quantification of total fibers with myelin decompaction and quadrants with decompaction 

(panels A and C), as well as g-ratio evaluation (panels B and D), in WT, pRsG/+, and pRsG/
+;pRBPJf/f mice treated with vehicle, MEKi, or L-NAME, 1 month post-tamoxifen. A: Full 

rescue of myelin compaction to WT levels (WT; n= 6 mice, p=0.938) was observed in pRsG/
+;pRBPJf/f mice treated with MEKi (n= 3 mice), as compared to pRsG/+ mice (n= 4 mice, 

*p=0.031). B) The g-ratio was significantly increased in MEKi-treated pRsG/+;pRBPJf/f 
mutants, as compared to vehicle-treated pRsG/+ mice (****p<0.0001); however, the g-ratio 

was still significantly lower than those in WT mice (**p=0.007). C: Significantly decreased 

myelin decompaction was observed in pRsG/+;pRBPJf/f mice treated with L-NAME (n= 3 

mice), as compared to pRsG/+ mice (n= 6 mice, *p=0.021), and the values of decompaction 

were not significantly different than those of WT mice (ns, p=0.888). D) The g-ratio was 

significantly increased in L-NAME-treated pRsG/+;pRBPJf/f mutants, as compared to 

vehicle-treated pRsG/+ mice (****p<0.0001), and g-ratio was not different from those of 

WT mice (ns, p=0.057). In all panels, One-way ANOVA and Tukey's multiple comparisons 

test was used and data are presented as the mean ± s.e.m.
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Table 1

Mouse strains used in this study

Genotype Description Abbreviation Reference

B6.Cg-Tg(Plp1-Cre/ERT)3Pop/J Tamoxifen Inducible Cre 
recombinase under the transcriptional 
control of the mOL marker Plp1

PlpCreER Doerflinger et 
al., 2003

FR-HrasG12V Mutant HRasG12V allele upstream of 
WT HRas flanked by loxP sites

HRasG12V Chen et al., 
2009

RBP-Jflox Endogenous rbpj gene flanked by 
loxP sites

Rbpjflox Han et al., 2002

B6.Cg-Tg(Plp1-Cre/ERT)3Pop/J; FR-HrasG12V Tamoxifen administration mediates 
excision of endogenous (WT) HRas 
and expression of the mutant 
HRasG12V allele.

pRsG/+ or pRsG/G --

B6.Cg-Tg(Plp1-Cre/ERT)3Pop/J; FR-HrasG12V;RBP-Jflox Tamoxifen administration mediates 
excision of endogenous (WT) HRas, 
expression of the mutant HRasG12V 
allele and inactivation of Rbpj.

pRsG/+;pRbpj --
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