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Abstract

Providing accurate and dynamic age-specific risk prediction is a crucial step in precision medicine. 

In this manuscript, we introduce an approach for estimating the τ-year age-specific absolute risk 

directly via a flexible varying coefficient model. The approach facilitates the utilization of 

predictors varying over an individual's lifetime. By using a nonparametric inverse probability 

weighted kernel estimating equation, the age-specific effects of risk factors are estimated without 

requiring the specification of the functional form. The approach allows borrowing information 

across individuals of similar ages, and therefore provides a practical solution for situations where 

the longitudinal information is only measured sparsely. We evaluate the performance of the 

proposed estimation and inference procedures with numerical studies, and make comparisons with 

existing methods in the literature. We illustrate the performance of our proposed approach by 

developing a dynamic prediction model using data from the Framingham Study.
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1 Introduction

Accurate and individualized risk prediction is a key component of precision medicine. For 

example in colorectal cancer, risk calculator can help tailoring individual's screening 

regimen and making decisions on specific ages for screening initialization and surveillance. 

Factors pertaining to specific ages, such as family history and nutrition intake are important 
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to be incorporated in the outcome prediction. For cardiovascular disease (CVD), the 

Framingham risk score (FRS) (Wolf and others 1991) has been developed separately for men 

and women based on risk factors such as total cholesterol, high-density-lipoprotein, systolic 

blood pressure and smoking status. Patients with 10-year FRS below 10% are considered to 

be at lower risk for vascular events during the next decade, whereas patients with scores 

between 10% and 20% are at moderate risk and those larger than 20% are at higher risk. 

Various intervention strategies can be implemented based on such risk stratification (Mosca 

and others 2004). In these clinical settings, the analytical goal is to provide patients with an 

estimate of the likelihood of developing a disease within the next τ-years given the subject is 

disease free at age a and his/her risk profile updated by age a, i.e., the age-specific absolute 

τ-year residual life risk.

Currently available prediction models are often limited in predicting such age-specific 

absolute residual life risk. For example, the FRS model includes age as a standard risk factor 

with linear effects. However it is well recognized that the relationship between age and CVD 

risk may change in magnitude through complex interactions with other risk factors (Ridker 

and others 2007). Naturally, a risk equation should be a more stochastic function of age 

(Lloyd-Jones 2010). Such simplistic models, failing to capture the complex age varying 

effects, may lead to poor risk estimates and prediction models with low discriminatory 

power. To be clinically useful with sufficiently adequate prediction accuracy, an ideal 

prediction model should take into account an individual's most up to date health information 

and reflect the fact that risk factors may have differential effects on the τ-year residual life 

risk over various stages of an individual's life span.

Constructing a model that accurately captures how risks change dynamically over lifetime, 

while of great importance, is challenging for several reasons. Often important risk factors 

change over time. However, collecting such time-varying information for a large prospective 

cohort can be a major undertaking. Most cohort studies only collect age-specific information 

intermittently, sometimes irregularly. Characterizing changes over time with limited 

measures at discrete time points requires much deliberation. Furthermore, the importance of 

risk factors on disease outcome may change during an individual's lifetime. For example, 

body mass index (BMI) may have substantially different effects on future CVD risks 

depending on the age. Characterizing age-varying effects with a powerful yet flexible 

statistical model can be challenging. Similar challenges arise when assessing the prediction 

performance of an age-specific prediction model since the accuracy may also vary with age.

A popular approach in the risk prediction literature is to decompose the absolute risk into 

two components: the age-dependent disease risk for a baseline risk profile, which can be 

estimated from a prospective cohort study or external disease incidence data, and the relative 

risk of developing disease for a particular risk factor profile compared to the baseline (Gail 

and others 1989, Liu and others 2014). While such an approach can accommodate 

differential effects of risk factors at different ages by adding interaction terms of age and the 

other covariates in the regression model, it does not incorporate time-varying covariates 

collected over time. To incorporate repeated measurements, joint modeling of both the 

covariate process Z(·) and a survival outcome T have been developed in recent years (Tsiatis 

and others 1995, Wang and Taylor 2001, Ye and others 2008). Parameter estimation 
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typically involves specifying the covariate process Z(·) and then linking Z(·) to T via a 

proportional hazard (PH) model with time-varying covariates. In addition to requiring strong 

modeling assumptions about Z(·) and T, these joint modeling methods have a limitation of 

being computationally infeasible when many time-varying covariates are under 

consideration. Semi-parametric methods have been proposed to directly make prediction of 

τ-year residual life risk given covariate information at a landmark time t0 (Zheng and 

Heagerty 2005, Parast and others 2012). However, no existing methods allow for 

incorporating age-specific effects non-parametrically with sparsely measured time-varying 

covariates. Furthermore, procedures for non-parametrically evaluating such age-specific 

prediction models with longitudinal markers and censored event times are not yet available.

In this paper, we propose to directly model the age-specific absolute risk function via a 

flexible varying-coefficient model and estimate the covariate effects as functions of age via 

inverse probability weighted (IPW) kernel estimating equations. The procedure allows the 

estimation of age-specific risks flexibly with the longitudinally collected risk factor 

information on the same patient, while borrowing strength across individuals of similar ages 

at different study time points. It also handles irregularly measured serial covariates and 

censoring easily. Our proposed model, by allowing the effects of risk factors to change over 

age and the target residual life span τ, is more realistic and could potentially lead to 

improved predictive performance. To quantify the performance of the age-specific models of 

τ-year residual life risk, it would be desirable to consider measures of prediction 

performance specific to age and prediction time since the prediction accuracy of such 

models is likely to vary over both dimensions. A wide range of performance measures have 

been considered to quantify the time-specific prediction accuracy of τ-year absolute risk 

models constructed with baseline markers (Zheng and others 2006, Uno and others 2007, 

Gerds and others 2008). In the longitudinal setting, Zheng and Heagerty (2004) considered a 

model-based approach for estimating the accuracy in the absence of censoring. To guard 

against potential model mis-specification and incorporate censored outcomes, we propose an 

IPW kernel estimator to calculate model performance parameters that quantify the accuracy 

of the proposed prediction models in predicting τ-year residual life at age a. No existing 

methods provide non-parametric estimates of such prediction performance with longitudinal 

markers and censored outcomes.

The remainder of this manuscript is organized as follows. In Section 2, we describe the 

proposed model and estimation framework. Then we present simulation results comparing 

our approach to other popular methods in Section 3. We apply the proposed method to the 

Framingham Heart Study in Section 4, assessing the age-specific effects of routinely used 

cardiovascular risk factors on the 10-year residual CVD risk and quantifying the 

performances of the prediction models. We conclude with a brief discussion in Section 5.

2 Methods

Let Ti be the time to event onset since a baseline time such as study entry. Due to censoring, 

one can only observe Xi = min{Ti, Ci} and δi = I(Ti ≤ Ci), where Ci is the censoring time 

and I(·) is the indicator function. To facilitate the calculation of age-specific risks, we also 

record age at the occurrence of the event and censoring. Let Ai0 be the age at which subject i 
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enters the study and then  is the age at which the event occurs, and  is 

the age at which  might be censored. Let . In addition to the 

event time information, risk markers are ascertained repeatedly during the follow up. For the 

ith subject, let Zi(a) = (Zi1(a), Zi2(a), …, Zip(a))⊺ denote a vector of p risk factors measured 

at age a, let {Aik, k = 0, …, mi} be the ages at which these risk factors are collected and Zij 

= Zi(Aij), where mi is the total number of measurement times. We assume that Zi(a) is 

potentially observable among those with , the values of Zi(Aij) are not dependent on 

the study measurement time Aij – Ai0 given age Aij. In addition, Ci is assumed independent 

of Ti, Zi(·), entry age Ai0, and the underlying study measurement times, with support not 

shorter than that of Aij – Ai0 + τ. Figure 1 provides a graphical illustration of the data 

structure.

2.1 Modeling, Estimation and Inference

We are interested in estimating the risk of experiencing the event in the next τ-years for 

subjects who are at age a and event-free, based on the risk factor measured at age a, Z(a). 

Thus, the goal is to estimate the conditional risk function

To approximate πτ,a(z), we propose a flexible varying coefficient model

(1)

where g(·) is a known smooth probability distribution function, such as g(x) = exp(x)/{1 + 

exp(x)} (which is used in Section 4), U(a) = ψ{Z(a)} represents transformed risk factors for 

some known function ψ and U(a) includes 1 as the first component, such as a log 

transformed risk factor (used in Section 4), βτ(a) is an unknown smooth function 

representing the covariate effects on the τ-year residual life risk at age a. Model (1) allows 

the effects of risk factors Z(a) to vary over both age and the residual life span τ. This 

flexibility is attractive when the risk factors have different effects on long term versus short 

term risks and when certain risk factor profiles have more detrimental effects for younger 

subjects than for older subjects.

To estimate βτ(a) for any given age a in the presence of censoring, we propose to obtain 

β̂τ(a) as the solution to the IPW kernel smoothed estimating equation, Φ̂
a(β) = 0, where

(2)
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where Uij = Ui(Aij),  with 

Ĝ(·) being the Kaplan-Meier estimator for the survival function of the censoring time G(c) = 

P(Ci > c) of Ci, and Kh(s) = K(s/h)/h is a symmetric standard kernel function K(·) with a 

finite support and with h the smoothing parameter. Note that under the independent 

censoring assumption, .

Following similar arguments as given in Cai and others (2010) and Parast and others (2012), 

one may show that βτ̂(a) converges in probability to a deterministic vector β̄τ(a) as n → ∞ 
regardless of whether (1) is correctly specified or not. In addition, one may also show that 

for h = Op(n−v) with v ∈ (1/5, 1/2),  converges in distribution to a 

zero-mean normal random vector for any given a. However, it is difficult to directly estimate 

the asymptotic variance of . To construct confidence interval (CI) for 

βτ(a) in practice, we suggest using a perturbation resampling (sometimes referred to as wild 

bootstrap) method (Wu 1986, Park and Wei 2003, Tian and others 2005) to approximate the 

distribution of the proposed estimator. Compared to the standard bootstrap, perturbation 

resampling tends to be more stable especially in the survival setting since all observations 

take positive weights and contribute to the estimation. Let , b = 1, …, 

B, be B sets of independent positive random variables from a known distribution with mean 

and variance equal to one. Then one may obtain perturbed estimates of βτ(a), , as the 

solution to the equation

where  and 

Ĝ(b)(·) is the weighted Kaplan-Meier estimator of G(·) with each subject's contribution to the 

estimator weighted by . The asymptotic variance of β̂τ(a), , can be estimated by 

the empirical variance of { , b = 1, …, B}. The 100(1 – α)% simultaneous confidence 

bands for {βτ(a), al < a < au} can be obtained as {β̂τ(a) ±ζασ̂βτ(a)}, where ζα is the 100(1 – 

α)th percentile of { , b = 1, …, B}. To justify the 

resampling method, we may first show that

where  is some deterministic function and . Thus for any fixed a 

and h = Op(n−v) with v ∈ (1/5, 1/2),  is asymptotically normal. 

Furthermore, following similar arguments as given in Tian and others (2005), we may show 
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that with proper normalization,  converges to an extreme value 

distribution. In addition,

where Op* is with respect to probability space generated by both the observed data and (b). 

Then we may show that conditional on the data, 

 converges in distribution to 

the same limiting unconditional distribution of 

.

2.2 Accuracy Measure Estimation

With βτ(a) estimated as β̂τ(a), one can then use π̂τ,a{Z(a)} = g{β̂τ(a)⊺U(a)} to estimate the 

τ-year survival probability for event-free subjects with risk factor profile Z(a) at age a. To 

assess the accuracy of the limiting risk model π̄τ,a{Z(a)} = g{β̄τ(a)⊺U(a)} in predicting the 

τ-year residual survival status for different age groups, we extend commonly used time-

dependent accuracy parameters, such as true positive rate (TPR), false positive rate (FPR) 

and area under the receiver operating characteristic curve (AUC), to also incorporate the age 

dimension. Since the proposed model evaluation method is not limited to a specific 

prediction model, we next describe these accuracy parameters for a genetic τ-year residual 

life risk function, Πτ,A(Z), derived based on an age A and the risk factor Z(·) collected up to 

age A. For the proposed model, Πτ,A(Z) = g{βτ(A)⊺U(A)}.

2.2.1 Time and Age Specific Prediction Accuracy—When a specific age group a is 

of interest, we summarize the prediction performance of risk model Πτ,A(Z) using time and 

age specific TPR and FPR functions, respectively defined as

We may summarize the overall predictiveness of the model for a given a and τ using

where i and i′ index two independent individuals. Similar to the estimation of βτ(a), these 

parameters can be estimated using an IPW kernel smoothing approach. For example, 

TPRτ,a(c) can be estimated as
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(3)

and AUCτ,a can be estimated as

(4)

where Π̂τ,Aij(Zi) is the estimated risk function plugging in estimated model parameters. For 

the proposed varying coefficient model, Π̂τ,Aij(Zi) = g{β̂τ(Aij)⊺Uij} and using similar 

arguments as those for the consistency of β̂τ(a), one may show that  is a consistent 

estimator of AUCτ,a. Furthermore,  converges in distribution to a 

normal random variable. The CI for AUCτ,a can be constructed by perturbed estimates. 

Specifically, for b = 1, …, B, the bth perturbed estimate of  can be obtained as

(5)

where  is the perturbed counterpart of Π̂τ,Aij(Zi) obtained similar to  using 

weights (b).

2.2.2 Time Specific Prediction Accuracy Including Age as a Predictor—When 

interest lies in evaluating the accuracy of the prediction model treating age as a risk factor, 

an overall summary that is not conditional on age would be preferred. That is, incorporating 

age as a predictor, one may seek to assess the accuracy in predicting τ-year residual life of 

the risk estimate Πτ,A(Z), constructed using Z(·) information collected up to a random age A 
among those with T  > A. For such settings, one may consider

Zhou et al. Page 7

Stat Theory Relat Fields. Author manuscript; available in PMC 2018 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ℱ is the distribution of the age at measurement. The overall performance of the risk 

model Πτ,a(Z) for predicting τ-year residual life can be summarized by

where i and i′ index two independent subjects. Plug-in estimates may be constructed for 

these parameters with an estimated ℱ(·). For example, in the simple case when only a single 

measurement is taken at baseline, then AUCτ may be estimated as

(6)

Given the longitudinal data structure, we may also be interested in estimating these accuracy 

parameters when the age at measurement A follows the marginal distribution of the observed 

measurement ages in the study. In which case,

and .

The accuracy measure AUCτ in this case can be estimated as
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Standard error (SE) and CIs can be constructed similarly to those given above for .

2.3 Selection of Smoothing Parameter

It is known that the choice of the smoothing parameter h is critical as in any nonparametric 

estimation problem. We employ a K-fold cross validation to select the smoothing parameter. 

Specifically, the study subjects are divided into K folds of approximately equal sizes. The 

optimal bandwidth hopt minimizes the weighted mean squared prediction error

where Sk is the set of subjects that are in fold k and  is the estimate of βτ(Aij) 

using data excluding those from fold k. To obtain an estimator whose variance dominates 

bias, we follow the common practice to undersmooth (Neumann and Polzehl 1998, Tian and 

others 2005, Cai and others 2010) using the final bandwidth , where n1 is the 

number of observed events by τ years.

3 Simulations

In this section, we report results from simulation studies that examine the finite-sample 

performance of the proposed methods and compare our methods with existing methods. 

Although the proposed methods are catered for survival data with longitudinally measured 

risk factors, it can be applied to traditional survival data with one single measurement of the 

risk factor at baseline to flexibly capture the age effect. For the single measurement setting, 

we compare the proposed procedure to the standard PH model which includes age as a 

covariate. In the longitudinal setting, we will compare the proposed methods to the 

commonly used joint modeling approach. For both settings, we considered n = 2000 and 

5000, let K(·) be the Gaussian kernel, and B = 1000 for perturbations. For each 

configuration, results are summarized based on 1000 simulated datasets.

3.1 Simulations with a Single Measurement

For this setting, we simulate Ai0 from Uniform (15, 75) and two independent baseline 

covariates Zi1(Ai0) and Zi2(Ai0) from N (0, 4) and N (1, 4) respectively. The survival time 

from entry, Ti, is generated from log(Ti) = 2.5 + β1(Ai0)Zi1(Ai0) + β2(Ai0)Zi2(Ai0) + 0.5∊, 

where β1(a) = a2/7500, β2(a) = {(a – 45)2 – 100}/2000 and ∊ follows a standard logistic 

distribution. The censoring time Ci is generated from exp(C̃
i) where C̃

i ∼ N (1.6, 0.36), 

resulting in about 80% of censoring. For illustration, we choose τ to be 5 years. Throughout, 

we choose g(·) to be the logistic link function. Using the proposed bandwidth selection 

procedure with 5-fold cross-validation, h is about 6.4 and 5.4 for n = 2000 and 5000 

respectively. We obtain the estimates of βτ(a) and AUCτ,a for ages from 20 to 70. 

Throughout the simulation studies, we let Uij = Zij = Zi(Aij).
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In Figure 2, we present the average of the point estimates, the average of the SE estimates 

compared with the empirical SEs and the coverage probabilities (CovPs) of the 95% CIs for 

βτ(a) and AUCτ,a across a range of a. The results suggest that the proposed estimators 

produce negligible biases, and the estimated SEs are close to the empirical SEs. The 

empirical CovPs of the 95% CIs are close to their nominal level for βτ(a) coefficients. For 

AUC, the CovPs of the CIs are close to the nominal level but slightly below 95% for 

younger ages when n = 2000, possibly due to the fact the curvature of the AUC function is 

high in that range leading to a slight bias. The results are much improved when n increases 

to 5000.

For comparison, we obtain an alternative τ-year risk estimate, 

, from fitting a Cox model including Ai0 and Zi0 = 

(Zi1(Ai0), Zi2(Ai0))⊺ as covariates, where Λ̂τ is the estimated baseline cumulative hazard 

function at τ, gcox(x) = 1 – e−ex
, and  are the estimated log-hazard ratio for (Ai0, 

). For both of the risk estimates from our proposed method and the Cox model, we 

evaluate their age-specific prediction performance as well as the overall prediction 

performance based on AUCτ. As shown in Figure 3, the age specific AUC, AUCτ,a, of our 

proposed approach was generally higher than those from the Cox model. The overall AUC, 

AUCτ, was about 0.817 for the proposed model and 0.77 for the Cox model. The average 

difference between the two overall AUCτ's was 0.047 (SE = 0.007). These results highlight 

the improved prediction performance for using the proposed age-specific model.

3.2 Simulations with Longitudinal Measurements

We also conducted simulation studies to examine the performance of the proposed 

procedures in longitudinal settings. To simulate the age at the occurrence of event T  and 

longitudinal measurements of a risk factor Z(a), we generate two random effects α0, α1 from 

N(0, 1). The age of event T  is obtained from

where ∊ is generated from an uniform distribution over (0, 1) and Φ(·) is the cumulative 

distribution function of a standard normal distribution. We simulate age of entry to the study 

A0 from Uniform (10, 70). Among the subjects who survive by the entry to the study, i.e., 

T  > A0, we randomly sample n subjects as our cohort. For the i-th subject in this cohort, 

the survival time since entry is , and Ci is generated from a Uniform (10, 40), 

which leads to about 25% of censoring. The risk factor is measured at the entry age Ai0 and 

ages Aij = Ai0 + Δij after entering the study until event or censored, whichever comes first, 

where Δij is generated from a N(4, 1) distribution. And the observed marker value at age Aij 

is Zi(Aij) = α0i + α1i log(Aij) + ei(Aij) where ei(Aij) ∼ N(0, 1.52). We choose τ to be 10 

years. The selected smoothing parameter h is around 5.0 and 1.3 for n = 2000 and 5000 

respectively using 5-fold cross-validation scheme described in Section 2.3. We obtain βτ(a) 

and AUCτ,a estimates for ages from 20 to 60.
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The average of the point estimates, average of the SE estimators, the empirical SEs and the 

coverage probabilities of the 95% CIs for the βτ(a) and AUCτ,a at a series of ages are shown 

in Figure 4. The proposed procedures yield estimators with negligible biases. The estimated 

SEs obtained through perturbation resampling are close to the empirical SEs.

For comparison, we also fit the data with a joint modeling (JM) approach (Tsiatis and 

Davidian 2004, Rizopoulos 2010) for longitudinal and survival data. In particular, we follow 

the setup in Rizopoulos (2010) to specify a linear mixed effects model with random intercept 

and slope for the longitudinal measurements Zij and a PH model relating the hazard function 

to the random slope, in which the log baseline hazard is approximated using B-splines. With 

the parameter estimates from the joint model, for subject i with measurement at Aij, one can 

use a Monte Carlo approach to predict τ-year residual life risk given that the person has 

survived Aij and we let  denote the resulting estimate of the risk function. We can 

estimate its corresponding AUCτ,a as discussed in Section 2.2. We present the average of the 

estimated AUCτ,a for the two modeling approaches at n = 5000 in Figure 5. The results 

suggest that the proposed approach improved prediction accuracy over a wide range of ages 

compared to the JM approach.

4 Application

In this section, we apply the proposed methods to the Framingham Heart Study to develop 

and evaluate age-specific CVD or death risk prediction models. The original goal of the 

study was to identify the common factors that contribute to CVD by following its 

development over a long period of time in a large group of participants who had not yet 

developed CVD. Started in 1948 with 5,209 adult subjects, the study is now on its third 

generation of participants. Information on a wide spectrum of risk factors and disease 

outcomes is collected on each of the many followup visits during participants' lifetime. The 

dataset consists of 3,982 subjects (2,108 females and 1,874 males) with complete 

information on the risk factors at least one measurement time. Several traditional 

Framingham risk factors were collected on these subjects on each of their visits, including 

age, diastolic blood pressure, cholesterol, high-density lipoprotein (HDL), diabetes and 

smoking. In addition, an inflammation marker, C-reactive protein (CRP), was also measured 

at various visits. The median number of measurement times is 3. We use both Framingham 

risk factors and CRP to estimate age-specific 10-year risk of CVD or death for females and 

males separately. Thus we only include visits where all these risk factors are measured based 

on the study design. The outcome of interest is time to the onset of first major CVD event or 

death. Such a composite outcome avoids the issues of having to account for the competing 

risks from other causes of death. Neverthelss we note that our calculation of the probability 

of experiencing CVD or death within 10-years in this dataset can be regard approximately as 

10-year CVD risk since majority of the observed events are CVD events, especially at 

younger age. In the study, there are 54 subjects who had CVD prior to death within 10 years. 

The cumulative incidence rate for CVD prior to death within 10 year is estimated to be about 

1.4%. The median follow-up time was 32 years and the entry ages range from 5 to 70 with a 

median of 35.
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We fit the proposed age-specific 10-year risk model (1) with a logistic link. Predictors 

include original scale of diastolic blood pressure, diabetes, smoking, the log scale of 

cholesterol, high-density lipoprotein and CRP. We use a gaussian kernel for K(·), with the 

smoothing parameter h selected as 5.2 for males and 3.8 for females using the 5-fold cross-

validation scheme described in Section 2.3. In Figure 6(a) and (b), we demonstrate how the 

effects of major risk factors may vary by age for women and men respectively. For men, 

blood pressure does not show any significant association with risk of outcome for all the 

ages, whereas for women, higher blood pressure significantly increases the risk, especially 

for younger ages and older ages. For men, as expected, high cholesterol increases risk, and 

our analysis further reveals that for men, the effects decrease with ages. In other words, 

having high cholesterol for a younger man expose them to higher risk compared with older 

men. For women, diabetes status also shows an age-varying pattern: the effect increases with 

age initially, reaches a peak at 50, and goes down afterward. Smoking shows significant 

effect at age 45 for women, but the effect diminishes as age increases. However, for men, 

neither diabetes status nor smoking shows significant association with the risk at almost all 

ages. HDL shows no significant association with outcome for women, but is inversely 

associated with the risk between age 40 and 60 and no significant association at other ages 

for men. Finally CRP also exhibits different age-varying effects between women and men. 

For men, the effect of CRP is monotonically decreasing as age increases while for women, 

higher CRP increases risk before 60 years old and peaks at around 45 years old. In Figure 

6(c), we show the age-specific AUC of the proposed age-specific risk scores for men and 

women. For women, the AUC10,a does not vary substantially over age a with values 

fluctuating around 0.7. On the contrary, for men, AUC10,a is substantially higher for younger 

ages with value as high as 0.9 and decreases to 0.6 at older ages. Thus, the age-specific risk 

model is highly accurate in predicting 10-year risk of CVD or death for younger males but 

only moderately accurate for middle aged or older males.

5 Discussion

When subjects are monitored over time for a clinical condition, it is highly desirable to 

dynamically recalculate risk estimates according to the updated risk factor information. Age 

is an important risk factor for many diseases such as CVD and the effects of other predictors 

on the disease risk may vary over age. Current risk prediction models used in clinical 

practice such as the FRS often incorporate age as an additive risk factor, which may limit the 

model prediction performance. Our proposed method estimates the age-specific absolute risk 

directly via a flexible varying-coefficient model that allows the predictor effects to vary over 

age and allows for easy incorporation of longitudinally collected risk factor information. We 

also provide procedures for non-parametrically assessing the prediction performance of such 

age-specific models, extending existing time-specific accuracy parameters to also 

incorporate the additional age domain.

Unlike the Cox model with time-varying covariates, our proposed model can easily provide 

age-specific absolute risk estimates without having to specify the full longitudinal marker 

processes. Compared to the JM approach, our method has the major advantage of allowing 

for non-linear effects and non-trivial number of time-varying continuous or discrete risk 

markers. Additionally our kernel-based procedures allows borrowing information across 
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individuals of similar ages therefore provides a practical solution for situations where the 

longitudinal information is only measured sparsely and irregularly.

Our method allows for internal covariates in that it aims to make prediction for the residual 

life among event free subjects at age a, although it does require the availability of the marker 

information at age a for those with T  > a. When the outcome is a non-terminal event that is 

subject to death as a competing risk, then one may easily modify the proposed procedures to 

instead make prediction of the disease risk for those who are still alive and have not yet 

developed the disease at age a. The age-specific accuracy parameters can also be modified to 

accommodate competing risks similar to those considered in Blanche and others (2013).

The proposed method employs a working model that requires the specification of g and ψ, 

both of which could potentially impact the model prediction performance. In general, the 

prediction performance is less sensitive to the choice of g due to the robustness properties 

such as the logistic likelihood as noted in Li and Duan (1989) and Eguchi and Copas (2002). 

One may choose appropriate ψ based on existing literature on the functional form of known 

risk factors or exploratory analyses. On the other hand, regardless of the choice of ψ or g, 

the fitted model may be mis-specified yet our proposed method could derive a risk model 

with good prediction performance. The flexible varying coefficient model is expected to 

perform well under mis-specification and the proposed inference procedures are always 

valid regardless of the potential mis-specification in the fitted model. In addition, while the 

proposed simple IPW method has the advantage of enabling robustness in inference under 

model mis-specification, it may come at a cost in efficiency loss. If there are auxiliary 

variables available at baseline, efficiency augmentation methods leveraging such information 

warrants further research.
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Figure 1. 
Data structure.
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Figure 2. 
Average of estimates, average of the standard error estimates (ASE), empirical standard 

errors (ESE) and empirical coverage probabilities (CovP) of the 95% CI. One measurement 

at baseline. Each entry is based on 1000 simulated samples. The x-axis in all the plots is age.
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Figure 3. 
Age-specific AUCs for the proposed method (Age-specific) and Cox model (Cox). Values 

are averaged over 1000 repetitions with sample size n = 5000.
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Figure 4. 
Average of estimates, average of the standard error estimates (ASE), empirical standard 

errors (ESE) and empirical coverage probabilities of the 95% CI. Longitudinal 

measurements. Each entry is based on 1000 simulated samples. The x-axis in all the plots is 

age.
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Figure 5. 
Age-specific AUC for the proposed method (Age-specific) and JM with longitudinal 

measurements. Values are averaged over 1000 repetitions with sample size n = 5000.
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Figure 6. 
Data analysis: Framingham Heart Study. The panels (a) and (b) show the point and interval 

estimates of the age-specific effects of the major risk factors for male and female, 

respectively. The panel (c) shows the point and interval estimates of the age-specific AUC 

for male and female respectively.
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