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Abstract

Genetic polymorphisms in TAGAP gene have been associated with many diseases includ-

ing rheumatoid arthritis, multiple sclerosis and other autoimmune disorders. Identifying func-

tional SNPs in such disease associated genes is an uphill task hence before planning larger

population study, it is better to scrutinize putative functional SNPs. In this study we used var-

ious computational approaches to identify nsSNPs which are deleterious to the structure

and/or function of TAGAP protein that might be causing these diseases. Computational

analysis was performed by five different in silico tools including SIFT, PROVEAN, Poly-

Phen-2, PhD-SNP and SNPs&GO. The study concludes that mutations of Glycine!Glu-

tamic Acid at position 120, Glycine! Tryptophan at position 141 and Valine!Methionine

at position 151 are major mutations in native TAGAP protein which might contribute to its

malfunction and ultimately causing disease. The study also proposed 3D structures of native

TAGAP protein and its three mutants. Future studies should consider these nsSNPs as

main target mutations in various diseases involving TAGAP malfunction. This is the first

comprehensive study, where TAGAP gene variants were analyzed using in silico tools

hence will be of great help while considering large scale studies and also in developing pre-

cision medicines for cure of diseases related to these polymorphisms. Furthermore, animal

models of various autoimmune diseases and having these mutations might be of help in

exploring their precise roles.

Introduction

Genetic polymorphisms in human genome are mostly (90%) single nucleotide polymorphisms

(SNPs) which are single base pair changes in alleles and are considered to be the most common

kind of variations in DNA sequence. The SNPs in coding region of human genome are of

much importance and around 500,000 SNPs fall in this region [1]. Among these the non-syn-

onymous SNPs (nsSNPs), also named as missense SNPs, are highly significant as they are

responsible for amino acid residue substitutions resulting in functional diversity of proteins in

humans [2]. Functional variations can have deleterious or neutral effects on protein structure
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or function [3]. Damaging effects might include destabilization of protein structure, altering

gene regulation [4], affecting protein charge, geometry, hydrophobicity [5], stability, dynam-

ics, translation and inter/intra protein interactions [2,6,7], hence structural integrity of cells

comes under risk [8]. Thus it can be avowed that nsSNPs might get linked with many human

diseases because of these missense SNPs.

Numerous studies in the past have shown that nsSNPs are responsible for about 50% of

mutations which are involved in various genetic disorders [9,10] including many inflamma-

tory and autoimmune disorders [11–15]. A study analyzed genetic variations in ABCA1 gene

and predicted their deleterious effects causing familial hypoalphalipoproteinemia and tangier

disease [16]. Similar study identified missense SNPs in STEAP2 which cause its upregulation

leading to prostate cancer [17]. The nsSNPs in NKX2-5 gene were found associated with con-

genital heart defects because of their damaging effects on structural features of the protein

[18]. A recent study proposed that nsSNPs in MITF gene might cause malignant melanoma

[19]. Another latest study on nsSNPs and their effects on patients with non-small cell lung can-

cer treated with immunotherapy suggested that the combination of deleterious SNPs and

known pathogenic lesions might help in getting advantage from immunotherapy [20].This

study is aimed to investigate nsSNPs of T-cell Activation Rho GTPase Activating Protein

(TAGAP) and their effects on its structure and function. This protein, located on chromosome

6q25, acts as a molecular switch and is considered important in modulating cytoskeletal

changes [21], in activation of T cells [22] and is therefore of particular interest in the context of

T cell-driven autoimmune disease processes. For this purpose, we made use of various bioin-

formatics tools to come up with the most deleterious and damaging nsSNPs of TAGAP pro-

tein. 3D models of TAGAP protein and its mutant forms are also proposed in this study. This

is the first ever study which covers an extensive in silico analysis of nsSNPs of TAGAP protein

hence this work might be useful in future in developing precision medicines for the treatment

of diseases caused by these genomic variations.

Materials and methods

Retrieving nsSNPs

Information of missense SNPs (SNP ID, protein accession number, position, residue change

and global minor allele frequency (MAF) was retrieved from NCBI dbSNP database (https://

www.ncbi.nlm.nih.gov/projects/SNP/) [23]. All 275 nsSNPs were filtered for investigation.

Identifying the most damaging nsSNPs

We utilized five different bioinformatics tools to predict functional effects of nsSNPs recruited

from dbSNP database. These algorithmic programs included: SIFT-Sorting Intolerant From

Tolerant [http://sift.jcvi.org/www/SIFT_seq_submit2.html] [24,25], PROVEAN-Protein Vari-

ation Effect Analyzer [http://provean.jcvi.org/index.php] [26], PolyPhen-2-Polymorphism

Phenotyping v2 [http://genetics.bwh.harvard.edu/pph2/] [27], PhD-SNP -Predictor of human

Deleterious Single Nucleotide Polymorphisms [http://snps.biofold.org/phd-snp/phd-snp.

html] [28] and SNPs&GO [http://snps.biofold.org/snps-and-go/snps-and-go.html] [29]. The

SNPs predicted deleterious by at least four in silico tools were considered high risk nsSNPs and

investigated further.

Identifying structural and functional properties

For sorting disease associated or neutral amino acid substitutions in humans, MutPred v1.2

was consulted which is a web based application tool that effectively screens amino acid

Computational analysis of nsSNPs of TAGAP protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0188143 January 12, 2018 2 / 13

https://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.ncbi.nlm.nih.gov/projects/SNP/
http://sift.jcvi.org/www/SIFT_seq_submit2.html
http://provean.jcvi.org/index.php
http://genetics.bwh.harvard.edu/pph2/
http://snps.biofold.org/phd-snp/phd-snp.html
http://snps.biofold.org/phd-snp/phd-snp.html
http://snps.biofold.org/snps-and-go/snps-and-go.html
https://doi.org/10.1371/journal.pone.0188143


substitutions [30]. It also helps predicting molecular cause of the disease. MutPred is based

upon gain/loss of 14 different functional and structural properties like loss of a phosphoryla-

tion site or gain of helical propensity. Protein sequence (FASTA format) of TAGAP and its

amino acid substitutions were submitted. Output provides p-value where; p< 0.05 and

p< 0.01 were considered as confident and very confident hypotheses, respectively.

Analyzing protein stability

To check the stability of target protein, I-Mutant 2.0 was used which is a support vector

machine based web server that helps in predicting any change in stability of protein after get-

ting mutated. The tool uses data derived from ProTherm which is currently the most compre-

hensive database of experimental data on protein mutations. It predicts reliability index (RI) of

the results ranging from 0–10, where 10 being the highest reliability [31,32]. We submitted

TAGAP protein sequence to predict effects of the most damaging nsSNPs on the protein. Con-

ditions for all submissions were set at temperature 25˚C and pH 7.0.

Analyzing protein evolutionary conservation

ConSurf is a bioinformatics tool that we used to estimate evolutionary conservation of amino

acid positions using protein sequence [33]. Analysis is based on phylogenetic relations between

homologous sequences [34–36]. Degree of conservation of amino acid residues was estimated

using 50 homologous sequences. We selected those highly conserved residues for further anal-

ysis which were located at the sites of high risk nsSNPs.

3D protein modeling

The 3D models for wild type TAGAP protein and TAGAP mutated with high risk nsSNPs

were generated using two homology modeling tools; Phyre2 and I-TASSER [37,38–40]. The

resultant structures were viewed by Chimera 1.11 which is an extensive program for interactive

visualization and analysis of molecular structures and related data [41] and later verified by

ERRAT which is a program for verifying protein structures [42]. Afterwards TM-align was

used to compare wild type protein structure with mutant protein structures. This algorithm

computes template modeling-score (TM-score) and root mean square deviation (RMSD)

along with superposition of the structures. TM-score gives the values in 0 and 1, where 1 indi-

cates perfect match between two structures. While higher RMSD indicates greater variation

between wild type and mutant structures [43,44].

Predicting post translational modification (PTM) sites

The putative methylation sites in the TAGAP protein sequence were predicted by PSSMe and

BPB-PPMS. The former tool identifies methylation sites based on information gain feature

optimization method. The higher support vector machines (SVMs) probability indicates

higher probability of lysine (or arginine) to get methylated. False-positive predictions were

controlled by focusing on sites with stringency setting higher than 50% [45]. Methodology of

BPB-PPMS is based on Bi-profile Bayes combined with SVMs having threshold value of 0.5

[46]. Likely phosphorylation sites in TAGAP protein at serine, threonine and tyrosine residues

were predicted using NetPhos 3.1and GPS 3.0. NetPhos 3.1 uses ensembles of neural networks

to complete this task and residues having scores>0.5 threshold are considered phosphorylated

[47]. Likewise in GPS 3.0, higher value depicts higher potential of the residue to get phosphor-

ylated [48]. Putative protein ubiquitylation sites were predicted by UbPred and BDM-PUB. In
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UbPred, lysine residues with a score of� 0.62 were considered ubiquitylated [10] and in

BDM-PUB, balanced cut-off option was selected [30].

Results and discussion

nsSNPs retrieved from dbSNP database

We used dbSNP database to retrieve SNPs of interest as it is the most extensive SNP database

[23]. There were total 1721 SNPs, of which 275 were nsSNPs, 147 occurred in 5’UTR, 162 in

3’UTR region, and the rest were of other types (Fig 1). We selected only nsSNPs for our inves-

tigation, details are provided in S1 Table. The global MAFs of these SNPs are shown in graphi-

cal form in Fig 2.

Deleterious nsSNPs identified in TAGAP

We subjected all nsSNPs to five different in silico nsSNP prediction algorithms to investigate

whether these SNPs have any effect on structure or function of TAGAP protein. In silico tools

used for this purpose were: SIFT, PROVEAN, PolyPhen-2, PhD-SNP and SNPs&GO. Accord-

ing to SIFT results, nsSNPs scoring tolerance index (TI) of�0.05 are considered intolerant. In

Fig 1. Clustered Pyramid showing the percentages of the SNPs in TAGAP gene. (nsSNPs: 17%; 5’UTR

SNPs: 8%; 3’UTR SNPs: 9%; Other SNPs: 66%).

https://doi.org/10.1371/journal.pone.0188143.g001

Fig 2. Graphical representation of global MAFs of nsSNPs.

https://doi.org/10.1371/journal.pone.0188143.g002
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PROVEAN, the variants are predicted as deleterious when final score is below threshold value

of -2.5 and neutral when it is above this value. PolyPhen-2 results predicted probably damag-

ing, possibly damaging and benign nsSNPs, with probably damaging as being the most confi-

dent prediction as compared to other two. These predictions are based on position specific

independent count score difference, where score 1 is considered the most damaging. The

PhD-SNP predicted 95 nsSNPs as diseased while SNPs&GO revealed the most unique results

showing only 18 nsSNPs as diseased (Fig 3, S2 Table).

We shortlisted those nsSNPs which are common in at least 4 of these algorithmic tools,

and also which scored 0 in SIFT and 1 in PolyPhen-2 so that only the highly deleterious SNPs

would be analyzed. Total 14 nsSNPs out of 275 met the criteria and we classified them as high

risk. Interestingly, 9 of these nsSNPs lie in the only RhoGAP domain of TAGAP protein

(Table 1) and all additional investigations were held for only these 9 nsSNPs.

Functional and structural modifications of TAGAP predicted by MutPred

The shortlisted 9 nsSNPs were submitted to this server and the resultant probability scores are

given in Table 2. The structural and functional alterations predicted include loss of disorder,

catalytic residue, glycosylation and gain of phosphorylation, solvent accessibility, ubiquitina-

tion and molecular recognition features (MoRF) binding. Their P values are provided in S3

Table. According to these predictions, it can be stated that several nsSNPs might be the reason

behind any possible structural and functional modifications of TAGAP protein.

Stability modification prediction

We predicted any stability alterations in the TAGAP protein with the help of I-Mutant which

completes this task by considering the single-site mutations [21,32]. The 9 nsSNPs that have

been found in the RhoGAP domain were submitted to I-Mutant 2.0 server to predict their RI

and free energy change values. Results revealed that all these nsSNPs decrease stability of

TAGAP protein (Table 3). Hence these polymorphisms in the RhoGAP domain might

cause maximum damage to the protein by affecting its stability. According to some studies,

decreased protein stability causes increase in degradation, misfolding and aggregation of pro-

teins [49–51].

Fig 3. Pie chart showing percentage of damaging nsSNPs identified. The distribution of damaging

nsSNPs by percentage (%) and number (n) identified by five in silico tools; SIFT, PROVEAN, PolyPhen-2,

Phd-SNP and SNPs&GO.

https://doi.org/10.1371/journal.pone.0188143.g003
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Conservation profile of deleterious nsSNPs in TAGAP

Evolutionary information is essential to detect mutations which might affect human health

[52]. Using ConSurf web server, we calculated the evolutionary conservation of amino acid

residues of TAGAP protein to further explore the possible effects of 9 most deleterious nsSNPs.

Results were obtained in the form of structural representation of the protein (S1 Fig). ConSurf

identifies structural and functional residues by combining evolutionary conservation data with

solvent accessibility predictions. Highly conserved residues are predicted as either functional

or structural based on their location either on protein surface or inside its core [33]. Amino

acids which are involved in vital biological processes for example in interactions among differ-

ent proteins, are more conserved than others. Taking this into consideration, those nsSNPs

which are located at these conserved regions are considered immensely damaging to protein

as compared to those at non-conserved sites [9,53].

Results obtained via ConSurf represented all residues of TAGAP showing their structural

and functional conservation levels. But we focused only on those residues which matched

their positions with 9 high risk nsSNPs which we have identified. The results predicted L100,

T118, E136, G141, V151 and N205 as functional residues making them highly conserved and

exposed. While G120, F122 and A126 are predicted as structural residues which mean that

they are highly conserved and buried (Table 4). The results further confirmed these 9 high

risk nsSNPs as being really deleterious to the structure and/or function of TAGAP protein.

Table 1. High risk nsSNPs identified by five in silico programs.

Amino acid Change SIFT PROVEAN PolyPhen-2 (HumDiv) PhD-SNP SNPs&GO

Pred TI Sc (cutoff = -2.5) Effect Sc Pred RI Pred RI

C94R Intolerant 0 -11.11 Deleterious Pro-damg 1 Diseased 7 Neutral 1

L100F* Intolerant 0 -3.769 Deleterious Pro-damg 1 Diseased 2 Neutral 7

T118M* Intolerant 0 -5.67 Deleterious Pro-damg 1 Diseased 4 Neutral 4

G120E* Intolerant 0 -7.671 Deleterious Pro-damg 1 Diseased 8 Diseased 4

F122L* Intolerant 0 -5.753 Deleterious Pro-damg 1 Diseased 7 Diseased 1

A126T* Intolerant 0 -3.269 Deleterious Pro-damg 1 Diseased 2 Neutral 8

E136K* Intolerant 0 -3.702 Deleterious Pro-damg 1 Diseased 0 Neutral 7

G141W* Intolerant 0 -7.671 Deleterious Pro-damg 1 Diseased 6 Diseased 0

V151M* Intolerant 0 -2.596 Deleterious Pro-damg 1 Diseased 2 Neutral 3

N205S* Intolerant 0 -4.878 Deleterious Pro-damg 1 Diseased 5 Diseased 3

S476F Intolerant 0 -4.967 Deleterious Pro-damg 1 Diseased 1 Neutral 8

S490P Intolerant 0 -2.6 Deleterious Pro-damg 1 Diseased 1 Diseased 2

F511S Intolerant 0 -3.352 Deleterious Pro-damg 1 Diseased 7 Neutral 2

F718S Intolerant 0 -5.07 Deleterious Pro-damg 1 Diseased 8 Diseased 3

* shows the positions in the RhoGAP domain region of the TAGAP protein,

Pred = prediction, Sc = score, Pro-damg = probably damaging.

https://doi.org/10.1371/journal.pone.0188143.t001

Table 2. Probability scores of deleterious mutations.

Mutation P-value Mutation P-value

T118M 0.618 G141W 0.663

L100F 0.573 V151M 0.676

F122L 0.846 A126T 0.804

G120E 0.902 E136K 0.498

N205S 0.896

https://doi.org/10.1371/journal.pone.0188143.t002
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Comparative modeling of wild type TAGAP and its mutants

To determine whether the 9 high risk nsSNPs alter the wild type structure of TAGAP protein,

we first used Phyre2 to generate 3D structures of wild type protein and 9 mutants. Each nsSNP

was individually substituted into the wild type sequence of TAGAP and the sequences were

submitted to Phyre2 homology modeling tool [37]. Phyre2 used c1xa6A as the template for

predicting 3D models and the structures were then visualized by Chimera 1.11 [41]. We

extended our analysis by calculating the TM-scores and RMSD values for each mutant model.

The TM-score is used to evaluate the topological similarity between wild type and mutant

models, while RMSD helps in measuring average distance between α-carbon backbones of

wild type and mutant models [43–44]. The greater the RMSD value the greater is the deviation

of mutant structure from that of the wild type (Table 3). The mutant model for V151M showed

the maximum RMSD value of 1.99 followed by those of G120E and G141W having RMSD

value 1.98. Interestingly, the mutant model L100F showed no variation from wild type struc-

ture as depicted by its RMSD value 0. The nsSNP models of T118M, F122L and E136K showed

very slight variation from wild type TAGAP protein model (RMSD = 0.83).

Based on higher RMSD values, we finally selected only three mutants; G120E, G141W and

V151M to remodel them using I-TASSER (being the most advanced modeling tool) [38–41]

so that we could come up with the most reliable protein structures. The templates used by this

server were: 5c5sA, 3cxlA, 3flc2A, 3msxB and 5ircA. I-TASSER produced 5 models each for

Table 3. I-MUTANT 2.0 and TM-align predictions for nsSNPs in RhoGAP domain of TAGAP.

nsSNP ID Amino Acid Change Stability RI DDG TM-Score RMSD

rs748659041 100, L! F Decrease 9 -0.62 1 0

rs368265576 118, T!M Decrease 6 -0.29 0.98778 0.83

rs764717611 120, G! E Decrease 2 -0.84 0.78894 1.98

rs763380333 122, F! L Decrease 3 -0.6 0.98778 0.83

rs780953963 126, A! T Decrease 7 -1.04 0.7912 1.87

rs866898464 136, E! K Decrease 7 -1.12 0.98778 0.83

rs765146154 141, G!W Decrease 7 -0.58 0.78894 1.98

rs777042268 151, V!M Decrease 9 -1.53 0.78851 1.99

rs778438807 205, N! S Decrease 2 -2.45 0.7928 1.84

DDG: free energy change value. 0.0 < TM-score < 0.30, random structural similarity 0–0.3 and 0.5 < TM-score < 1.00, in about the same fold 0.5–1.

https://doi.org/10.1371/journal.pone.0188143.t003

Table 4. ConSurf predictions showing conservation profile of amino acids in TAGAP.

SNP ID Residue & Position Conservation Score Prediction

rs748659041 L100 8 Highly conserved and exposed (f)

rs368265576 T118 9 Highly conserved and exposed (f)

rs764717611 G120 9 Highly conserved and buried (s)

rs763380333 F122 9 Highly conserved and buried (s)

rs780953963 A126 9 Highly conserved and buried (s)

rs866898464 E136 9 Highly conserved and exposed (f)

rs777042268 G141 8 Highly conserved and exposed (f)

rs778438807 V151 9 Highly conserved and exposed (f)

rs765146154 N205 9 Highly conserved and exposed (f)

(f): predicted functional residue, (s): predicted structural residue.

https://doi.org/10.1371/journal.pone.0188143.t004
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TAGAP and its mutants. We selected only that model having minimum C-score and also had

higher ERRAT values when submitted to ERRAT program (G120E; C-score = -2.95, ERRAT =

84, G141W; C-score = -3.01, ERRAT = 91.6, V151M; C-score = -2.95, ERRAT = 89.4). Hence

these three mutant models were finally superimposed over the wild type protein model (Fig 4).

Similar studies have been carried out on various genes and proteins like GDH protein, MBL2
gene etc using different bioinformatics tools [54,55]. Such studies can offer novel therapeutic

markers for a range of diseases.

Predicted post translational modifications

PTMs are important in regulating structures and functions of proteins hence are involved

in many biological events, for example, protein-protein interactions and cell signaling etc

[56,57]. In this study, we sought to investigate whether the high risk nsSNPs have any effect on

PTMs in TAGAP. For this, we used various in silico tools to predict probable PTM sites in the

TAGAP protein.

Methylation. Methylation of lysine residues in certain histones effect their binding with

the neighboring DNA and this alters the expression of genes on that DNA. The PSSMe tool

predicted a total of 21 lysine residue sites that can get methylated, whereas BPB-PPMS pre-

dicted only 6 residues that undergo methylation. Only 3 lysine residues at positions 195, 256

and 517 were common findings of both PSSMe and BPB-PPMS tools (Fig 5).

Phosphorylation. Phosphorylation of proteins is an important regulatory mechanism as

it acts as their molecular switch to perform various functions like conformational changes in

protein structure, during signal transduction pathways, activating some proteins and deacti-

vating others [58–61]. The putative phosphorylation sites in the TAGAP were predicted by

using NetPhos 3.1 and GPS 3.0 servers which made predictions for 17 and 3 kinases respec-

tively (S4 Table). NetPhos 3.1 predicted total 97 residues (Ser:76, Thr:18, Tyr:3) having poten-

tial of getting phosphorylated. On the contrary, GPS 3.0 predicted only 10 residues, of which 9

Fig 4. Comparison of wild type TAGAP protein structure with its mutant forms. (A) 3D model of wild

type TAGAP protein. (B) Superimposed structures of wild type TAGAP protein and its mutant having mutation

from Glycine to Glutamic Acid at position 120. (C) Superimposed structures of wild type TAGAP protein and

its mutant having mutation from Glycine to Tryptophan at position 141. (D) Superimposed structures of wild

type TAGAP protein and its mutant having mutation from Valine to Methionine at position 151.

https://doi.org/10.1371/journal.pone.0188143.g004
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were seriene specific sites and 1 was threonine specific phosphorylation site. No phosphoryla-

tion at tyrosine residues was predicted by GPS 3.0. The common sites predicted by both

servers are shown in Fig 5. According to ConSurf results, only S377 of these sites is a highly

conserved and exposed residue making it a functional residue hence depicting its significance.

Ubiquitylation. Ubiquitylation is a PTM which serves as a degradation mechanism for

proteins and helps in DNA damage repair [62]. These modification sites in the TAGAP were

predicted by UbPred and BDM-PUB tools. UbPred predicted 12 lysine residues in the TAGAP
protein that experience ubiquitylation while BDM-PUB predicted that 33 lysine residues

undergo ubiquitylation. Total 10 residues were common predictions by both UbPred and

BDM-PUB (Fig 5). Only 3 of these putative ubiquitylation sites; K11, K82 and K135 were pre-

dicted to be important functional residues (highly conserved and exposed) according to the

ConSurf results (S1 Fig). All putative PTM sites in TAGAP protein along with the high risk

nsSNPs identified in this study are illustrated in Fig 5 while the results of all the PTMs are pro-

vided in S4 Table.

A few of these PTMs also coincided in position with nsSNPs (S1 Table) in the TAGAP, i.e.

K82, S367 and S411 (Table 5) and of these, K82 is highly conserved among TAGAP homo-

logues according to the ConSurf results.

Though the upshots of TAGAP methylation, phosphorylation and ubiquitylation have not

been reported yet, various studies have shown that these modifications can significantly alter

the protein function by varying its location, stability or inter-protein interactions etc. It is pos-

sible that ubiquitylation of lysine residues in the TAGAP at sites K52, K82, K114 and K518 and

phosphorylation of serine residues at sites S367 and S411 are vital for some of the protein’s

Fig 5. Putative PTM sites and high risk nsSNPs in TAGAP protein. Schematic illustration of locations of

high risk nsSNPs and PTMs (ubiquitylation, phosphorylation and methylation) in TAGAP protein. The nsSNPs

that are also predicted as functionally conserved by ConSurf are all present in the RhoGAP domain of the

protein starting from L100F to N205S. The site K256 is predicted to undergo both methylation and

ubiquitylation.

https://doi.org/10.1371/journal.pone.0188143.g005

Table 5. Low risk nsSNPs identified considering PTMs and ConSurf predictions.

SNP ID Mutation Deleterious Predictions PTM ConSurf Prediction

rs375785212 K82N 3 Ubiquitylation F

rs776525307 S367I 4 Phosphorylation E

rs182059529 S411C 1 Phosphorylation E

e: exposed residue (highly conserved and buried), f: functional residue (highly conserved and exposed).

https://doi.org/10.1371/journal.pone.0188143.t005
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essential functions, and that the missense SNPs: K52T, K82N, K114E, K518T, S367I and

S411C somehow impair those functions. Conversely, these nsSNPs might also destabilize the

protein that might eventually enhance the harms of PTM impairment.

Conclusions

This study suggests that structure and/or function of TAGAP protein can be disturbed by

various nsSNPs. In native protein of TAGAP gene, three major mutations found were: Glycine

! Glutamic Acid at position 120 (rs764717611), Glycine! Tryptophan at position 141

(rs777042268) and Valine!Methionine at position 151 (rs778438807). These mutations

occur in RhoGAP domain of TAGAP protein hence are of particular concern as this is the only

functional domain of the protein. Therefore, these nsSNPs can be strongly considered as key

candidates in causing diseases related to TAGAP malfunction and hence will help in effective

drug discovery and developing precision medicines. Thorough investigations and wet lab

experimentation are needed to explore the effects of these polymorphisms on structure and

function of the protein. Also, various diseased animal models comprising these major muta-

tions in the TAGAP protein might be very supportive in exploring their job in the disease.
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