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ABSTRACT

DNA mismatch repair (MMR) is a highly-conserved
DNA repair mechanism, whose primary role is to re-
move DNA replication errors preventing them from
manifesting as mutations, thereby increasing the
overall genome stability. Defects in MMR are asso-
ciated with increased cancer risk in humans and
other organisms. Here, we characterize the inter-
action between MMR and a proofreading-deficient
allele of the human replicative DNA polymerase
delta, Pol�D316A;E318A, which has a higher ca-
pacity for strand displacement DNA synthesis than
wild type Pol�. Human cell lines overexpressing
Pol�D316A;E318A display a mild mutator phenotype,
while nuclear extracts of these cells exhibit reduced
MMR activity in vitro, and these defects are com-
plemented by overexpression or addition of exoge-
nous human Exonuclease 1 (EXO1). By contrast,
another proofreading-deficient mutant, Pol�D515V,
which has a weaker strand displacement activity,
does not decrease the MMR activity as signifi-
cantly as Pol�D316A;E318A. In addition, Pol�D515V
does not increase the mutation frequency in MMR-
proficient cells. Based on our findings, we propose
that the proofreading activity restricts the strand dis-
placement activity of Pol� in MMR. This contributes
to maintain the nicks required for EXO1 entry, and
in this manner ensures the dominance of the EXO1-
dependent MMR pathway.

INTRODUCTION

High fidelity DNA replication is essential to maintain a low
genomic mutation rate and to maintain the viability and

fitness of all cells and organisms. Genomic mutation rate
is determined by three factors/processes and their relative
efficiency/accuracy: (i) base-selection/insertion by replica-
tive DNA polymerases during semi-conservative DNA
replication; (ii) the intrinsic proofreading 3′-exonuclease of
the replicative DNA polymerases and (iii) post-replicative
DNA mismatch repair (MMR) (1,2).

In eukaryotic cells MMR occurs in three steps. The first
step is mismatch recognition by MutS� (MSH2/MSH6) or
MutS� (MSH2/MSH3), where MutS� preferentially recog-
nizes single base mismatches and small insertions/deletions
(indels) and MutS� preferentially recognizes large indels. In
the second step, additional MMR proteins and MMR ac-
cessory factors, including MutL� (MLH1/PMS2), are re-
cruited to the site of the mismatch, and newly-synthesized
DNA including the mismatch is excised by exonuclease 1
(EXO1). Subsequently, the ssDNA gap is filled-in by DNA
polymerase delta (Pol�) and ligated by DNA ligase I. Pro-
liferative cell nuclear antigen (PCNA) and its clamp loader
replication factor C (RFC) are required during mismatch
recognition, excision and resynthesis (3–5). Cells with de-
fects in MMR generally display a mutator phenotype and
increased susceptibility to cancer (6–8).

Human MMR has been reconstituted in vitro using pu-
rified proteins and single mismatch-containing heterodu-
plex DNA. In the in vitro MMR assay, a nick/gap 5′ or
3′ to the mismatch is the strand discrimination signal, and
it is required for correct and efficient MMR (9,10). In eu-
karyotic cells, EXO1 is the only excision nuclease known to
carry out DNA excision during MMR (11). EXO1 belongs
to the Rad2 gene family, and it is a 5′-3′ exonuclease (12).
In the current MMR model, when the strand discrimina-
tion signal is a nick 3′ to the mismatch, the latent endonu-
clease associated with MutL� introduces a 5′ nick, where
EXO1 initiates DNA excision and removes the mismatch
(13,14). Deletion of EXO1 in mouse and yeast cells results
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in a weaker mutator phenotype than deletion of MSH2,
and leaves significant residual MMR activity (15–17). This
suggests that cells express an alternate EXO1-independent
MMR mechanism/pathway (19).

Pol� carries out lagging strand DNA replication in eu-
karyotic cells and may play a role in replication of the
leading strand in yeast, implicating its prominent role in
genomic replication (18–20). In mammalian cells, Pol� is
comprised of four subunits, with the largest subunit, p125,
encoding polymerase and 3′- exonuclease activity (21). In
mice, defects in the polymerase or exonuclease activities of
Pol� increase the mutation rate and the incidence of can-
cer (22–25). In humans, recent studies show that germline
mutations in the proofreading domain of Pol� predispose
to cancer (26–28). Pol� also plays a role in DNA base ex-
cision repair (BER), nucleotide excision repair (NER), and
double-strand break (DSB) repair (29–34) as well as transle-
sion synthesis (TLS) and maturation of Okazaki fragments
(35–37). The 3′- exonuclease activity of Pol� is also impli-
cated in BER, TLS, compensation for exonuclease-deficient
Polymerase � (Pol�) and regulation of strand displacement
(30,35,38–40).

The strand displacement activity of yeast Pol� is well
characterized (17) and may complement the MMR defect in
EXO1-deficient cells. It is also thought that the strand dis-
placement activity of Pol� is negatively regulated by the Pol�
3′- exonuclease activity (37,40–42). Consistent with this, in
human cells, an alternative form of Pol�, Pol�3, that lacks
the p12 subunit possesses stronger 3′- exonuclease activity
and weaker strand displacement activity than wild type Pol�
(43). Furthermore, Pol� is required for the D-loop extension
in homologous recombination, which is highly-dependent
on strand displacement (44). Yeast cells depleted for EXO1
that have a defect in the 3′- exonuclease of Pol� display lower
viability and higher mutation rate than wild type, which is
consistent with the proposed role of the Pol� 3′-exonuclease
in MMR (23,45). Therefore, we investigated the role of 3′-5′
exonuclease (proofreading) activity of human Pol� in MMR
to expand our understanding of Pol� in MMR in addition
to the basic function in resynthesis of the excision gap. Our
results suggest that the proofreading activity of Pol� plays
a role in shunting MMR to an EXO1-dependent excision
pathway as opposed to directly participating in gap forma-
tion via its 3′-5′ exonuclease activity.

MATERIALS AND METHODS

Construction of plasmids

The plasmid expressing wild type Pol� was constructed by
sub-cloning the coding region of POLD1, encoding p125
human Pol� from plasmid pVL1393-P125. A mutation was
introduced to change the last codon of the p125 open read-
ing frame in POLD1 from ‘stop’ to a glycine codon, gener-
ating the construct pcDNA3.1A (–)-POLD1-WT-his6. This
plasmid generates wild type p125 with a terminal 6x his-
tidine tag, and it was subsequently mutagenized to intro-
duce D316A and E318A substitution mutations. The re-
sulting plasmid is referred to as pcDNA3.1A (-)-POLD1-
D316A;E318A-his6. The QuikChange site-directed muta-
genesis kit (Stratagene) was used according to manufac-
turer’s instructions. The DNA sequences of the entire cod-

ing regions of POLD1 and mutated POLD1 were veri-
fied by sequencing (Macrogen, Korea). Primers used for
mutagenesis were as follows: pcDNA3.1A (-)-POLD1 stop
codon substitution: Forward, 5′ ACCTGAGGCCTGGG
GACATATGGGATCCGA, Reverse, 5′ TCGGATCCCA
TATGTCCCCAGGACTCAGGT. Primers for D316A and
E318A: Forward, 5′ TGCTCAGCTTCGCTATCGCGTG
CGCCGGCCGCAAA

Reverse, 5′ TTTGCGGCCGGCGCACGCGATAGC
GAAGCTGAGCA.

Transfection, preparation of nuclear extracts, quantitative
real-time PCR and western blotting

Approximately 8 × 105 HeLa cells (Clontech) were seeded
in T75 flasks (Sigma). After 24 h, cells were transfected
with 7 �g plasmid DNA using Polyjet transfection reagent
(SignaGen Laboratories) according to the manufacturer’s
instructions. The nuclear extracts were prepared 24 h af-
ter transfection, as previously described (46). To obtain
the nuclear extracts from HeLa cells treated with siEXO1
and overexpressing Pol� or Pol� mutant proteins, approx-
imately 1.25 × 106 cells were seeded in T75 flasks. Af-
ter 24 h, cells were transfected with 40 nM (final concen-
tration) siRNA (Life technology) using DharmaFECT 1
transfection reagent. After 43 h, cells were confluent and
split 1/3 in T75 flasks. Five hours later, cells were trans-
fected with plasmids overexpressing Pol� or Pol� mutant
proteins. After 24 h, cells were harvested for nuclear ex-
tract and RNA extraction for qPCR analysis. RNA ex-
traction was performed using NucleoSpin RNA kit from
MACHEREY-NAGEL and total cDNA was obtained us-
ing Superscript III reverse transcriptase (Life Technologies)
and Oligo(dT)12–18 primers. Approximately 3 ng cDNA
was used for quantitative real-time PCR using the ABI
StepOnePlus system. Protein concentrations were deter-
mined by Bradford assay. 12% Polyacrylamide gels (Ex-
pedeon), polyvinylidene difluoride membranes (Biorad),
were used for Western blotting. The following antibodies
were used: hMSH2 (1:500, CalBiochem.), hMLH1 (1:500,
Santa Cruz), PCNA (1:500, Santa Cruz), hPol� subnunit-
A (1:500, Santa Cruz), RPA32-pS33 (Bethyl, A300–246A,
1/1000), RPA2/RPA32 (Abcam, ab2175, 1/500), and Actin
(1:500, NeoMarkers). The siRNA for EXO1 knockdown:
5′ UAGUGUUUCAGGAUCAACAUCAUCU 3′, control
LUC siRNA Control: 5′ CGUACGCGGAAUACUUCG
AUU 3′. The following primers were used for quantita-
tive real-time PCR: EXO1-Forward, 5′ CAC ATCTCCGC
GAGACAGAG; EXO1-Reverse, 5′ GGTGCCAAATTA
ACTACCTCTCA; �actin-Forward, 5′ CATGTACGTT
GCTATCCAGGC; �actin-Reverse: CTCCTTAATGTC
ACGCACGAT.

Heteroduplex substrates and in vitro mismatch repair assay

The heteroduplexes were prepared as described previously
(47). Briefly, CSH50 bacteria were infected with M13mp2
phage, and single-strand phage DNA (+) was precipitated
from cleared culture supernatant. The replicative form (RF)
phage DNA was harvested from NR9099 bacteria infected
with M13mp2�2 phage and purified by CsCl gradient cen-
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trifugation. RF DNA was linearized with restriction en-
zymes AvaII or Bsu36I. Heteroduplexes were prepared by
annealing 2-fold molar excess of ssDNA to denatured RF
DNA linearized with Bsu36I or AvaII. The resulting nicked
heteroduplex was purified by gel electrophoresis and iso-
lated from a gel slice using Qiaquick gel extraction kit (Qi-
agen). MMR assay was performed as previously described
(47). Briefly, the standard in vitro MMR assay (50 �L) was
performed in buffer containing 30 mM Hepes (pH 7.8), 7
mM MgCl2,4 mM ATP, 200 �M each CTP, GTP,UTP, 100
�M each dATP, dGTP, dTTP, dCTP, 40 mM creatine phos-
phate, 100 �g/ml phosphokinase, 15 mM sodium phos-
phate buffer (pH 7.5), 5 ng heteroduplex DNA and 100
�g nuclear extract protein. The reactions were incubated
at 37◦C for 1 h, terminated by adding 50 �l stop mix (2
mg proteinase K, 2% SDS, 50 mM EDTA pH 8.0) and
incubated for 30 min at 37◦C. Subsequently, repair prod-
ucts were precipitated by adding 60 �l precipitation mix
(0.71 mg Escherichia coli tRNA/ml, 1.7 M ammonium ac-
etate) and purified by phenol/chloroform extraction. The
repair products were transformed into competent NR9162
cells (MMR-deficient), which were plated with CSH50 cells
and X-gal on minimal medium plates containing IPTG.
Correctly repaired phage generate blue plaques while un-
repaired phage generate mixed plaques. MMR efficiency is
calculated as follows: 100 x [1 – (ratio of mixed plaques in
assay X)/(ratio of mixed plaques in control)], where the con-
trol is untreated. In most assays, >500 plaques were counted
per assay.

Mismatch-provoked excision was quantified using the
same DNA substrate and assay buffer as the MMR assay,
except that 25 ng of substrate was used per reaction, aphidi-
colin was added, dNTPs were omitted and reaction prod-
uct was identified by its sensitivity to cleavage by restriction
enzymes. Repair product was purified as described above
and incubated with EcoRI and BamHI in the presence of 30
�g/ml RNase A for 2 h. Reaction products were visualized
on agarose gels stained with ethidium bromide. The inten-
sity of each band was measured using ImageJ, and the rela-
tive excision capacity was calculated for each lane from the
intensity of the upper band/total intensity × 100%. To de-
termine the capacity of nuclear extract to degrade the mis-
match containing strand in vitro, the MMR reactions was
performed as before with/without dNTPs and aphidicolin
as indicated. Loading buffer containing SDS was added to
stop the reaction after 1 h, samples were boiled at 95◦C, and
loaded on SDS-PAGE gel and analyzed by western blot.
The intensity of each band was measured by ImageJ and
normalized to the value of total RPA.

Flow cytometry

Cells were trypsinized, washed twice with PBS and 5 × 105

cells were transferred to FACS tubes and fixed in 2 ml ice-
cold 70% ethanol for at least 30 min on ice or stored at –
20◦C. Cells were spun down, washed with PBS and resus-
pended in 400 �l PBS. 50 �L RNase A (1 mg/ml) and 20
�l propidium iodide (1 mg/ml, Sigma) were added and the
cells were incubated in the dark for at least 30 min at room
temperature. Cells were analyzed using the BD FACSCal-

ibur system and the results were analyzed using ModFit LT
software.

Clonogenic assay

Cells overexpressing wild type Pol�, mutant Pol� or knock-
down of MLH1, EXO1 were trypsinized and seeded into
6-well plates 24 or 48 h after transfection, respectively. Cells
were transfected with siRNA and after 24 h transfected with
mutant Pol� plasmids to obtain siEXO1 knockdown + mu-
tant Pol� cells, which were seeded into six-well plates after
another 24 h. Cells were grown in six-well plates for one day
before being exposed to 10 �M O6-Benzylguanine to inacti-
vate MGMT. After 1 h incubation with O6-Benzylguanine,
cells were treated with various concentrations of N-methyl-
N′-nitro-N-nitrosoguanidine (MNNG). After 8 days, cells
were stained with 0.5% crystal violet in 20% ethanol. Only
colonies containing >100 cells were counted.

HPRT mutation assay

Three days after transfection, HCT116 (MMR-deficient)
cells were trypsinized and reseeded into 10 cm dishes in
growth medium containing 5 �g/ml 6-thioguaine (6-TG)
(Sigma: A4882) at density of 4.5 × 105 cells/dish in tripli-
cate. In parallel, 300 cells were seeded into a six-well plate in
medium lacking 6-TG. After 10–12 days, cells were stained
and counted. Cells in six-well plates were used to mea-
sure the plating efficiency. The mutant frequency was cal-
culated as the ratio of the cloning efficiency with 6-TG to
the cloning efficiency without 6-TG. For HCT116+Chr3
(MMR-proficient), cells were transfected every three days
for 15 days, and then seeded into at least six 15 cm dishes
with 1.5 × 106 cells/dish containing 5 �g/ml 6-TG. In par-
allel, 400 cells were seeded into two wells of a six-well plate
in medium lacking 6-TG. The mutation frequency was cal-
culated as for HCT116 cells.

dNTP incorporation assay

MMR assay was performed as described, except H3-labeled
dATP and dTTP substituted for dATP and dTTP. At mul-
tiple time points, aliquots of the reaction were spotted
on DEAE Filtermat (Perkin Elmer 1450-522) and dried
thoroughly. Next, the DEAE Filtermat was washed 3× in
5% NaH2PO4 2× in MilliQ water, and dried overnight.
The next day, MeltiLex solid scintillator (Perkin Elmer
1450=441) was added to the Filtermat at 80◦C and it was
incubated at room temperature. The amount of H3 iso-
tope per spot was estimated by scintillation counting in a
MicroBeta2 Plate Counter (Perkin Elmer 2450-0010) for 5
min.

RESULTS

Pol� 3′-5′ proofreading activity affects MMR activity

Eukaryotic DNA Pol� consists of four subunits. Subunit A
(POLD1, p125) is the catalytic subunit, which has intrinsic
DNA polymerase and 3′-5′ exonuclease activities encoded
by three highly-conserved exonuclease motifs (19). Previ-
ous studies of yeast DNA Pol� indicate that alanine sub-
stitution mutations of D321 and E323 (D321A;E323A) in
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the catalytic subunit inactivates Pol� exonuclease but leaves
the DNA polymerase activity intact (48,49). Here, we con-
structed a plasmid to overexpress the equivalent mutant
of human Pol� subunit-A, Pol�D316A;E318A, and char-
acterized the mutant protein with particular focus on the
role of Pol� exonuclease in MMR (Supplementary Figure
S1). The mutant protein was overexpressed in cells carrying
the expression construct, as confirmed by the western blot
in Figure 1A. As expected, overexpression of the mutant
Pol� in cells expressing endogenous wild type Pol� resulted
in a dominant-negative phenotype, and the mutation fre-
quency increased when Pol�D316A;E318A was expressed
in MMR-deficient HCT116 cells (Figure 1B). Western blot
analysis indicated that overexpression of wild type or mu-
tant Pol� does not affect the expression of MSH2, MLH1
or PCNA (Figure 1A).

MMR assays were performed in vitro using nuclear ex-
tracts from cells overexpressing Pol�D316A;E318A (see
methods for details). The heteroduplex DNA substrate car-
ries a 2 nt indel mismatch (�2) and a nick 5′ or 3′ to the
mismatch, referred to as �2–5′ and �2–3′ heteroduplex
DNA substrates, respectively. These substrates were cho-
sen based on a previous study showing that nuclear ex-
tracts from EXO1-deficient murine ES cells have signifi-
cantly higher MMR activity on small indel mismatches than
on single-base mismatches (15). We observe that nuclear
extracts expressing mutant Pol�D316A;E318A had 2-fold
lower MMR activity than extracts from cells overexpressing
either Pol�D515V, wild type Pol� or transfected with empty
vector. Similar results were obtained with �2–5′ and �2–3′
heteroduplex DNA substrates (Figure 1C), and no signifi-
cant differences in MMR activity were detected between as-
says using extracts from cells overexpressing wild type Pol�
or extracts from HeLa cells carrying empty vector (Figure
1C).

We next wondered whether the lower MMR activity de-
tected in samples containing the Pol�D316A;E318A mutant
was due to cell cycle alterations. We analyzed cell cycle dis-
tribution by flow cytometry (50) and found no differences
between HeLa cells carrying empty vector and HeLa cells
overexpressing Pol�D316A;E318A or wildtype Pol� (Sup-
plementary Figure S2).

MMR activity was also investigated in HeLa cells over-
expressing Pol�D515V, a p125 variant for which the cor-
responding yeast mutant Pol�D520V is reported to be
exonuclease-deficient (51) (Supplementary Figure S1). In
vitro MMR assay using extracts from HeLa cells express-
ing human Pol�D515V mutant protein showed that MMR
activity was not significantly lower than control assays
with wild type Pol� (Figure 1C). This result suggests that
loss of Pol� exonuclease per se does not interfere with
MMR efficiency, but that a specific property of human
Pol�D316A;E318A plays a role in lowering MMR efficiency
during in vitro MMR. In this regard, it is worth noting that
yeast Pol�D321A;E323A displays stronger strand displace-
ment activity than yeast Pol�D520V, and it is reasonable to
propose that the same is true for the corresponding human
Pol� variants Pol�D316A;E318A and Pol�D515V (42).

The relative mutation frequencies at endogenous HPRT
was investigated in MMR-proficient HCT116+Chr3 cells
expressing Pol�D316A;E318A or Pol�D515V. The results

showed that HPRT mutation frequency was significantly
higher in cells expressing Pol�D316A;E318A than in cells
expressing wild type Pol� or Pol�D515V or in control
cells carrying empty vector (Figure 1D). In contrast, rel-
ative HPRT mutation frequency was significantly higher
than the control in MMR-deficient HCT116 cells ex-
pressing either Pol�D316A;E318A or Pol�D515V (Figure
1B). These results are consistent with the hypothesis that
Pol�D316A;E318A interacts with components of the MMR
pathway and may inhibit normal MMR in cells in which it
is overexpressed.

Mismatch-provoked excision is not affected by Pol�D316A;
E318A

We excluded from our analysis the first repair step, mis-
match recognition as it has been shown to be carried out
by the MutS heterodimers independently of the replica-
tive polymerase. We then analyzed in vitro the second step,
mismatch provoked excision using nuclear extracts ob-
tained from cells overexpressing either wild type Pol� or
Pol�D316A;E318A mutant. Mismatch-provoked DNA ex-
cision was quantified in nuclear extracts of cells overexpress-
ing wild type Pol� or Pol�D316A;E318A. The results of
this in vitro assay suggest that the excision step of in vitro
MMR is not negatively affected by the overexpression of
Pol�D316A;E318A (Figure 2A).

The single strand DNA (ssDNA) binding protein replica-
tion protein A (RPA) is required to complete MMR (9,52–
54). Phosphorylation of RPA by ssDNA-activated ATR is
essential in DNA damage or replication stress induced sig-
naling pathways (55,56). Furthermore, it has been shown
that RPA is phosphorylated gradually during MMR in vitro
and the phosphorylation is essential for the resynthesis step
(57). Here, phosphorylation of RPA at pS33 in combina-
tion with addition of aphidicolin and absence of dNTPs
was used as a measure for the extent of ssDNA tracts gener-
ated during MMR (Figure 2B). In MMR reactions lacking
dNTPs and including amphidicolin, the level of phosphory-
lated RPA32 was comparable between nuclear extracts con-
taining either wild type Pol� or Pol�D316A;E318A (Figure
2B). The LoVo extract was used as a control, showing no
increase of the phosphorylated RPA level after incubation
with MMR substrates (Figure 2B). These results suggest
that mismatch-provoked DNA excision is independent of
the integrity of the Pol� proofreading activity.

Depletion of EXO1 is not synergistic with Pol�D316A;
E318A in inhibiting in vitro MMR activity

It has been shown that depletion of yeast EXO1 (5′-3′ exo)
in 3′-5′ exonuclease-deficient yeast Pol� has a strong syn-
ergetic effect on the mutation rate in S. cerevisiae (23,45).
Furthermore, human EXO1 is the only known exonuclease
known to function in eukaryotic MMR to date. Therefore,
we tested whether depletion of human EXO1 is synergistic
with human Pol�D316A;E318A in the in vitro MMR assay.
No synergetic effect on MMR was detected (Figure 3C). It
was also confirmed that expression of MMR proteins and
cell cycle progression were not altered under any of the con-
ditions tested (Figure 3B and Supplementary Figure S1B).
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Figure 1. In vitro MMR. (A) HeLa nuclear extracts from cells carrying empty vector (vector), wild type Pol�, Pol�D316A;E318A or Pol�D515V were ana-
lyzed by western blot. Western blot data are presented for MSH2, MLH1 and PCNA. (B) Mutation frequency in HCT116 (MLH1-/-) cells overexpressing
Pol�D316A;E318A or Pol�D515V. (C) In vitro MMR assay using 2 nt indel heteroduplex DNA substrates �2–3′ or �2–5′ (see Materials and Methods).
(D) As in B except using chromosome 3 complemented HCT116 (HCT116+Chr3) cells. The data are the mean ± SD of three independent experiments.
*P< = 0.05; **P< = 0.01; ***P< = 0.005.
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The above results demonstrate that Pol�D316A;E318A has
an identical effect on in vitro MMR activity when the �2–3′
and the �2–5′ DNA substrates are used in the MMR assay.
Together, the results support the notion that the 3′-5′ ex-
onuclease of Pol� does not directly participate in MMR by
degrading error-containing DNA from 3′-5′ in human cells,
but that the roles of EXO1 and the 3′-5′ exonuclease of Pol�
in MMR may be partially redundant.

MMR defect in cells expressing Pol�D316A; E318A is com-
plemented by exogenous EXO1

As mentioned above, exonuclease-deficient yeast
Pol�D321A;E323A displays stronger strand displacement
activity than wild type yeast Pol� or exonuclease-deficient
yeast Pol�D520V (37,42). Noting that previous studies
suggest one MMR pathway that depends on strand dis-
placement activity of Pol� (17), we propose that, by analogy
to yeast Pol�D321A;E323A, human Pol�D316A;E318A
has more potent strand displacement activity than wild
type human Pol� and that this inhibits MMR by deregula-
tion of EXO1-dependent excision pathway in human cells.
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Figure 4. EXO1 complements MMR defect in nuclear extracts expressing
Pol�D316A;E318A. The in vitro MMR assay was performed as described
in Materials and Methods and the nuclear extracts were the same as used
in Figure 1. Purified human EXO1 (2.5 nM) was added to the reaction as
indicated. The �2–3′ heteroduplex was used in the MMR assays. The data
represent the mean ± SD of three independent experiments. *P ≤ 0.05;
**P ≤ 0.01.

This hypothesis was tested by performing MMR assays as
described above in the presence or absence of exogenous
purified human EXO1. The results show that exogenous
EXO1 complements the MMR defect associated with
overexpression of Pol�D316A;E318A (Figure 4). A control
experiment showed no effect on MMR when EXO1 was
added to MMR-deficient extracts of LoVo (MSH2−/−)
cells (Figure 4). Our results also show that addition of
EXO1 to extracts expressing Pol�D515V did not rescue
the modest MMR defect (data not shown). Based on these
results, we propose that DNA strand displacement by
Pol�D316A;E318A reduces access of EXO1 to nicks 5′
to the mismatch, thereby inhibiting mismatch-provoked
DNA excision by EXO1. In this context, exogenous EXO1
increases the ability of EXO1 to compete for access to
nicks in the non-template DNA strand, and restores the
normal balance between DNA excision and DNA strand
displacement during MMR.

Pol�D316A; E318A can induce aberrant dNTP incorpora-
tion during MMR in vitro

We suggested above that Pol�D316A;E318A may disturb
the EXO1-dependent excision pathway by the enhanced
strand displacement activity of the polymerase. Therefore, it
is also possible that Pol�D316A;E318A could alter the na-
ture of dNTP incorporation during MMR. The following
experiment tests whether Pol�D316A;E318A influences the
fidelity of DNA replication at the dNTP incorporation step
during the DNA resynthesis step of MMR. To investigate
this, in vitro MMR assays were performed in the presence of
3H-labeled dATP and dTTP and incorporation of 3H was
quantified at several time points during the assay (see Ma-
terials and Methods). Surprisingly, although the extracts

with Pol�D316A;E318A has decreased MMR activity (Fig-
ure 1C), dNTP incorporation was higher than in extracts
from cells overexpressing wild type Pol�. As expected, negli-
gible dNTP incorporation was detected in extracts prepared
from MMR-deficient LoVo cells (Figure 5A). Furthermore,
in MMR assays performed with extracts from cells express-
ing Pol�D515V, which does not show significantly decreased
MMR activity (Figure 1B), dNTP incorporation was also
higher than in control assays, but not as high as in ex-
tracts from cells overexpressing Pol�D316A;E318A at the
60 min time point (Figure 5A). Interestingly, when exoge-
nous EXO1 was added to the assay, 3H incorporation by
Pol�D316A;E318A at 60 min decreased (Figure 5B). This
result suggests that increased strand displacement correlates
with increased dNTP incorporation during MMR and both
are counteracted/decreased by exogenous EXO1.

Cells overexpressing Pol�D316A;E318A are sensitive to SN1
DNA methylating agent MNNG

MNNG is an SN1 DNA methylating agent that adds an
O6-methyl group to deoxyguanine in DNA. The methyl
group of O6MeG is subject to direct repair (i.e. removal of
the O6-methyl group from O6-methylguanine) by methyl-
guanine methyl transferase (MGMT) (58). If O6MeG is
not repaired it can cause O6meG:T/C mismatches that are
recognized by MMR. However, because MMR is strand-
specific, the MMR machinery is trapped in a futile cy-
cle when it tries to repair O6MeG residues on the tem-
plate strand, leading to persistent gaps/nicks that ultimately
are converted to potentially lethal double stranded breaks
(DSBs) (59,60). An alternative model suggests that DNA
damage response factors are recruited to the O6meG:T/C
mismatches and directly signal the downstream checkpoint
factors (61). Both models involve MMR activity (62,63).
Another consequence of the futile cycle induced by unre-
paired O6 –methylguanine residues is that MMR-deficient
cells are more resistant to killing by MNNG than MMR-
proficient cells.

Here, cells overexpressing Pol�D316A;E318A or wild
type Pol� were exposed to MNNG, and the response was
compared using a clonogenic survival assay. The results
show comparable susceptibility to killing by MNNG in cells
expressing Pol�D316A;E318A or wild type Pol� (Figure
6A), indicating that Pol�D316A;E318A does not affect the
formation of the nicks on the DNA strand by MMR ma-
chinery after MNNG treatment. The same result was ob-
tained after depletion of EXO1 (siLUC) (Figure 6B). This
is in contrast to previous reports, which showed that EXO1-
depleted or knockout EXO1 MEF cells were more resis-
tant to MNNG than control cells (60,64); but, the result
obtained here is similar to results in S. pombe (65). The
discrepancy may reflect use of two different assays: clono-
genic survival assay (longer in duration) and cell viability
in culture (shorter in duration) or another difference in the
cells used in the two studies. Interestingly, overexpression
of Pol�D316A;E318A in EXO1-depleted cells slightly in-
creased resistance to MNNG, with statistically significant
increase observed at 60, 80 and 100 nM MNNG (Figure
6B).
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It has also been reported that MNNG induced MMR-
dependent G2 arrest is delayed, and is observed in the sec-
ond G2 after exposure to MNNG (66–68). A similar ef-
fect was observed here after first cell cycle, in that cell
survival rate was similar after exposure of cells expressing
Pol�D316A;E318A or wild type Pol� (Figure 6C). Further-
more, murine EXO1-depleted cells were slightly resistant
to MNNG-induced G2 arrest (60). Interestingly, overex-
pression of Pol�D316A;E318A in EXO1-depleted cells de-
creased MNNG induced G2 arrest (Figure 6D). These re-
sults are in agreement with the results of clonogenic sur-
vival assay described above and support the hypothesis that
Pol�D316A;E318A and depletion of EXO1 synergistically
increase resistance to MNNG-induced G2 arrest, although
Pol�D316A;E318A alone does not increase resistance to
MNNG.

DISCUSSION

Here, we report that overexpression of 3′-5′ exonuclease-
deficient human Pol�D316A;E318A, which is equivalent to
yeast Pol�D312A;E323A (69), leads to decreased MMR ac-
tivity in vitro and an elevated mutation frequency in chro-
mosome 3-complemented HCT116 MMR-proficient cells.
These results demonstrate an intriguing interaction between
the 3′-5′ exonuclease of Pol� and the MMR pathway in hu-
man cells.

In eukaryotic cells, DNA polymerases ε (Polε) and �
are the primary replicative polymerases on the leading
and lagging DNA strands, respectively. In mice, defects in
the 3′-exonuclease of Polε or Pol� increase mutation fre-
quency as much as tenfold (70). In this study, overexpression

of Pol�D316A;E318A or Pol�D515V in HCT116 MMR-
deficient cells also increases mutation rate, which demon-
strates a dominant-negative effect on endogenous wild type
Pol�. Dominant-negative effects have also been observed
when defective alleles of human Polε or Pol� were over-
expressed in cells carrying the corresponding wild type
replicative DNA polymerase (71,72).

Although Pol� or Polε are both involved in genome
replication, the mutation spectra of proofreading-deficient
Pol� and Polε are distinct. Firstly, mutation rate in
Pol� exonuclease-deficient yeast strains is higher than
Polε exonuclease-deficient strains (73,74). Secondly,
proofreading-deficient Polε and Pol� mice exhibit mostly
distinct, but overlapping tissue specific tumor phenotypes.
For instance, nodal lymphomas and histiocytic sarcomas
are prevalent in Polε mutant mice, while thymic lymphomas
and skin papillomas/sarcomas are frequent in Pol� mutant
mice. Furthermore, the mutation rate in Pol� mutant mice
is higher than in Polε mutant mice, with more frameshift
mutations and microsatellite instability (MSI) resembling
that of MMR-deficiency (75,76). These results suggest that
the proofreading activity of Pol� possesses unique and
more prominent function in genome stability maintenance
than Polε. Although this difference between Polε and Pol�
can be explained by the involvement of Pol� in Okazaki
fragment maturation, we decided to investigate if the
proofreading activity of Pol� is also involved in MMR.

Previously, it was reported that in yeast, proofreading-
deficiency of Pol� but not Polε increases mutation rate of
d(CA)n repeat sequences 5–10-fold, though not as severely
as the increase in mutation rate caused by deletion of
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Figure 6. Effect of Pol�D316A;E318A on susceptibility to killing by MNNG. (A and B) HeLa cells were transfected and seeded as described in Mate-
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MSH2 (48). In addition, specific germline mutations in
the exonuclease domains of both Polε and Pol� have been
recently suggested to be involved in the development of
colorectal adenomas and colorectal cancer (CRC), which
is the predominant cancer type in MMR-deficient pa-
tients (26–28,77). It was also shown that CRCs caused
by proofreading-deficient Polε are MSI-negative, while the
Pol� proofreading-deficient sporadic CRCs were reported
MSI-positive (26,77,78). These results suggest that cells car-
rying a 3′-exonuclease-deficient allele of Pol� and cells car-
rying defects in MMR share characteristics at the cellular
level (24). It has been suggested that proofreading activity
of Pol� is involved in regulating MMR activity in mice (24).
These data strongly suggest a role for the proofreading ac-
tivity of Pol� in MMR.

The 3′- exonuclease activity of Pol� can act in trans on
DNA mismatches introduced by Pol�, indicating that 3′- ex-
onuclease of Pol� can correct the errors in the DNA strand
independently from its polymerase activity (38). Together
with the existence of an EXO1-independent MMR path-
way, we initially proposed that apart from resynthesizing
the new DNA strand in MMR, Pol� may also take part
in MMR by degrading the mismatch in the 3′-5′ direction,
when it carries a functional 3′-exonuclease activity. How-
ever, this hypothesis is not consistent with the observa-
tion that excess Pol�D316A;E318A inhibits in vitro MMR
to a similar extent on 5′-nicked and 3′-nicked heterodu-
plex DNA substrates (Figure 1). Interestingly, we show that
EXO1 depletion only partly decreases MMR activity in cells
expressing mutant Pol� suggesting that EXO1 and Pol� par-
ticipate in the same pathway.

In addition, mismatch induced excision capacity was not
altered in vitro in assays with using nuclear extracts from
cells overexpressing Pol�D316A;E318A. Based on the idea
that strand displacement activity of Pol� is negatively reg-
ulated by its 3′ -exonuclease (37), which implies that the
strand displacement activity of Pol�D316A;E318A is likely
to be upregulated, we hypothesized that Pol�D316A;E318A
competes with and/or inhibits EXO1-mediated DNA ex-
cision during MMR in vitro. This could reflect steric
hindrance at the nick due to long Pol�D316A;E318A-
generated 5′-flap structures (Figure 7). Consistent with
this idea, addition of exogenous purified EXO1 to the
Pol�D316A;E318A nuclear extracts complemented the in
vitro MMR defect. This suggests that an increase in
the level of EXO1 restored a balance between EXO1-
dependent excision of mismatches and Pol�-dependent
DNA strand displacement upstream of the DNA mis-
match, either through direct EXO1-dependent inhibition
of Pol�D316A;E318A-catalyzed DNA strand displacement
or by EXO1-dependent removal of 5´-flaps generated by
Pol�D316A;E318A (79).

Previous studies provide evidence that there are subtle
differences in MMR on the leading and lagging strands of
the DNA replication fork. Kunkel and colleagues showed
that the MMR efficiency is higher for errors generated
by DNA Pol� than for errors generated by DNA Polε or
Pol� (80–82). This conclusion is supported by evidence that
EXO1 preferentially excises mismatches generated by Pol�
(83) and that MMR preferentially repairs 8-oxo-G•dA on
the lagging strand (84). One explanation of these findings is

that the discontinuous nature of lagging strand replication
increases accessibility of MMR enzymes and EXO1 to the
nascent DNA. Therefore, MMR on the leading strand may
be strictly-dependent on the latent endonuclease activity of
MutL� and/or MMR that initiates at MutL�-generated
nicks may be inherently less efficient than MMR initiating
at the 5′ end of an Okazaki fragment, and this could be at
least in part because of interference from 5′-flaps generated
by Pol� –dependent strand displacement activity.

We propose a model (Figure 7) where Pol� is loaded by
PCNA at a pre-existing nick and Pol� inserts 1–2 nt gener-
ating a short 5´-flap. In this scenario, the strand displace-
ment activity is limited by the regulatory effect of Pol�
3′-5′ exonuclease. After EXO1 entry and excision down-
stream of the nick, the polymerase activity of Pol� is fur-
ther restricted by binding of unphosphorylated RPA (57).
When Pol� lacks 3′-exonuclease, strand displacement activ-
ity generates longer 5′-flaps, which are substrates of FEN1
or DNA2, but not EXO1. The consequences are that EXO1
fails to play the role of MMR excision nuclease, and the ef-
ficiency of MMR decreases significantly. This model is sup-
ported by the demonstration that dNTP incorporation in-
creases during in vitro MMR even when MMR efficiency
decreases (Figure 5).

An alternative explanation could be based on our data
presented in Figure 1D, which show that overexpression of
PolD D316A;E318A, but not PolD D515V, increases muta-
tion frequency in MMR-proficient cells. One interpretation
is that PolD D316A;E318A is error-prone and that PolD
D515V is error-free. This interpretation is supported by the
results in Figure 5 showing that both PolD mutants have in-
creased strand displacement as well as increased nucleotide
incorporations.

The yeast homologs of human Pol�D321A;E323A and
Pol�D520V are defective in 3-exonuclease activity (51). In-
terestingly, the impact of human Pol�D515V on in vitro
MMR appears to be considerably weaker than the impact of
Pol�D316A;E318A. In particular, MMR activity is not de-
creased and the dNTP incorporation during MMR in pres-
ence of Pol�D515V is less than for Pol�D316A;E318A, and
Pol�D515V does not increase mutation frequency in MMR-
proficient cells. These results suggest that the nature of the
defect in Pol� 3-exonuclease differs in these two Pol� vari-
ants. Previous studies also show that yeast Pol�D520V has a
weaker mutator phenotype than Pol�D321A;E323A with or
without a secondary mutation in RAD27 (51). More impor-
tantly, in vitro assays showed that the strand displacement
activity of Pol�D520V is weaker than the strand displace-
ment activity of Pol�D321A;E323A (42). These data impli-
cate the existence of a threshold of the proofreading ability
or the strand displacement ability of Pol�, which determines
whether certain mutation affecting Pol� proofreading activ-
ity is able to influence the MMR pathway.

In summary, the present study supports the hypoth-
esis that the mismatches in a DNA heteroduplex are
removed/replaced during in vitro MMR either by EXO1-
dependent DNA excision (followed DNA resynthesis in a
second step) or in a single step by Pol� strand displace-
ment (Figure 7). Our results suggest that a balance between
excision by EXO1 and Pol� strand displacement is main-
tained during normal MMR that favors DNA excision by
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EXO1, and that this balance requires a functional Pol� 3′-
exonuclease.
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