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Abstract

Rationale—Neutrophilic airway inflammation plays a role in early structural lung disease in 

cystic fibrosis (CF), but the mechanisms underlying this pathway are incompletely understood.

Methods—Metabolites associated with neutrophilic inflammation were identified by discovery 

metabolomics on bronchoalveolar lavage fluid (BALF) supernatant from 20 preschool children 

(2.9±1.3 years) with CF. Targeted MS detection of relevant metabolites was then applied to 34 

children (3.5±1.5 years) enrolled in AREST CF who underwent chest CT and BAL from two 

separate lobes during 42 visits. Relationships between metabolites and localized structural lung 

disease were assessed using multivariate analyses.

Results—Discovery metabolomics identified 93 metabolites associated with neutrophilic 

inflammation, including pathways involved in metabolism of adenyl purines, amino acids and 

small peptides, cellular energy, and lipids. In targeted MS, products of adenosine metabolism, 

protein catabolism, and oxidative stress were associated with structural lung disease and predicted 

future bronchiectasis, and activities of enzymes associated with adenosine metabolism were 

elevated in the samples with early disease.

Conclusions—Metabolomics analyses revealed metabolites and pathways altered with 

neutrophilic inflammation and destructive lung disease. These pathways can serve as biomarkers 

and potential therapeutic targets for early CF lung disease.
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Introduction

Although lungs from children with cystic fibrosis (CF) appear anatomically normal at birth 

[1], progressive airways disease can begin very early in life [2, 3]. Markers associated with 

neutrophilic inflammation, including IL-8 and neutrophil elastase, are correlated with the 

extent and progression of lung disease as quantified by CT [4], and the presence of 

detectable neutrophil elastase in airways of infants is predictive of later bronchiectasis [5]. 

These findings strongly suggest that neutrophilic inflammation plays a role in early disease, 

but the pathophysiological events involved in disease initiation and progression remain ill-

defined. Identifying these events is complicated by variable and heterogeneous nature of 

early CF lung disease that typically involves only a relatively small fraction of the lung [6].

The airway processes involved in early CF lung disease alter cell trafficking and metabolism, 

including airway surface metabolic pathways and accumulation of inflammatory cells within 

airway lumens that generate biologically active molecules [7–9]. This scenario suggests that 

metabolomics approaches, which attempt to characterize the full range of metabolites within 

biologic samples, can elucidate the pathophysiologic changes related to inflammation and 

structural disease. Indeed, previous metabolomics studies of airway secretions have 

demonstrated that neutrophilic airway inflammation in CF patients with established disease 

is characterized by increased concentrations of metabolites from several pathways, including 

those involved in cellular energy [10], protein catabolism [10, 11], adenyl purine metabolism 

[11], and lipid signaling molecules [12]. However, the relevance of these pathways to early 

disease has not been evaluated.

We hypothesized that metabolomics studies on airway secretions from young children with 

CF would identify the metabolic pathways associated with neutrophilic airway 

inflammation, and that these pathways would be predictive of early structural lung disease. 

To test these hypotheses, we performed mass spectrometric (MS) metabolomics on 

supernatants of bronchoalveolar lavage fluid (BALF) obtained during clinically indicated 

bronchoscopy in preschool children with CF to identify pathways associated with 

neutrophilic inflammation. We then studied relationships between identified metabolic 

pathways and early localized structural disease in a separate cohort of preschool children 

enrolled in AREST CF who underwent chest CT and lavage at a time of clinical stability. To 

address disease heterogeneity, BAL samples were obtained from two separate lobes and 

analyzed using statistical modeling to examine relationships between BALF metabolite 

concentrations and both current and future lobe specific CT scores.
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Methods

Subjects and samples

For discovery metabolomics, BALF from 20 preschool children with CF was collected 

during clinically indicated bronchoscopy at the University of North Carolina at Chapel Hill 

(UNC-CH) via standardized protocols [9] using one to three 10 cc/kg aliquots of sterile 

saline lavaged into the most visually affected lobe on each side. Return from both sides was 

combined and averaged 44±15% of lavaged volume. BALF aliquots were centrifuged at 

11,000×g for 5 minutes, and the supernatant stored at −80°C. Clinical data were abstracted 

from medical and research records. All children were fasted for >6 hours at the time of 

collection.

For comparison to structural lung disease, chest CT and BAL were performed on 34 children 

enrolled in AREST CF as described [2, 6] during 42 study visits (8 subjects were studied 

during 2 annual study visits). For BAL, the right middle lobe and the lingula were lavaged 

and the first aliquot from each side was processed separately, yielding two BAL aliquots per 

subject visit. BAL samples were centrifuged to remove cellular debris, and supernatants 

frozen at −80°C and shipped to UNC-CH on dry ice.

From the chest CT, each lung lobe was assessed for lobe specific bronchial wall thickening 

(BWT) and bronchiectasis (BE) using the modified CF-CT scoring system [2, 13] as well as 

PRAGMA-CF [14] to give continuous, lobe specific structural lung disease scores. Twenty 

nine CT images obtained from individual children one year following the BALF samples 

were also assessed to determine the predictive value of identified biomarkers.

Studies were approved by the UNC IRB (IRB#s 07-0787, 12-1538) and the Princess 

Margaret Hospital for Children, Perth and Royal Children’s Hospital, Melbourne, Ethics 

Committees (registration number 1762/EP)

MS Metabolomics

Metabolomic profiling was performed by Metabolon, Inc (Durham, NC). as previously 

described [15] using three independent platforms (ultra-high-performance liquid 

chromatography/tandem mass spectrometry for acidic and basic metabolites as well as gas 

chromatography/mass spectrometry). Metabolites were identified by automated comparison 

of ion features to a reference library. Values below limits of detection were imputed from the 

minimum detectable value. The average time between sample collection and analysis was 

290 days, with a range of 110–483 days.

Targeted MS

Targeted MS utilized a Quantum-Ultra triple quadrupole mass spectrometer (Thermo-

Finnigan, San Jose, CA) with chromatographic conditions similar to those previously 

described (UPLC T3 HSS C18 column, methanol/formic acid gradients [16]). BALF 

samples were spiked with isotopically labeled internal standard [17] and filtered through a 

10kDa size selection filter (EMD Millipore, Billerica, MA). Biomarker signals were defined 
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as ratios to the internal standard with the closest column run time. The average time between 

sample collection and analysis was 268 days, with a range of 39–473 days.

Adenosine metabolism—Adenosine metabolism in BALF was assessed by measuring 

hypoxanthine generated after incubating 5 µL BALF supernatant with 200 µM adenosine in 

50 µL Tris pH 7.5 at 37°C for one hour. Resulting hypoxanthine was assessed using a 

reaction mix containing Amplex red, horseradish peroxidase, and xanthine oxidase from the 

Xanthine Oxidase Fluorometric Assay Kit (Cayman Chemicals, Ann Arbor, MI). Signal was 

measured on a fluorometric plate reader with excitation 530 nM/absorbance 570 nM.

Statistical Analysis

MS signals from metabolomic data were analyzed using linear regression as well as 

Student’s T-test, with the false-discovery rate q-value used to correct for multiple 

comparisons. MS data were not normally distributed (by D’Agostino and Pearson omnibus 

normality test) and were log transformed prior to analysis. Categorical comparisons for 

demographic balance in discovery vs. validation samples were made using Fisher’s exact 

test. CF-CT scores were analyzed as binary outcomes of no disease (no BWT or BE) vs. 

disease (BWT or BE present). General estimating equations models (GEE) were fitted for 

each metabolite with Binomial family, logit link, robust standard errors and were adjusted 

for sex and batch/lung lobe interactions where appropriate. PRAGMA continuous CT 

outcomes (% Disease and % Bronchiectasis) were analyzed using hierarchical mixed effects 

models with random intercepts for each participant and random intercepts and slopes for 

each batch (as a function of metabolite), adjusted for sex. Predictive ability of metabolites 

was investigated by hierarchical mixed effects models described above and by plotting 

Receiver Operating Curves (ROCs) for presence of bronchiectasis at 12 months CT follow 

up. Area under the curves (AUCs) estimates and 95% confidence intervals were calculated 

using ROC regression adjusted for the lung lobe (right middle lobe or lingual) and 

PRAGMA % Bronchiectasis at baseline. Statistical analyses were performed using 

GraphPad Prism v5.0 (San Diego, CA) and Stata (version 13.0; StataCorp, College Station, 

TX, USA). Tukey boxplots are used for error bars and outliers.

Results

Discovery metabolomics was performed on BALF supernatants from 20 preschool children 

with CF undergoing clinically indicated bronchoscopy (Table 1). Persistent cough was the 

indication for most subjects (14/20), with evaluation of new Pseudomonas infection (3/20) 

or surveillance in conjunction with another procedure (3/20) less common indications. 

Respiratory pathogens were recovered from culture in 60% of samples, with Staphylococcus 
aureus and Pseudomonas aeruginosa most commonly identified (Table 1). Samples for 

metabolomics were chosen to reflect a range of airway inflammation, with 6 samples having 

neutrophilic bronchitis (% neutrophils ≥60%, >50,000 pathogens/mL on culture), 9 having 

no or mild bronchitis (% neutrophils <40%, ≤10,000 pathogens/mL on culture), and 5 

samples with intermediate values. A total of 152 metabolites were detected in at least one 

sample. Samples with greater airway neutrophilia had more overall MS signal, particularly 

those with % neutrophils >60% (Figure 1).
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Metabolites associated with neutrophilic inflammation were defined as those correlated with 

percent neutrophils at r>0.5 or that had >2-fold increases in signal in samples with 

bronchitis vs. those with no or mild bronchitis at a false discovery rate <0.05. This included 

93 metabolites that fell into four broad metabolic pathways (Table 2 and Supplemental Table 

1):

Adenyl purines and related metabolites

AMP was 4.7-fold elevated in airways with bronchitis (Table 2), but adenosine was reduced 

in bronchitic airways—the only metabolite in discovery metabolomics significantly 

decreased in the presence of bronchitis. In addition, the adenosine metabolites hypoxanthine 

and xanthine were 4.8 and 15.1 fold increased in BALF from bronchitic airways, 

respectively. The purine containing compound nicotinamide adenine dinucleotide (NAD) 

was also elevated in bronchitis, as were free nicotinamide and kynurenine, a tryptophan 

metabolite that serves as an intermediate in NAD synthesis.

Amino acids, small peptides, and related pathways

A large number of amino acids, dipeptides, and tripeptides were highly elevated (>10-fold) 

in airways with bronchitis, with correlation coefficients to % neutrophils often exceeding 0.7 

(Table 2). Similarly, bronchitic airways had higher concentrations of several metabolic 

products of amino acids, including N-acetylated derivatives of methionine, serine, and 

lysine. Higher concentrations oxidative products of the antioxidant peptide glutathione, 

including glutathione disulfide (GSSG) (2.5 fold increased) and cysteine-glutathione 

disulfide (9.0 fold increased), were also observed.

Arginine related signaling pathways were also implicated in the metabolomics analysis. 

Arginine, citrulline, and fumarate are involved in generating the signaling molecule nitric 

oxide [18], and all of these metabolites were elevated in bronchitic samples. Arginine can 

also be metabolized to ornithine, the initial substrate in synthesis of polyamines [19]. Both 

ornithine and the polyamine putrescine were elevated in bronchitis, as was free adenine 

generated primarily within the polyamine synthesis pathway [20].

Cellular energy metabolism

Several metabolites directly related to energy metabolism were found at higher 

concentrations in samples from bronchitic airways, including glycolytic and Kreb’s cycle 

metabolites (glucose, citrate, malate). Lactate was 4.1 fold increased, suggestive of 

anaerobic metabolism. Metabolites involved in fatty acid oxidation, including carnitine and 

acylcarnitine, were also elevated. Metabolomics also revealed elevated concentrations of 1,5-

anhydroglucitol in bronchitis, a compound that regulates glycemic control and has anti-

inflammatory properties [21].

Lipids

Several lipid metabolites were elevated in the presence of bronchitis, including both 

common cell membrane lipids (phosphoethanolamine, cholesterol) and those involved in 

signaling pathways (arachidonate, myo-inositol). Several lysolipids were also elevated in 

bronchitis.
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Metabolomic biomarkers and early structural lung disease

To determine relationships to early structural lung disease, we developed targeted MS 

methods for a subset of 28 metabolomic biomarkers amenable to MS detection using 

previously established methods [11, 16] including amino acids, dipeptides, adenyl purines, 

nicotinamide, polyamines, glutathione and glutathione disulfide (oxidized glutathione), as 

well as urea as a potential dilution marker (Supplemental Table 1). This biomarker panel was 

then applied to a validation set of samples from 34 preschool children enrolled in AREST 

CF during 42 study visits (8 longitudinally sampled subjects). In contrast to the subjects in 

the discovery set, bronchoscopy and chest CT in AREST CF are performed at a time of 

clinical stability, as evidenced by lower neutrophil counts and fewer recovered pathogens 

compared to our discovery dataset (Table 1). Heterogeneity of early CF lung disease was 

addressed by obtaining BALF independently from two separate lobes (right middle lobe and 

lingua) at each study visit and using lobe specific chest CT scores for analysis.

Metabolomic biomarkers and inflammatory markers

Conventional inflammatory markers including cell counts and IL-8 were measured in 

samples from the right middle lobe in all subjects (n=42). Analyses revealed significant 

negative associations (coefficients [95% confidence interval]) between BAL neutrophil 

counts (% of total cell count) and adenosine (−0.376 [−0.569, −0.184]) and glutathione 

(−0.285 [−0.419, −0.150]). Significant positive associations were found between neutrophils 

and inosine (0.220 [0.042, 0.399]) and ornithine (0.017 [0.008, 0.025]). For IL-8, a 

significant negative association was found to glutathione (−0.137 [−0.266, −0.007]), with 

significant positive associations to inosine (0.365 [0.227, 0.503]), leucine (0.071 [0.004, 

0.139]), ornithine (0.012 [0.004, 0.020]) and spermidine (0.010 [0.005, 0.016]). No 

significant associations were observed between any metabolomic biomarker and neutrophil 

elastase, though these analyses were limited by the fact that neutrophil elastase was detected 

in only 5 of 42 samples.

Metabolomic biomarkers and structural lung disease

Statistical modeling was utilized to assess relationships between various metabolites and 

lobe specific structural lung disease using both dichotomous variables (presence/absence of 

disease) and the PRAGMA continuous scoring system. Lobes with structural lung disease 

(bronchial wall thickening [BWT] as a marker of early disease or bronchiectasis [BE] as a 

marker of later disease) had lower concentrations of adenosine; odds ratio (OR = 0.32, 

p<0.001, Figure 2, Table 3) than samples from lobes without BWT or BE. Trends towards 

increases in the downstream adenosine metabolites hypoxanthine (OR = 2.32, p=0.203) and 

xanthine (OR = 2.30, p=0.197) were also observed. Glutathione was significantly reduced in 

lobes with structural disease (OR = 0.40, p<0.01), as was oxidized glutathione (OR = 0.16, 

p<0.01). Associations between amino acids and structural lung disease were not statistically 

significant, but the Leu-Pro dipeptide was strongly elevated in lobes with structural lung 

disease (OR>100, p<0.001).

Using lobe specific PRAGMA disease scores, we observed negative correlations for both 

adenosine (β = −0.74, p=0.014) and glutathione (β = −0.82, p=0.008) (Table 3). In contrast, 

positive correlations were observed for the adenosine metabolites hypoxanthine (β = 0.93, 
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p=0.003) and xanthine (β = 1.46, p<0.001) as well as the amino acids phenylalanine, 

tyrosine, and the Leu-Pro dipeptide (β = 2.14, 2.13, 2.16 respectively, p<0.001 for all). 

Similar findings were observed for bronchiectasis specific PRAGMA scores (Table 3).

Predictive power of metabolomic biomarkers

Hierarchical mixed effects models and ROCs were utilized to assess the ability of 

metabolites to predict development of new bronchiectasis at the next annual visit, using data 

available in 29 children. Metabolites predictive of future bronchiectasis included 

hypoxanthine (β1 = 0.19 [0.06, 0.31]; p=0.003), phenylalanine (β1 = 0.27 [0.11, 0.43]) and 

Leu-Pro (β1 = 0.17 [0.01, 0.33]). Each of these metabolites was a better predictor of 

bronchiectasis than neutrophil elastase (β1 = 0.08 [0.00, 0.16]), a known biomarker of early 

CF lung disease (Figure 3) [5].

Early structural lung disease and adenosine metabolism

These analyses suggested an association between early lung disease and activity of the 

adenosine metabolic pathway, in which adenosine is converted to uric acid through the 

actions of adenosine deaminase, purine nucleotide phosphorylases, and xanthine oxidase. To 

assess these activities directly, we measured adenosine metabolism in BALF supernatants. 

BALF samples from children with significant bronchitis, but not those without bronchitis, 

metabolized adenosine to hypoxanthine (Figure 4), indicating elevated activities of 

adenosine deaminase and purine phosphorylase. AREST CF samples from lobes with 

bronchiectasis also had significant adenosine metabolic activity. Xanthine oxidase activity in 

these samples was not detected (not shown).

Discussion

Using metabolomics, we identified several metabolites and metabolic pathways altered in 

the presence of neutrophilic airway inflammation in young children with CF, including those 

involving adenyl purines, amino acids and peptides, cellular energy, and lipids. Several of 

these pathways, including those related to adenosine metabolism, oxidative stress, and 

protein catabolism, were strongly associated with structural lung disease. Although many of 

these pathways are also altered in older children [10, 11], this study demonstrates that these 

metabolic changes occur early in the disease process before the onset of permanent 

structural lung damage. These pathways represent potential therapeutic targets, and the 

relevant metabolites are biomarkers of patients at risk for developing bronchiectasis.

The adenosine metabolic pathway in particular appears altered early and predictive of future 

disease. Adenosine plays an important and complex role in modulating signaling responses 

to inflammation [22], with both pro and anti-inflammatory properties, though normal airway 

adenosine concentrations are thought to be anti-inflammatory [22, 23]. The decreased 

adenosine and elevated adenosine metabolic activity likely increase airway inflammatory 

responses, and the metabolic products hypoxanthine and xanthine contribute to oxidative 

stress through metabolism by xanthine oxidase, which generates oxygen superoxides [24, 

25].
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Increased oxidative stress in early disease is consistent with the observed reduction in 

glutathione, the primary antioxidant in the airway [26]. Decreased lower airway glutathione 

concentrations have been observed in preschool children with CF [27], although our study is 

the first to demonstrate a relationship to structural lung disease. Our ability to detect these 

relationships likely reflects our use of lobe specific lavages and CT scores to account for 

disease heterogeneity. Somewhat surprisingly, the concentrations of oxidized glutathione 

were also reduced in the AREST CF samples, though we suspect this may reflect an 

inability to preserve the oxidative state on storage and transport of these samples.

These findings suggest that drugs that affect the adenosine metabolism are potential 

therapeutic targets in CF. Such drugs could represent “low hanging fruit,” since several 

relevant pharmaceuticals are approved or in late stage clinical trials. For example, inhibitors 

of purine nucleoside phosphorylase that block hypoxanthine formation [28] are in clinical 

trials for gout. Also, the xanthine oxidase inhibitor febuxostat was recently approved for 

gout [29] but has also been shown to reduce airway inflammation in an animal model of 

acute lung injury [30]. Although we did not detect xanthine oxidase activity in BALF 

supernatant, the high concentrations of xanthine and uric acid (metabolic products of 

xanthine oxidase) in the airway samples indicate that this enzyme is active in vivo, likely 

restricted to the airway epithelial cell surface. Indeed, our adenosine metabolism studies may 

underestimate total activity since we could only assess soluble activities and not the 

contribution from enzymes found on airway surfaces.

The strong associations between amino acids and dipeptides with early disease are 

consistent with increased activity of proteases such as neutrophil elastase. These findings are 

supportive of previous studies identifying airway proteases as potential therapeutic targets in 

early CF lung disease [5]. Notably, the Leu-Pro dipeptide was more readily detected and 

more predictive than neutrophil elastase, suggesting that it and similar metabolomics 

biomarkers may be more sensitive indicators of protease activity.

Discovery metabolomics suggested that several arginine related signaling pathways are 

upregulated in the presence of airways inflammation. Increased concentrations of ornithine 

imply greater arginase activity in inflamed airways and are consistent with previously 

reported increases in CF sputum polyamines [19]. Since urea is another product of arginase 

activity, this relationship could impact the utility of urea as an airway dilution marker. 

Increased concentrations of citrulline and fumarate were also observed, suggesting greater 

flux through the nitric oxide (NO) synthesis pathway. However, exhaled NO is reportedly 

low in CF [31]. The reasons for this discrepancy are not clear.

In fact, several metabolites identified in our study have potential as biomarkers of early lung 

disease. Many of these metabolites are detectable by conventional methods and could 

potentially serve as indicators of at risk children that are more sensitive than the current gold 

standard of neutrophil elastase [5]. In addition, some of the metabolic signatures observed in 

BALF are detectable in exhaled breath condensate (EBC) from young children [32, 33], 

offering the potential to develop a relatively non-invasive technique to identify children with 

early structural lung disease.
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There were several limitations that could affect our findings. All subjects were fasting at the 

time of bronchoscopy, and it is possible that metabolic patterns would differ in non-fasting 

individuals. We also did not assess the impact of treatment beyond an indirect effect of 

altering airway inflammation. Similarly, we were not able to determine the direct 

contribution of bacterial pathogens to the metabolomic signal. However, given the 

complexity of the CF airway microbiome [34], assessing the relative contributions of host 

vs. bacterial pathogens poses considerable challenges.

Another limitation is that we utilized percent neutrophils to define airway inflammation in 

our discovery metabolomic analysis. While airway neutrophils are a well-accepted marker of 

inflammation [8], this approach does have some shortcomings since increases in other cell 

counts (such as lymphocytes during an acute viral infection) or sampling issues could alter 

the relationship between percent neutrophils and airway inflammation. Similarly, neutrophil 

counts alone may not perfectly reflect their activity or propensity to cause airway damage. 

Nevertheless, we did observe associations between many of the metabolites and metabolic 

pathways identified by discovery metabolomics and other inflammatory markers as well as 

structural lung disease. These associations raise our confidence that our findings reflect early 

CF airways disease pathophysiology.

This study focused on metabolites amenable to our established MS methods, and we have 

not yet analyzed other metabolites identified by discovery metabolomics such as those 

involved in cellular energy and lipid metabolism. These metabolites will require different 

MS approaches for detection, but they offer fertile ground for further investigation.

In conclusion, MS metabolomics demonstrate that neutrophilic airway inflammation in 

young children with CF is associated with increased concentrations of metabolites from 

many pathways, several of which are predictive of current and future early structural lung 

disease. In particular, alterations in adenosine metabolism and resulting oxidative stress are 

linked to both bronchitis and structural lung disease and offer opportunities for noninvasive 

biomarker detection and serve as promising targets for therapeutic intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average MS metabolomics signal in BALF from 20 preschool children with CF plotted 

relative to % neutrophils on cell counts from these samples. Samples with >60% neutrophils 

had more overall MS signal.
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Figure 2. 
Metabolite concentrations for various metabolites in lobes with bronchial wall thickening 

(BWT), bronchiectasis (BE), or neither BWT or BE (None) by CF-CT scoring system. 

*=p<0.05 by multivariate analysis.
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Figure 3. 
ROC curves demonstrating the sensitivity and specificity for various metabolites relative to 

neutrophil elastase (NE, marked as ‘X’) in predicting future bronchiectasis. A. Purine 

metabolites adenosine (Ado, open circles) and hypoxanthine (Hyp, open triangles). B. 

Protein catabolism metabolites phenylalanine (Phe, filled circles) and the dipeptide Leu-Pro 

(filled triangles).

Esther et al. Page 14

Eur Respir J. Author manuscript; available in PMC 2018 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Adenosine metabolic activity in BALF from preschool children with CF was assessed as the 

ability to generate hypoxanthine (Hyp) from exogenously added adenosine (Ado). Samples 

with no significant bronchitis (<40% neutrophils) had no significant activity, whereas 

activity was readily detected in samples with bronchitis (>60% neutrophils). BALF from 

clinically stable preschoolers with bronchiectasis (BE) on chest CT showed moderate levels 

of adenosine metabolic activity. N=3–4 per group. * = p<0.01 by Mann-Whitney, with 

significant post tests for bronchitis and BE groups relative to no bronchitis.
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Table 1

Subject Demographics

Discovery Set AREST CF Set

n (subjects) = 20 34

n (BALF) = 20 84

Age (years) 2.9±1.3 (0.48–4.95) 3.5±1.5 (0.96–5.83)

% Male 55% 43%

BMI (Z-score) 0.1±1.1 0.0±1.8

Treatment, hypertonic saline 6% 15%

Treatment, dornase alpha 3% 35%

Treatment, amoxicillin/clavulanate 48% 0%

Cell count (×106 cells/ml) 2.8±3.7 (0.18–12.94) 0.7±0.3 (0.06–1.67)

% PMNs 48.8±27.2 (2.5–93) 20.2±23.9 (0.67–92)

% with Pathogens 60% 17%

% with Staphylococcus 25% 7%

% with Pseudomonas 25% 2%

BALF = bronchoalveolar lavage fluid; PMNs = neutrophils
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Table 2

Selected metabolites related to neutrophilic airway inflammation in discovery metabolomics

Pathway Metabolite Corr %
PMNs

Ratio* Q-value

Adenyl purine metabolism

adenosine 5′-monophosphate (AMP) 0.60 4.7 0.040

adenosine −0.69 0.2 0.002

hypoxanthine 0.54 4.8 0.002

xanthine 0.76 15.1 0.000

urate 0.34 2.4 0.031

nicotinamide 0.45 3.2 0.006

nicotinamide adenine dinucleotide (NAD+) 0.63 3.5 0.022

kynurenine 0.65 2.5 0.016

Amino acids, dipeptides, and related metabolites

alanine 0.68 36.9 0.000

phenylalanine 0.74 36.2 0.000

tyrosine 0.75 44.1 0.000

leucine 0.37 5.4 0.058

isoleucine 0.61 6.6 0.002

methionine 0.60 2.7 0.005

serine 0.76 20.0 0.000

lysine 0.75 141.8 0.000

valine 0.76 43.6 0.000

aspartylleucine 0.78 29.6 0.000

aspartylphenylalanine 0.73 15.0 0.000

glycylleucine 0.73 33.9 0.000

lysylleucine 0.79 5.4 0.000

N-acetylmethionine 0.45 2.5 0.032

N-acetylserine 0.59 2.5 0.008

N6-acetyllysine 0.76 12.0 0.000

cysteine-glutathione disulfide 0.69 9.0 0.000

glutathione, oxidized (GSSG) 0.34 2.5 0.022

arginine 0.63 29.2 0.000

citrulline 0.79 24.3 0.000

fumarate 0.43 2.2 0.009

ornithine 0.75 71.7 0.000

putrescine 0.35 6.5 0.061

adenine 0.40 2.9 0.011

Cellular energy

glucose 0.65 9.2 0.002

citrate 0.66 4.1 0.009

malate 0.66 2.9 0.004

lactate 0.71 4.1 0.000
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Pathway Metabolite Corr %
PMNs

Ratio* Q-value

carnitine 0.43 3.2 0.009

acetylcarnitine 0.50 3.6 0.003

1,5-anhydroglucitol 0.81 7.0 0.000

Lipids

phosphoethanolamine 0.52 4.4 0.003

cholesterol 0.67 2.1 0.009

arachidonate (20:4n6) 0.64 9.2 0.003

myo-inositol 0.43 2.3 0.023

1-stearoylGPE1 0.68 2.5 0.030

2-arachidonoylGPE1 0.65 4.1 0.022

2-docosahexaenoylGPE1 0.66 2.7 0.009

2-oleoylGPE1 0.73 5.4 0.005

1
GPE = glycerphosphoethanolamine

*
Ratio = ratio of metabolite concentrations in samples with bronchitis to those with no/mild bronchitis
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