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Abstract

Background—Vincristine (VCR) is a critical part of treatment in pediatric malignancies and is 

associated with dose-dependent peripheral neuropathy (vincristine-induced peripheral neuropathy 

[VIPN]). Our previous findings show VCR metabolism is regulated by the CYP3A5 gene. 

Individuals who are low CYP3A5 expressers metabolize VCR slower and experience more severe 

VIPN as compared to high expressers. Preliminary observations suggest that Caucasians 

experience more severe VIPN as compared to nonCaucasians.

Procedure—Kenyan children with cancer who were undergoing treatment including VCR were 

recruited for a prospective cohort study. Patients received IV VCR 2 mg/m2/dose with a maximum 

dose of 2.5 mg as part of standard treatment protocols. VCR pharmacokinetics (PK) sampling was 

collected via dried blood spot cards and genotyping was conducted for common functional 

variants in CYP3A5, multi-drug resistance 1 (MDR1), and microtubule-associated protein tau 

(MAPT). VIPN was assessed using five neuropathy tools.

Results—The majority of subjects (91%) were CYP3A5 high-expresser genotype. CYP3A5 low-

expresser genotype subjects had a significantly higher dose and body surface area normalized area 

under the curve than CYP3A5 high-expresser genotype subjects (0.28 ± 0.15 hr·m2/l vs. 0.15 

± 0.011 hr·m2/l, P = 0.027). Regardless of which assessment tool was utilized, minimal 
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neuropathy was detected in this cohort. There was no difference in the presence or severity of 

neuropathy assessed between CYP3A5 high- and low-expresser genotype groups.

Conclusion—Genetic factors are associated with VCR PK. Due to the minimal neuropathy 

observed in this cohort, there was no demonstrable association between genetic factors or VCR PK 

with development of VIPN. Further studies are needed to determine the role of genetic factors in 

optimizing dosing of VCR for maximal benefit.
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1 | INTRODUCTION

In resource-limited settings, access to chemotherapeutic agents is confined to a few integral 

therapies that are available, affordable, and well tolerated. Vincristine (VCR) is a mainstay 

of therapy in such settings due to its lack of associated myelosuppression and is utilized in 

the treatment of over half of all pediatric malignancies; however, it is associated with highly 

variable and cumulative dose-dependent peripheral neuropathy.1 Despite its broad use and 

utility across a variety of environments, little is known regarding VCR pharmacokinetics 

(PK) and optimal dosing in relation to genetic factors and observed toxicity. Thus, current 

dosing strategies for VCR are largely empiric.2

Studies previously conducted by our group in the United States have shown that patients 

who are high-expresser genotype for cytochrome P450 (CYP) 3A5 metabolize VCR more 

efficiently.3 Additionally, African American children are more likely to be CYP 3A5 high-

expresser genotype and are less likely to develop vincristine-induced peripheral neuropathy 

(VIPN).4 Based on these findings, it is reasonable to hypothesize that CYP3A5 genotype, 

VCR PK, and neurotoxicity (VIPN) may be substantially different in Africa. The primary 

aims of this study are to (1) describe the CYP3A5 genotype and VCR PK in Kenyan 

children with cancer and (2) assess the presence and severity of VIPN in Kenyan children 

with cancer. The exploratory aim is the investigation of the association of CYP3A5 genotype 

and VCR PK with development of neuropathy in the subset of patients with evaluable VIPN.

2 | METHODS

2.1 | Setting

Kenya is a low-income country in sub-Saharan Africa. This study was carried out at Moi 

Teaching and Referral Hospital in Western Kenya in collaboration with Academic Model for 

Providing Access to Healthcare (AMPATH) Oncology Institute. Available treatment options 

include surgery and chemotherapy. Radiotherapy is not currently locally available.

2.2 | Study design

This study was approved by the Moi University Institutional Review Ethics Committee and 

the Indiana University School of Medicine Institutional Review Board. Patients were 

recruited prospectively from June 2011 to August 2013 and provided written informed 

consent and assent (children ≥7 years) for participation in the study. Children aged 1–18 
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years being treated for any type of cancer in which VCR was part of routine therapy were 

eligible to participate. Patients with human immunodeficiency virus or underlying baseline 

neuropathy were excluded. Patients were treated based on standard institutional treatment 

protocols, in which the VCR dose is 2 mg/m2/dose with a maximum dose of 2.5 mg 

administered via peripheral venous access by IV push. Subjects were evaluated for 

development of neuropathy while they were receiving VCR as part of their routine anti-

cancer treatment. All patients were followed longitudinally from the time of enrollment until 

completion of cancer therapy, death from disease, toxicity, or abandonment of care (defined 

as failure to sustain treatment during four or more successive weeks).5 Genotyping, limited 

PK sampling, and detailed neuropathy assessments were conducted on each subject as 

outlined in the following.

2.2.1 | VCR confirmation—Given that counterfeit pharmaceuticals have been noted to be 

problematic in sub-Saharan Africa, the VCR dispensed at this treatment center was tested 

for active vinca alkaloid using high performance liquid chromatography-mass spectroscopy/

mass spectroscopy. All vials tested had active VCR present and, on average, had 43.4 

± 15.7% more active drug than standard U.S. VCR. No vials were found to have less VCR 

than U.S. standards.

2.2.2 | Genotyping—DNA sampling for single nucleotide polymorphism (SNP) analysis 

was obtained using Oragene saliva kits. DNA was extracted and selectively genotyped using 

an intermediate throughput OpenArray® genotyping platform. Genotyping for CYP3A5*3, 

*6, and *7 (the most common functionally significant polymorphisms) was performed using 

Taqman real-time PCR assays.6 Other SNP analyses were performed on candidate genes in 

the vinca alkaloid pathway, including polymorphisms in multidrug resistance 1 (MDR1) and 

microtubule-associated protein tau (MAPT).

2.2.3 | Pharmacokinetic analysis—Limited plasma PK sampling was collected on all 

patients. Up to six samples were collected at the following intervals post-VCR dose: 30 min, 

60 min, then daily as long as the patient remained in the hospital. Samples were collected by 

finger stick onto Whatman protein saver human dried blood spot (DBS) collection paper. 

DBS cards were stored at room temperature in sealed light-protective bags with desiccant 

and humidity sensor detector cards until they were transported back to United States for 

analysis. Stability at room temperature was evaluated and confirmed. VCR was quantified 

on Whatman protein saver 903 DBS cards using vinorelbine as the internal standard. DBS 

samples, n = 5 punches of 6 mm diameter, were diluted with water and precipitated with 

acetonitrile. Chromatographic analysis was performed using an Agilent 1290 series HPLC 

coupled with a PAL HTC-xt Leap autosampler. All compounds were monitored using an 

ABSciex 5500 QTRAP triple-quadrupole mass spectrometer equipped with electrospray 

ionization probe in positive mode. Mass spectrometry settings for the m/z of the parent and 

daughter ions for VCR and vinorelbine were 413.2/392.2 and 390.1/122.1, respectively. The 

intraday and interday accuracy and precision (% coefficient of variation) estimates for VCR 

at four different concentrations were >80% and <20%, respectively. Accuracy and precision 

were also evaluated at a hematocrit of 30, 45, and 60. VCR accuracy was >80% at all 
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hematocrits tested. The lower limit of quantification for VCR was 0.06 ng/ml. VCR 

concentration was further normalized by the dose for the follow-up association analysis.

2.2.4 | Neurotoxicity evaluation—The current standard VIPN measurement approach in 

national cooperative group trials is to utilize the National Cancer Institute Common 

Terminology Criteria for Adverse Events, version 4.0 (NCI-CTCAE). However, this tool 

lacks sensitivity to detect subtle subclinical peripheral neuropathy due to its coarse scoring 

criteria.7 Therefore, VIPN phenotype was assessed at the time of each VCR administration 

using five different neuropathy assessment tools including NCI-CTCAE, Balis Pediatric 

Scale of Peripheral Neuropathy, Faces Pain Scale, Pediatric Neuropathic Pain Scale, and 

Total Neuropathy Score (TNS©). All instruments are available as appendices and the most 

sensitive tool, the TNS©, is summarized in Table 1.8 Because the TNS was the most 

sensitive tool for detecting neuropathy, this tool was utilized for statistical analysis when 

comparing CYP3A5 high and low expressers. Each instrument was back translated and 

forward translated into Swahili. Serial assessments were conducted while patients were 

receiving VCR.

2.2.5 | Population PK modeling and statistical data analysis—The dose and body 

surface area (BSA) normalized VCR was fitted into a one-compartment model using 

NONMEM. The associations between the clearance and demographic and genetic variables 

were initially tested using either first-order or conditional first-order approximation 

algorithms in the NONMEM population PK modeling, but they failed to converge. We 

decided to use a two-step strategy instead. At step one, a population one-compartment PK 

model was fitted to the data with only subject-specific clearance parameter. Then these 

subject specific PK clearances were transformed into subject specific areas under the curve 

(AUCs), before the second step association analysis was performed between dose 

normalized AUC for VCR and the demographic variables (age, gender, height, weight, and 

BSA) and genetic variables (CYP3A5, MDR1, and MAPT). The second step analysis was 

analyzed in linear regression using R package (lm). SNPs in CYP3A5, MDR1, and MAPT 
were coded by dominant, recessive, and gene dose models. Haplotypes were estimated by 

the R package, haplo.stats. Maximum NCI-CTCAE scale score and maximum TNS© score 

during treatment were used as the neuropathy phenotype. All the nonassessable evaluations 

were discarded. The associations between neuropathy score and genetics and demographic 

variables were analyzed similarly using R package lm. Means and standard deviations were 

reported for the continuous variables, and frequencies were reported for the categorical 

variables. The association between the genetics and time to the first TNS score ≥ 2 was 

analyzed using the Cox proportional hazard model. In this analysis, patients who abandoned 

treatment or died prior to completion of therapy were considered lost to follow-up. In 

addition, we also compared maximum TNS scores between two groups of patients: patients 

who completed treatment and patients who were lost to follow-up.

3 | RESULTS

Seventy-eight patients were recruited and all subjects enrolled in the study. Nine patients 

(11.5%) abandoned treatment prior to completion of therapy. Demographic characteristics 
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are summarized in Table 2. The ethnic background for patients in this study was reflective of 

the normal population of patients treated at AMPATH Oncology Institute.9,10

3.1 | Genotyping

Seventy-one of the 78 subjects (91%) are CYP3A5 high-expresser genotype (homozygous or 

heterozygous for the *1 allele, which are phenotypically identical). There were no 

statistically significant differences in CYP3A5, MDR1, or MAPT genotypes across the 

demographic variables in this cohort.

3.2 | VCR PK

Plasma VCR concentrations obtained from DBSs demonstrated that CYP3A5 low-expresser 

genotype subjects had a significantly higher dose and BSA normalized AUC than CYP3A5 
high-expresser genotype subjects (0.28 ± 0.15 hr·m2/l vs. 0.15 ± 0.011 hr·m2/l, P = 0.027; 

Figure 1). The average number of VCR measurements among 77 patients is 3.4 with a 

standard deviation of 1.0.

3.3 | VCR-Induced peripheral neuropathy

A cohort of 78 subjects completed a median of 10.2 weeks of VCR-containing therapy. They 

were followed prospectively for a median time of 6.5 weeks from the time of study 

enrollment and received a median cumulative VCR dose of 8.5 mg/m2. A total of 1,166 

complete neuropathy assessments were conducted and the median score of all assessments 

was 0. Using the NCI-CTCAE scale for neuropathies (motor, sensory, and autonomic), 57 of 

72 evaluable subjects (79.2%) experienced no detectable neuropathy and only two of 72 

subjects (2.8%) experienced Grade 2 motor neuropathy. No patients experienced Grade 2 

sensory neuropathy, ≥Grade 3 motor or sensory neuropathy. Using the much more sensitive 

TNS©, only 46 subjects were able to be evaluated due to developmental inability of younger 

children to complete the full assessment (118 neuropathy assessments on 36 subjects were 

excluded). Of the 46 evaluable subjects, 13 (28.3%) experienced no detectable neuropathy 

and only two of 46 subjects (4.3%) experienced clinically significant neuropathy11 with a 

TNS of ≥5 (scale range 0–28, max score in any subject = 8). Further neuropathy assessments 

were conducted using the Balis Scale and Pediatric Neuropathic Pain Scale. Cumulative 

results are summarized in Table 3. Regardless of which assessment tool was used, very 

minimal neuropathy was detected in this cohort. There was no difference in the presence or 

severity of neuropathy assessed via TNS between CYP3A5 high- and low-expresser 

genotype groups, as well as between MDR1 and MAPT haplotypes. The CYP3A5 genotype 

is not associated with the time to the first TNS score ≥ 2 (P = 0.73). Likewise, there was no 

statistically significant association between VCR AUC and development of neuropathy. No 

subjects required VCR dose reduction for the development of VIPN. There was no 

statistically significant difference in the presence or severity of neuropathy between subjects 

who completed treatment and patients who were lost to follow-up (P = 0.56).

4 | DISCUSSION

Our results demonstrate that the majority of Kenyan children (91%) have a CYP3A5 high-

expresser genotype and that those with CYP3A5 high-expresser genotype have 58% less 
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VCR exposure (dose- and BSA-normalized VCR AUC) compared to Kenyan children with 

CYP3A5 low-expresser genotype. Furthermore, Kenyan children experience negligible 

clinically significant VIPN11 compared to U.S. children despite receiving at least 33% more 

VCR at baseline due to protocol-based dosing differences between the U.S. and European-

derived protocols utilized in Kenya.4,12 Interestingly, the genotype and toxicity phenotype 

findings in this cohort of Kenyan children are drastically different than a cohort of n = 148 

U.S. (primarily Caucasian) children with ALL. In our Kenyan cohort of predominantly 

CYP3A5 high-expresser genotype, only 4.3% developed clinically significant neuropathy as 

defined by a TNS score ≥5. By contrast, the U.S. cohort in which only 14% were CYP3A5 
high-expresser genotype, 64% developed clinically significant neuropathy using the same 

assessment tool (data not yet published; personal communication with Dr. Jamie Renbarger).

After ruling out counterfeit VCR as a possible explanation for the negligible VIPN observed 

in this cohort, we hypothesize that the minimal toxicity observed in Kenyan children is due 

in part to lower VCR exposure (dose-normalized and BSA-normalized VCR AUC) 

compared to U.S. children. There are two significant challenges in optimizing VCR 

exposure in children and adults: (1) there is currently no consensus on what constitutes an 

appropriate therapeutic VCR AUC and (2) there are significant differences in the 

methodology of VCR PK measurement. To this end, it is really only currently possible to 

compare VCR dose- and BSA-normalized AUCs within a given cohort of subjects. Because 

PK specimens in this study were collected by DBS samples for feasibility in this low-

resource setting, it is not possible to directly compare VCR dose-normalized AUC from 

Kenyan subjects to that of U.S. subjects whose PK specimens were obtained from plasma 

samples. One potential reason for the suspected differential VCR exposure is increased 

expression of the drug-metabolizing enzyme CYP3A5, resulting in significantly lower dose- 

and BSA-normalized VCR AUC than is observed in subjects with CYP3A5 low-expresser 

genotype. Despite this finding, there was no demonstrated association between VCR 

exposure and the presence or severity of VIPN within our cohort of Kenyan children. This 

finding is most likely secondary to the very low incidence of clinically significant VIPN in 

this population, making a strong association between genotype and toxicity phenotype 

difficult to demonstrate despite the use of the extensively validated and exceptionally 

sensitive TNS©.7,8,11,13–20

Previous studies evaluating genotype and toxicity phenotype have documented conflicting 

results. Egbelakin et al. demonstrated that CYP3A5 genotype is associated with VCR 

exposure and toxicity phenotype in a cohort of U.S. (primarily Caucasian) subjects.4 Several 

other publications have reported no association between CYP3A5 genotype and 

development of VIPN21,22; however, the assessment tools utilized for evaluating neuropathy 

in those studies (NCI-CTCAE and the Movement Assessment Battery for Children) were 

suboptimal. The NCI-CTCAE has been demonstrated to have a significant floor effect that 

lacks adequate sensitivity to detect slight changes in neuropathy.7 The Movement 

Assessment Battery for Children assesses motor function only, which is likely confounded 

by steroid myopathy in children being treated for leukemia. Ultimately, although we 

hypothesize that CYP3A5 genotype and toxicity phenotype are linked, it is possible that 

there are also other genetic factors or pharmacokinetic factors that have not yet been 

elucidated that may make Kenyan children less susceptible to the development of VIPN. 
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Despite evaluating for associations between MAPT and MDR1 genotype and VCR 

exposure, no statistically significant associations were apparent in this cohort.

Interestingly, a recently published genome-wide association study of n = 222 U.S. subjects 

demonstrated that a SNP in the promoter region of CEP72, which encodes a protein involved 

in microtubule formation, had a significant association with development of VCR 

neuropathy. Furthermore, the frequency of the CEP72 risk allele (T) differed by ancestry 

with a lower frequency in patients with African ancestry.23 A genome-wide association 

study is being planned in this cohort of patients to further evaluate possible genetic variants, 

including CEP72 that may contribute to the lack of neuropathy observed in Kenyan children.

VCR is one of the core chemotherapeutic agents in the treatment of over half of all treatment 

regimens for both adults and children. On the one hand, it is exceptional to have identified a 

population of children who may not be as susceptible to development of neuropathy and 

who, therefore, experience less treatment-related morbidity. On the other hand, the question 

remains what effect, if any, this finding has on disease response and treatment outcomes. 

One recently published study in a U.S. cohort demonstrated that faster VCR metabolism was 

associated with a five times increased risk of disease relapse.24 Because the children 

enrolled in this study have only recently completed treatment, it is too early to determine 

whether CYP3A5 genotype has an impact on disease outcomes in this cohort. Disease 

response to treatment, event-free survival, and overall survival outcomes in this cohort of 

Kenyan children will be evaluated for an association with CYP3A5 genotype when all 

subjects have been off-treatment for a minimum of 1 year. Despite this, the significantly 

lower VCR dose normalized AUC of Kenyan children who are CYP3A5 high-expresser 

genotype leads us to hypothesize that the majority of Kenyan children may be receiving 

subtherapeutic VCR dosing and could possibly tolerate and potentially benefit from VCR 

dose escalation to achieve more optimal VCR exposure.

Kenya, like many low-income countries, lacks the resources and infrastructure to provide the 

basic supportive care measures that are inherent in most high-income settings.25–27 

Consequently, complications of myelosuppression are a major cause of treatment-related 

morbidity and mortality in low- and middle-income countries.25,28 Because of this, several 

international cooperative oncology groups are now advocating for utilization of reduced 

intensity chemotherapy protocols in an effort to avoid unacceptable treatment-related 

morbidity and mortality.25–30 Since VCR is one of the few chemotherapeutic agents that 

does not cause myelosuppression, it is possible that carefully monitored dose escalation of 

VCR may allow for safer deescalation of other myelosuppressive therapies and improved 

disease outcomes for this vulnerable population of children with limited treatment options.

Findings of this study must be interpreted with caution due to the small sample size of this 

cohort with a lack of significant variation in the studied genotype. Additionally, in this study, 

VCR was administered by peripheral intravenous access, thereby introducing the possibility 

of extravasation of VCR resulting in skewed pharmacokinetic data. When extravasation was 

clinically suspected (pain at infusion site, tissue necrosis following infusion), 

pharmacokinetic samples were repeated with the next administered VCR dose. Furthermore, 

patients in this study were enrolled at any point in their therapy and followed longitudinally 
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as long as the patient was available for follow-up. Because many children in Kenya die of 

treatment-related complications early in therapy or abandon care secondary to financial 

constraints, conducting ongoing longitudinal assessments is difficult in this setting, which is 

a large contributor to the low average number of neuropathy assessments per child. Since 

VIPN is believed to be a cumulative dose-dependent phenomenon, having children enrolled 

at any point in therapy allows for neuropathy evaluation across a variety of different time 

points in treatment, thereby increasing the likelihood of detecting neuropathy if it, in fact, 

exists. Despite this approach, negligible neuropathy was observed even at later time points in 

treatment when higher cumulative doses of VCR had been administered. Lastly, CYP3A5 
low expressers had limited PK samples available for analysis beyond 24 hr. Using only the 

one-compartment model precludes differentiation of the metabolism process from the 

distribution process. Hence, the clearance is a combination of metabolism and distribution. 

Utilizing a longer sampling window for low expressers, we anticipate a better power to 

investigate the associations between VCR metabolism and CYP3A genetic and/or other PK 

genetics.

Because we hypothesize that Kenyan children are likely to be CYP3A5 high expressers who 

could possibly tolerate and potentially benefit from more therapeutic VCR exposure, future 

studies will be aimed at VCR dose escalation in Kenyan children paired with frequent 

detailed neuropathy assessments to establish the maximum tolerated dose in this population. 

Additionally, more extensive genotyping or GWAS analysis may be beneficial in Kenyan 

children to establish other potential genetic changes that contribute to variability in VCR 

metabolism and/or susceptibility to toxicity. Once the maximum tolerated dose of VCR is 

established for this population, we will aim to validate our findings and potentially establish 

other biomarkers of VCR exposure and possibly subsequent toxicity in addition to CYP3A5 
genotype.
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Abbreviations

AMPATH Academic Model for Providing Access to Healthcare

AUC area under the curve

BSA body surface area

DBS dried blood spot

MAPT microtubule-associated protein tau

MDR1 multidrug esistance 1

NCI-CTCAENational Cancer Institute Common Terminology Criteria for Adverse Events
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PK pharmacokinetics

SNP single nucleotide polymorphism

TNS© total neuropathy score

VCR vincristine

VIPN vincristine-induced peripheral neuropathy
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FIGURE 1. 
VCR pharmacokinetic profile of CYP 3A5 low-expresser versus high-expresser genotype 

groups. The blue curve is the population-average PK model for CYP3A5 high expressers, 

and the red curve is the population-average PK model for CYP3A5 low expressers. Dotted 

lines reflect 95% confidence intervals. VCR dose normalized AUC of CYP3A5 high-

expresser genotype = 0.28 ± 0.15 hr·m2/l. AUC of CYP3A5 low-expresser genotype = 0.15 

± 0.011 hr·m2/l, P = 0.027
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TABLE 2

Patient demographics and CYP 3A5 genotyping

Demographic variables CYP 3A5 genotypea P-value

Homozygous variant (low 
expresser) (n = 7)

Heterozygous (n = 50) Homozygous wild type (high 
expresser) (n = 21)

Age (years), mean (SD) 6.14 (5.21) 6.54 (3.98) 6.10 (4.60) 0.91b

Sex

– Male, n (%) 2 (4.8) 28 (66.7) 12 (28.6) 0.46c

– Female, n (%) 5 (13.9) 22 (61.1) 9 (25.0)

Body surface area (m2), mean (SD) 0.81 (0.40) 0.81 (0.26) 0.75 (0.30) 0.77b

Height (cm), mean (SD) 113.06 (31.40) 113.55 (23.90) 108.34 (26.03) 0.73b

Weight (kg), mean (SD) 21.56 (15.49) 21.01 (9.57) 19.42 (11.66) 0.83b

Tribe

– Luhya, n (%) 3 (10.7) 18 (64.3) 7 (25.0) 0.96c

– Kalenjin, n (%) 3 (10.7) 17 (60.7) 8 (28.6)

– Other, n (%) 1 (4.6) 15 (68.2) 6 (27.3)

Oncology diagnosis

– Solid tumor, n (%) 3 (8.8) 21 (61.8) 10 (29.4) 0.94c

–Leukemia/lymphoma, n (%) 4 (9.1) 29 (65.9) 11 (25.0)

a
Homozygous variant = *3, 6, or 7/*3, 6, or 7; Heterozygous = *1/*3, 6, or 7; Homozygous wild type = *1/*1.

b
ANOVA.

c
Fisher’s exact test.
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