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Abstract

Purpose—This study compared the relative incidence of treatment-related toxicities and the 

event-free and overall survival between Hispanic and non-Hispanic children undergoing therapy 

for acute lymphoblastic leukemia (ALL) on Dana-Farber Cancer Institute ALL Consortium 

protocol 05-001.

Patients and Methods—Secondary analysis of prospectively collected data from a phase III 

multi-center study in children and adolescents, 1 – 18 years with previously untreated ALL.

Results—Between 2005 and 2011, 794 eligible patients enrolled on DFCI 05-001, 730 of whom 

were included in this analysis (19% [N=150] Hispanic, 73% [N=580] non-Hispanic). Hispanic 

patients were more likely to be ≥10 years of age (32% vs. 24%, p=0.045) at diagnosis. Toxicity 

analyses revealed that Hispanic patients had significantly lower cumulative incidence of bone 

fracture (p<0.001) and osteonecrosis (p=0.047). In multivariable risk regression, the risk of 

osteonecrosis was significantly lower in Hispanic patients ≥10 years (HR 0.23; p=0.006). Hispanic 

patients had significantly lower 5-year event-free survival (EFS) (79.4%; 95% CI: 71.6% to 

85.2%) and overall survival (OS) (89.2%; 95%CI: 82.7%–93.4%) than non-Hispanic patients 

(EFS: 87.5%; 95%CI: 84.5%–90.0%, p=0.004. OS: 92.7%; 95%CI: 90.2%–94.6%), (p=0.006). 

Exploratory analyses revealed differences between Hispanic and non-Hispanic patients in the 

frequency of common variants in genes related to toxicity or ALL outcome.

Conclusion—Hispanic children treated for ALL on DFCI 05-001 had fewer bone-related 

toxicities and inferior survival than non-Hispanic patients. While disease biology is one 

explanatory variable for outcome disparities, these findings suggest that biologic and non-biologic 

mechanisms affecting drug delivery and exposure in this population may be important contributing 

factors as well.
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Introduction

Despite overall cure rates near 90% in childhood acute lymphoblastic leukemia (ALL), 

survival in Hispanic children and adolescents remains inferior to survival in non-Hispanic 

patients.1–4 These disparities are particularly striking in light of dramatic improvements in 

survival for all children with leukemia over the past three decades.5,6 In a large retrospective 

analysis from 12 Children’s Cancer Study Group (CCSG) ALL trials (1983–1995), 5-year 

event-free survival (EFS) was significantly lower in Hispanic children (65.9% ± 1.5%) when 

compared with 5-year EFS in white (72.8% ± 0.6%) and Asian children (75.1% ± 3.5%), 

(p<0.001).7 More recent studies, including a Surveillance Epidemiology and End Results 

(SEER) investigation of survival trends in ALL (1995–2012), have revealed a persistent 

survival difference (5–15 percentage points) between Hispanic and non-Hispanic children.1 

The reasons for reduced survival in Hispanic children with ALL in North America are 

multifactorial and likely include both biologic and non-biologic factors, such as differences 

in the frequency of high-risk leukemia subtypes, host pharmacogenomics, reduced access-to-

care, and non-adherence to oral chemotherapy.8

Differences in survival outcomes between Hispanic and non-Hispanic patients with ALL 

have been described. 1,9–11 Fewer studies have investigated whether the incidence of TRT 

during ALL therapy varies by self-reported ethnicity, and none have described both survival 

and TRT in the same cohort. 9,12,13 The development of serious TRTs may result in an 

inability to tolerate full-dose chemotherapy, and the consequent interruptions in planned 

therapy (treatment delays, dose reductions) could theoretically contribute to increased risk of 

relapse. Conversely, development of very few TRTs might indicate lower overall drug 

exposure, either due to genetic polymorphisms affecting drug metabolism or to non-biologic 

factors, such as chemotherapy non-adherence. We conducted an analysis of TRTs and 

survival in Hispanic and non-Hispanic children and adolescents undergoing treatment for 

newly diagnosed ALL on the Dana-Farber Cancer Institute ALL Consortium protocol 

05-001 (DFCI 05-001).14 We sought to compare the relative incidence of TRTs, EFS and 

overall survival (OS) between these two patient cohorts. Because common genetic variants 

are associated with risk of TRT,15,16 we also explored whether the prevalence of these 

polymorphisms in our patient population differed by ethnicity.

Methods

Patients and eligibility criteria

Children and adolescents aged 1–18 years with newly diagnosed ALL were enrolled on 

DFCI 05-001 at 11 sites in Canada and the United States, including Puerto Rico. Patients 

whose ethnicity was documented at the time of study enrollment were eligible for inclusion 

in this analysis. The Institutional Review Board of each participating institution approved 

the original treatment protocol and informed consent was obtained from each patient’s 

guardian. All enrolled patients with known ethnicity (Hispanic and non-Hispanic) were 

included in the induction toxicity analysis. Patients with a documented complete remission 

(CR), final risk group, and treatment assignment were included in post-induction treatment 

analyses. For the investigation of targeted genetic variants, patients who met the above 

criteria and who also had genomic DNA available for analysis were included.
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Ethnicity designation

Patient ethnicity (Hispanic or non-Hispanic) was documented at the time of study enrollment 

by a clinical research associate and was based on patient/parent report and/or patient’s 

country of origin, as was the standard during the period in which the clinical trial was 

conducted.17 Ethnicity designation was guided by the national standards for the 

classification of federal data on race and ethnicity as defined by the Office of Management 

and Budget (OMB) Statistical Policy Directive No. 15.18 Patients were categorized as 

underweight, normal, overweight and obese based on body mass index (BMI). For outcome 

analyses, patients were categorized as obese, (BMI ≥ the 95th percentile for age and sex) vs. 

not obese (BMI <95th percentile).

Therapy

Details of the DFCI 05-001 treatment regimen have been previously published.14 In brief, all 

patients underwent multi-agent remission induction followed by risk-adapted post-induction 

therapy based on final risk group assignment. Final risk group was based on age, presenting 

leukocyte count, immunophenotype, presence or absence of leukemia in the cerebrospinal 

fluid at diagnosis, leukemia-associated cytogenetic abnormalities, and end-induction levels 

of minimal residual disease (MRD). All patients were scheduled to receive 24 months of 

post-induction treatment. Patients were eligible to participate in a randomized comparison of 

intramuscular native E.coli L-asparaginase and intravenous pegaspargase during post-

induction treatment. Patients who declined to participate, and those enrolled onto the trial 

after the randomized comparison had met its target accrual, were directly assigned to receive 

native E.coli L-asparaginase.

Toxicity assessment

Treatment-related toxicities were defined using Common Terminology Criteria for Adverse 

Events (CTCAE) Version 3.0 and included: bone fracture (all grades), grade 2 or worse 

osteonecrosis (ON), grade 3 or worse infection (bacterial, fungal, viral and/or pneumocystis 

pneumonia), and grade 2 or worse asparaginase-associated toxicities (allergy, pancreatitis, 

thrombosis or bleeding).14 A diagnosis of bone fracture or ON required both clinical 

symptoms and radiographic confirmation. Study staff at each participating institution 

prospectively collected TRT data at the time of CR, every three months subsequently until 

treatment completion, and annually thereafter.

Analysis of genetic variants

We conducted a secondary analysis of genomic data that were gathered for a separate 

correlative study looking at toxicities in the same study population. In this study, toxicities 

were not analyzed by ethnicity. Genomic DNA was isolated from peripheral blood collected 

after patients achieved CR. Nineteen candidate genetic variants were selected for 

investigation through a non-exhaustive literature review, with the following criteria: (1) 

variants present in genes related to pathways presumed to be relevant to TRT; (2) variants 

known to be associated with altered function of the gene product; and (3) variants with a 

population prevalence of at least 10%.15,16 Single nucleotide polymorphisms (SNPs) were 

detected using polymerase chain reaction (PCR)-based allelic discrimination assays (Life 
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Technologies, Grand Island, NY). The number of 28-bp repeats in the 5′ untranslated region 

of the thymidylate synthase (TS) gene was determined by PCR-product length analysis, as 

previously described.15

Statistical methods

Toxicity rates during induction and post-induction therapy were compared between groups 

with the Fisher’s exact test. In patients who were assigned a final risk group after achieving 

CR, ON and bone fracture with follow-up information were analyzed within age subgroups 

(<10 years vs. ≥10 years). The cumulative incidences of ON and fracture were estimated 

with the cuminc utility in the ‘cmprsk’ package in R and were tested using the Gray test, 

with relapse and death in remission identified as competing risks. Time-to-event was 

calculated as the time (years) from remission date to the date of first event. If the bone event 

occurred in induction, it was considered an event at time 0. The cumulative incidence was 

also modeled in univariate and multivariable analyses using competing risks regression. 

Multivariable models were adjusted for sex, asparaginase randomization, and final risk 

group. The grouping used in modeling for final risk group classification varied by age due to 

the protocol definition of age >10 as high risk.14

Overall survival and EFS were estimated with the Kaplan-Meier method and were compared 

between groups with the log rank test. Overall survival was defined as the time from 

registration to death from any cause. Event-free survival was defined as the time from 

registration to the first event of relapse, death, or second malignancy. Induction events, 

including death and/or failure to achieve CR, were considered events at time 0. Cox 

proportional hazards models were used to model OS and EFS by group univariately and 

were adjusted in multivariable analyses for diagnostic age, immunophenotype, WBC, 

obesity, and sex. In patients receiving a single full dose of IV pegaspargase, a Wilcoxon rank 

sum test was used to compare the serum asparaginase activity (SAA) between Hispanic and 

non-Hispanic patients at days 4, 11, 18, and 25 during induction.

The association between ethnicity group and SNPs were analyzed with the Fisher’s exact 

test. A false discovery rate (FDR), using the method of Benjamini and Hochberg19, was used 

to adjust for multiple comparisons. Comparisons padjusted<0.05 were considered significant. 

Additionally, an exploratory analysis was conducted to assess the univariate association 

between SNPs and toxicity (overall infection, pancreatitis, thrombosis, and allergy) within 

ethnicity group. The relationship between EFS and SNPs within these groups was also 

explored.

Results

Patient characteristics

Between 2005 and 2011, 794 eligible children and adolescents (ages 1 – 18 years) enrolled 

on DFCI 05-001, 730 of whom had ethnicity documented (150 [19%] Hispanic, 580 [73%] 

non-Hispanic). When compared with non-Hispanic children, a higher percentage of 

Hispanic patients were ≥10 years at the time of diagnosis (32% vs. 24%, p=0.045). A higher 

percentage of Hispanic patients were obese (20% vs. 12%, p=0.024). There was no 
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significant difference in the presence or absence of the following leukemia-associated 

cytogenetic characteristics: high hyperdiploidy (51–65 chromosomes), BCR-ABL1, 
KMT2A (MLL)-rearrangement, hypodiploidy, and iAMP21 by ethnicity (Table 1). Hispanic 

patients were significantly less likely to have the ETV6-RUNX1 fusion (p=0.018). 

Presenting leukocyte count, immunophenotype, National Cancer Institute (NCI) risk group, 

final DFCI risk group, or assigned randomized treatment arm (Table 1) did not significantly 

differ by ethnicity.

Treatment-related toxicities

Infection—The overall rate of infection during the induction treatment phase was not 

significantly different between Hispanic and non-Hispanic patients (25% vs. 29%, p=0.36). 

Hispanic patients trended toward having fewer bacterial infections than non-Hispanic 

patients (19% vs. 27%), but this difference was not statistically significant (p=0.07) (Table 

2). Post-induction infections were documented in 31% of Hispanic patients and in 32% of 

non-Hispanic patients (p=0.92) (Table 2).

Asparaginase-associated toxicities—The overall incidence of post-induction 

asparaginase-associated toxicities including allergy, pancreatitis and thrombosis, was not 

significantly different between Hispanic and non-Hispanic patients (Table 2). The rate of ON 

and fracture during post induction therapy was lower in Hispanic patients (p=0.013 and 

<0.0001 respectively) (Table 2).

Serum asparaginase activity (SAA)—At least one induction SAA level was available 

in 318 patients. During remission induction, when all patients received a single dose of 

pegasapargase, we did not observe differences between Hispanic and non-Hispanic patients 

in median SAA levels at 4, 11, 18, and 25 days after the dose (Supplemental Figure S1).

Osteonecrosis—Overall, the incidence of ON differed by age (p<0.0001) with patients 

≥10 years having more events. In patients ≥10 years of age, Hispanic ethnicity was 

associated with a significantly lower cumulative incidence of ON (hazard ratio, HR [95% 

confidence interval] 0.28 [0.10–0.76]; p=0.013; Fig. 1A). This result remained significant in 

multivariable modeling (p=0.006; Table 3). In patients <10 years of age there was no 

statistically significant difference in the rate of ON between Hispanic and non-Hispanic 

patients (0.61 [0.18–2.02], p=0.41, Fig. 1B). Additionally, in competing risks regression 

there was no detectable difference in cumulative incidence of ON by obesity for each age 

group (Table 3). Analysis of SNPs revealed no significant difference between Hispanic and 

non-Hispanic patients in the frequency of the TS polymorphism, which we have previously 

shown is associated with risk of bone toxicity in this patient population.20,21

Fracture—In patients ≥10 years of age, there was no significant difference fracture 

incidence between Hispanic and non-Hispanic patients (HR 0.63 [0.31–1.28], p=0.20 Fig. 

1C). In children <10 years, cumulative incidence of fracture was significantly lower in the 

Hispanic group (0.24 [0.10–0.54], p=0.0006; Fig. 1D). This remained significant in 

multivariable modeling (p=0.0003; Table 3). In competing risks regression there was no 
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detectable difference in cumulative incidence of fracture by obesity for each age group 

(Table 3).

Survival

The median follow-up time for those still alive was 6.12 years. Five-year OS was 

significantly lower in Hispanic patients (89.2% [82.7%–93.4%]) vs. non-Hispanic patients 

(92.7 [90.2%–94.6%]), (p=0.006; Figure 2A). Five-year EFS was also significantly lower in 

Hispanic patients (79.4% [71.6%–85.2%]) vs. non-Hispanic patients (87.5% [84.5%–

90.0%]), (p=0.004; Figure 2B). While both cohorts had nearly identical CR rates (94–95%), 

a higher percentage of Hispanic vs. non-Hispanic (13% vs. 9%) patients experienced disease 

relapse (Supplemental Table S1). There were no detectable differences in the site of relapse 

between groups (Supplemental Table S2). Of the B-ALL patients with a documented CR, 

there was no statistically significant difference in the proportion of patients with high end-

induction MRD (defined as ≥10–3): Hispanic (11%) vs. non-Hispanic (9%), p=0.55. 

Additionally, there was no difference in incidence of treatment-related mortality or in 

incidence of second malignant neoplasm between Hispanic and non-Hispanic patients. 

Ethnicity retained significance in multivariable Cox modeling for EFS (p=0.030) when 

adjusting for age, WBC, sex, immunophenotype and obesity, and marginal significance 

(p=0.07) in multivariable modeling for OS when adjusting for the same variables. In the 

multivariable models, obesity was significantly associated with OS (p=0.012) but EFS 

(p=0.27) (Table 4).

Polymorphisms

Genotyping data were available for 587 patients with ethnicity information, 574 of who 

received a final risk group classification (116 [20%] Hispanic, 458 [80%] non-Hispanic). 

After noting a difference in bone toxicity between Hispanic and non-Hispanic patients, we 

tested whether there was also a significant difference in the prevalence of a polymorphism in 

thymidylate synthase (TS) known to be associated with bone toxicity.16 In addition we 

tested whether there were disparities associated with ethnicity for 18 other TRT-related 

polymorphisms previously assessed in this cohort.15 Hispanic and non-Hispanic patients 

differed significantly in the proportion with the target genotype of four polymorphic genes: 

MTHFR A1298C (rs1801131; padjusted=0.001), SLCO2A1 (padjusted=0.003), IL1B 
(padjusted=0.003), and TCN2 (padjusted=0.002) (Supplementary Table S3). Of these four 

polymorphisms, only TCN2 was associated with both TRT and disease outcome. In 

Hispanic patients, having (vs. not having) the target TCN2 genotype was associated with 

increased risk of induction infection (32% vs. 11%, p=0.010). In the Hispanic cohort, the 

TCN2 polymorphism was univariately associated with EFS within the Hispanic patient 

cohort. In multivariable modeling, TCN2 was marginally associated with EFS (HR=3.15, 

p=0.047) (Supplemental Table S4).

Discussion

This analysis of TRTs and survival from DFCI ALL 05-001 demonstrated that overall, 

Hispanic patients had lower rates of ON and fracture as well as reduced EFS and OS relative 
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to non-Hispanic patients. The observation of both reduced toxicity and decreased survival in 

the Hispanic cohort suggests that host and/or environmental factors, rather than differences 

in leukemia biology alone, likely contributed to these outcomes.

In our Hispanic cohort, the lower incidence of skeletal toxicity is suggestive of reduced 

exposure to dexamethasone, which may be related to variations in medication adherence or 

to variations in disease biology or host pharmacogenomics. A potential mechanism of 

reduced dexamethasone exposure is oral chemotherapy adherence. Chemotherapy agents 

that need to be orally administered at home, including mercaptopurine and corticosteroid, 

are important components of the treatment regimen for children and adolescents with 

ALL.17,22 In a 2012 report from the Children’s Oncology Group (COG), Bhatia and 

colleagues found that patients who were <95% adherent to mercaptopurine during 

maintenance therapy had a 2.5-fold higher risk of relapse than those who were ≥ 95% 

adherent.23 Further analyses revealed that Hispanic ethnicity, adolescent age ≥12 years and 

low socioeconomic status were all associated with lower adherence.23 Of interest, the in 

patients with high adherence, Hispanic ethnicity was still associated with higher relapse rate. 

This further emphasizes the possibility that differential findings between Hispanic and non-

Hispanic patients are likely driven in large part by biologic differences between groups, 

rather than only by differences in adherence. In 2012, Kawedia, et al. reported that 

dexamethasone clearance may be higher in patients with anti-asparaginase antibodies. In that 

study, the increased clearance and/or the presence of the antibodies were associated with a 

higher risk of relapse.24 Although we did not prospectively assess asparaginase antibodies 

on the 05-001 study, we serially measured SAA in patients during treatment,25 and 

demonstrated no differences in SAA between Hispanic and non-Hispanic patients, indicating 

similar exposure to this agent by ethnic group.

Having identified reduced rates of ON in Hispanic patients, we were particularly interested 

in whether there were differences between cohorts in the frequency of an enhancer-repeat 

genotype (2R/2R) polymorphism in the TS gene.16,26 Our analysis did not identify a 

difference in prevalence of the 2R/2R TS polymorphism between Hispanic and non-

Hispanic patients suggesting that either untested germline genetic factors or other variables 

beyond genetic polymorphisms may have contributed to differences in skeletal 

toxicities.27–29 The incidence of ON was significantly different between Hispanic and non-

Hispanic patients in the older (≥10 years of age) patients, and the incidence of fracture was 

significantly different between Hispanic patients and non-Hispanic patients, in the younger 

(<10 years of age) group. The association between older age and ON in ALL patients has 

been well-documented, as has the association between fracture and younger age.30,31 To our 

knowledge, no published study has identified a clear explanation for this phenomenon. 

Possible mechanisms may include hormonal interactions related to older age, timing of 

skeletal development, and unidentified genetic predispositions. Further, while obesity is a 

known predictor of reduced bone mineral density in children without leukemia,32 it was not 

significantly predictive of either fracture or ON in our patient cohort and would not explain 

difference by age.

While host genetic variations likely play an important role in determining drug 

pharmacokinetics and pharmacodynamics, somatic abnormalities in leukemia cells are 

Kahn et al. Page 8

Pediatr Blood Cancer. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



critical determinants of response and resistance to therapy as well. Differences in the 

frequency of prognostically significant subtypes of ALL between Hispanic and non-

Hispanic patients have been described, some of which could explain some of the outcome 

differences we observed.11,33 For example, we observed a significantly lower incidence of 

the favorable ETV6-RUNX1 (TEL/AML1) fusion, in our Hispanic cohort, which may have 

contributed to a higher risk of relapse.34

We15,16 and others20,35–40 have previously described associations between functional 

genetic polymorphisms and TRT or survival among children with leukemia and the 

prevalence of some of these polymorphisms is known to differ between ethnic 

groups.11,20,33,41–43 In exploratory analyses, we targeted a small subset of polymorphisms 

that were relatively common (population prevalence of at least 10%) and that could 

potentially impact either TRT or survival. We observed significant differences between 

Hispanic and non-Hispanic patients in the prevalence of four of the 19 polymorphisms 

analyzed (Supplemental Table 3) however, the clinical import of these germline genetic 

differences remains unclear. The TCN2 rs1801198 polymorphism was more prevalent in 

Hispanic patients and was associated with inferior EFS within that cohort. This 

polymorphism was also associated with increased risk of induction infection in the whole 

study population, but there was no significant difference in infection rates between Hispanic 

and non-Hispanic patients; in fact, Hispanic patients tended to have fewer bacterial 

infections overall.

This study has some important limitations. First, the analysis of genetic polymorphisms was 

not prospectively designed or powered to detect associations between all polymorphisms and 

uncommon outcomes. Additionally, we did not analyze incidence of poor prognostic 

indicators, including BCR-ABL1-like subtype and deletions of the Ikaros (IKZF1) gene, 

both of which have been reported to be more common in Hispanic patients.36–38,41 These 

two features, which are frequently observed together, are independently associated with 

adverse outcomes in children with ALL. Thus, the inferior EFS and OS that we observed in 

Hispanic patients may be due to overrepresentation of these unfavorable biologic features 

within this population.44 While these alterations may have contributed to survival 

differences by ethnicity, they would not explain the difference in TRTs.

Also, there was not a standard approach to designating patient ethnicity at the time of study 

enrollment. Hispanic ethnicity as a single broad category does not delineate between 

different Hispanic/Latino groups (e.g. Cuban, Mexican, Puerto Rican, South or Central 

American, Spanish), each of which are known to have unique biologic and non-biologic 

factors associated with disease outcome.45 Because of sample size limitations we did not 

analyze outcomes by combined race/ethnicity. We acknowledge there are more objective 

ways of classifying patients’ ethnicity, for example by using genome-wide ancestry 

estimates. These methods, while precise in their characterization of genetic and biologic 

variation, are limited in their ability to account for sociocultural influences.45–48 For future 

studies, we will define both race and ethnicity using patient report, and will define genetic or 

biogeographical ancestry using modern genomic techniques.33,44 Comparing self-reported 

ethnicity to genetic ancestry will be an important part of investigating whether biology, 
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sociocultural influences, or both, are contributing to observed outcome differences between 

ethnically distinct populations.49

Conclusion

Hispanic children and adolescents enrolled on the DFCI 05-001 had significantly lower rates 

of skeletal toxicities as well as significantly lower EFS and OS compared to non-Hispanic 

patients. Hispanic patients were more frequently obese than non-Hispanic patients and 

obesity was associated with inferior OS, it did not explain differences in ON, fracture or EFS 

by ethnicity. It is likely that the mechanisms behind our observations are a combination of 

biogeographical variables (i.e. inherited host genetic factors), gene-environment interactions, 

and sociocultural variables (i.e. early childhood exposures, baseline nutrition, health 

beliefs).50–52

Other studies have compared self-defined ethnicity to genetic ancestry in childhood ALL, 

and have explored how these groups associate with relapse and adverse events.53 Our 

combined analyses of disease outcomes and toxicity in a homogeneously treated patient 

population suggests that factors beyond genomics are involved. Considering the observation 

of both reduced toxicities and inferior survival in the Hispanic cohort, the possibility of sub-

optimal drug exposure in these patients likely deserves further inquiry. Thus, while 

differences in both host and leukemia biology are prognostically important, future studies 

will focus on host pharmacogenomics, detailed analyses of nutrition status and obesity 

trends,54 inter-patient differences in biomarkers of drug exposure, frequency of drug 

interruptions for toxicity, and oral chemotherapy adherence.
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FIGURE 1. 
Probability of Osteonecrosis and Probability of Fracture by Age at Diagnosis (<10y vs. 

≥10y) in Hispanic and Non-Hispanic Patients: Skeletal toxicity data are shown for (A) 

Osteonecrosis in patients ≥10 years of age (B) Osteonecrosis in patients <10 years of age (C) 

Bone fracture in patients ≥10 years of age, and (D) Bone fracture in patients <10 years of 

age.
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FIGURE 2. 
Overall Survival and Event-Free Survival by Ethnicity: (A) Overall survival in Hispanic vs. 

non-Hispanic patients (B) Event-free survival in Hispanic vs. non-Hispanic patients.
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TABLE 4

Cox proportional hazards univariate and multivariable models of overall survival (OS) and event-free survival 

(EFS) by ethnicity. BMI group was re-grouped to obese vs. not obese to account for overlap between obesity 

and overweight categories. No differences were seen with EFS. Adjusting for other variables, obesity remains 

significant and ethnicity is marginally significant.

Univariate Multivariable

Hazard Ratio [95% CI] p-value Hazard Ratio [95% CI] p-value

Overall Survival (OS)

Hispanic vs. non-Hispanic 2.06 [1.21–3.52] 0.008 1.67 [0.95–2.89] 0.07

 Age ≥10y vs. <10y 1.62 [0.96–2.72] 0.07 1.41 [0.82–2.42] 0.21

 WBC ≥50K vs. <50K 3.26 [1.97–5.38] <0.0001 3.61 [2.13–6.12] <0.0001

 Female vs. male 0.84 [0.51–1.40] 0.51 0.95 [0.57–1.60] 0.85

 B-ALL vs. T-ALL 1.07 [0.49–2.35] 0.87 2.03 [0.88–4.65] 0.09

Obese vs. not obese 2.37 [1.34–4.20] 0.003 2.10 [1.18–3.76] 0.012

Event-Free Survival (EFS)

Hispanic vs. non-Hispanic 1.82 [1.19–2.77] 0.005 1.61 [1.05–2.49] 0.030

 Age ≥10 vs. <10y 1.65 [1.10–2.46] 0.015 1.45 [0.96–2.20] 0.08

 WBC ≥50K vs. <50K 2.44 [1.64–3.63] <0.0001 2.52 [1.64–3.85] <0.0001

 Female vs. male 0.87 [0.59–1.28] 0.48 0.96 [0.65–1.44] 0.85

 B-ALL vs. T-ALL 0.84 [0.48–1.47] 0.53 1.38 [0.75–2.53] 0.30

Obese vs. not obese 1.46 [0.89–2.41] 0.13 1.33 [0.80–2.20] 0.27

Abbreviations: WBC: White blood cell count; B-ALL: B-cell acute lymphoblastic leukemia; T-ALL: T-cell acute lymphoblastic leukemia
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